Stack Caching for Interpreters

M. Anton Ertl

Institut fur Computersprachen
Technische Universitat Wien
Argentinierstrafie 8, A-1040 Wien
anton@mips.complang.tuwien.ac.at
Tel.: (+43-1) 58801 4459
Fax.: (+43-1) 505 78 38

Abstract

An interpreter can spend a significant part of its exe-
cution time on accessing arguments of virtual machine
instructions. This paper explores two methods to reduce
this overhead for virtual stack machines by caching top-
of-stack values in (real machine) registers. The dynamic
method is based on having, for every possible state of the
cache, one specialized version of the whole interpreter;
the execution of an instruction usually changes the state
of the cache and the next instruction is executed in the
version corresponding to the new state. In the static
method a state machine that keeps track of the cache
state 1s added to the compiler. Common instructions
exist in specialized versions for several states, but it is
not necessary to have a version of every instruction for
every cache state. Stack manipulation instructions are
optimized away.

1 Introduction

Interpreters are often used for implementing program-
ming languages. Their major advantages over compila-
tion to native code are simplicity and portability. Their
major advantages over the generation of C code are
compilation speed and flexibility (e.g., to generate addi-
tional code at run-time). Interpreters are still the dom-
inant implementation method of general-purpose lan-
guages like Prolog, Forth and APL, probably the ma-
jority of special-purpose language implementations are
interpreters, and they are even used in special imple-
mentations of traditionally compiled languages like C.
In recent years many questions about inter-
preters have been asked in the Usenet newsgroup

comp.compilers. Efficiency was a major concern; an-
other frequent question is whether to use a stack or a
register architecture for the virtual machine.

The present paper deals with these issues. Section 2
discusses general efficency issues; then we concentrate
on a particular aspect of efficency: accessing arguments
of virtual machine instructions. QOur solution uses a
stack machine that caches stack values in registers (Sec-
tion 3). We present two methods for implementing this
idea: either the interpreter (Section 4) or the compiler
(Section 5) keeps track of the cache state. Finally, em-
pirical results are presented (Section 6).

The main original contributions of this paper are the
compiler-based static stack caching technique, the dis-
cussion of different stack cache organizations, and the
empirical evaluation.

A note on terminology: unless otherwise noted, the
terms instruction and primitive refer to virtual ma-
chine instructions, cache refers to the stack cache im-
plemented in software, and the compiler is the program
that generates the virtual machine code.

Some examples are written in MIPS assembly: regis-
ter n is denoted by $n, the destination operand of an in-
struction is usually the leftmost register, and comments
start with #.

2 Interpreter efficiency

Since we are interested in efficiency, we limit the discus-
sion to virtual machine interpreters, and will not dis-
cuss, e.g., syntax tree interpreters. The interpretation
of a virtual machine instruction consists of three parts:

e accessing arguments of the instruction
e performing the function of the instruction

e dispatching (fetching, decoding and starting) the
next instruction

The first and third part constitute the interpreter over-
head.

Paper and BibTeX entry are available at http://www.complang.tuwien.ac.at/papers/. This paper was published in:
SIGPLAN 95 Conference on Programming Language Design and Implementation, pages 315-327

typedef void (* Inst)();

void add(Inst *ip, int #*sp /* other regs */)

{

spl1] = spl0]l+sp[1];

(*ip) (ip+1, sp+l /* other registers */);
¥

Inst program[] = { add /# ... */ };

Figure 1: Direct threading in C using tail calls

typedef enum {
add /* ... */
} Inst;

void engine()
{
static Inst program[] = { add /* ... */ };

Inst *ip;
int *sp;

for (;;)
switch (xip++) {
case add:
spl[1]=sp[0]+spl[1];
sp++;
break;

}

Figure 2: Instruction dispatch using switch

2.1 Instruction dispatch

The most efficient method for fetching, decoding, and
starting the next primitive is direct threading [Bel73]:
Instructions are represented by the addresses of the rou-
tine that implements them, and instruction dispatch
consists of fetching that address and jumping to the
routine. Unfortunately, direct threading cannot be im-
plemented in ANSI C and other languages that do not
have first-class labels and do not guarantee tail-call op-
timization (Fig. 1 shows how direct threading would be
implemented in C using tail-calls).

Two methods are usually used in C: a giant switch
(Fig. 2) or calls (Fig. 3). In the first method instruc-
tions are represented by arbitrary integer tokens, and
the switch uses the token to select the right routine; in
this method the whole interpreter, including the imple-
mentations of all instructions, must be in one function.
In the second method every instruction is a separate
function; this method is actually quite similar to di-
rect threading (it just uses calls instead of jumps), so

typedef void (* Inst)();

Inst *ip;
int *sp;

void add()

{
spl1]=sp[0]+sp[1];
spt+;

}
Inst program[] = { add /# ... */ };

void engine()

{
for (;3)
(*ip++) ()3

Figure 3: Direct call threading

lw $2,0($4) #get next instruction, $4=inst.ptr.
addu $4,%$4,4 #advance instruction pointer

h| $2
#nop #tbranch delay slot

#execute next instruction

Figure 4: Direct threading in MIPS assembly

I call it direct call threading. Figure 4, 5 and 6 show
MIPS assembly code for the three techniques (direct call
threading needed a little source code twisting to get rea-
sonable scheduling). Fig. 7 shows the overhead of these
techniques in cycles on two processors, the R3000, and
the more deeply pipelined R4000. The overhead varies
depending on how many delay slots can be filled; usually
it will be at the lower bound.

The execution time penalty of the switch method is
caused by a range check, by a table lookup, and by the
jump to the dispatch routine generated by most com-
pilers. The call method does not look so slow, but it is
usually even slower than the switch method: Every vir-
tual machine register, e.g., instruction and stack point-
ers, have to be kept in global or static variables. Most
C compilers keep such variables in memory, causing at
least a load and/or store for every virtual machine regis-
ter accessed in a primitive. In the switch method virtual
machine registers can be kept in local variables, which
are translated into real machine registers by good com-
pilers.

Fortunately, there is a widely-available language with
first-class labels: GNU C (version 2.x); so direct thread-
ing can be implemented portably (see Fig. 8). If porta-
bility to machines without gcc is a concern, it is easy to

$L2: #for (;;)

lw $3,0($6) #$6=instruction pointer
#nop

sltu $2,$8,$3 #check upper bound

bne $2,$0,3L2

addu $6,$6,4 #branch delay slot

s1l1 $2,$3,2 #multiply by 4

addu $2,$2,$7 #add switch table base ($L13)
1w $2,0(%2)

#nop

h| $2

#nop

$L13: #switch target table
.word $L12
$L12: #add:

i $L2
#nop

Figure 5: Switch dispatch in assembly

add:

j $31 #return
engine:

$L3:

lw $2,ip #instruction pointer
#nop

1l $4,0(32)

addu $3,%$2,4

jal $31,$4 #call $4

sw $3,ip #delay slot
h| $L3

#nop

Figure 6: Direct call threading in assembly

switch between direct threading and ANSI C conform-
ing methods by using conditional compilation.

If the instructions are of constant length, dispatch-
ing the next instruction can be performed in parallel
with the processing of the current instruction. This is
very useful for filling delay slots of both the instruction
dispatch routine and the rest of the instruction. When
coding in C; care must be taken to avoid potential de-
pendences due to aliasing (e.g., between instruction and
stack pointer) that would prevent the compiler from per-
forming good scheduling. If an even higher amount of
instruction-level parallelism is desired, a part of the dis-

R3000 R4000

direct 3-4 5-7
switch 12-13 18-19
call 9-10 17-18

Figure 7: Cycles needed for instruction dispatch. Other
costs vary with the dispatch method (see text).

typedef void *Inst;

void engine()

{
static Inst program[] = { &&%add /* ... */ };
Inst *ip;
int *sp;

goto *ip++;

add:
spl1]=sp[01+sp[1];
sp++;

goto *ip++;

}

Figure 8: Direct threading using GNU C’s “labels as
values”

patch routine (e.g., instruction fetch) can be shifted to
earlier instructions. However, this work is wasted if the
virtual machine control flow changes (unless there are
delayed branches in the virtual machine).

2.2 Semantic content

The interpreter overhead can also be reduced by reduc-
ing the number of primitives executed, 1.e., by increas-
ing the semantic content of each instruction. Combining
often-used instruction sequences into one instruction is
a popular technique, as well as specializing an instruc-
tion for a frequent constant argument (eliminating the
argument fetch and enabling optimizations in the native
code for the instruction). Care has to be taken that the
resulting code expansion with its higher real machine
instruction cache miss-rate does not cancel out the ben-
efits. Also, often the compiler must be made more com-
plex to make use of these instructions. On the other
hand, optimizing compilers can make instructions with
high semantic content useless (part of the RISC lesson).

2.3 Accessing arguments

In the hardware area, the contest between stack and
register architectures has been decided for register
machines.! However, for interpretive implementations

1For a dissenting opinion, read [Koo89].

lw $3,0($6) #get register numbers,
lw $2,4($6) #$6=instruction pointer
1w $4,8(%$6)

addu $3,$7,$3 #add reg. array base ($7)
addu $2,$7,%$2

lw $2,0($2) #load arguments

1w $3,0($3)

addu $4,$7,%4

addu $2,%$2,$3 #perform operation

sw $2,0($4) #tstore result

Figure 9: Add in a register architecture (without in-
struction dispatch)

addu $5,%$4,$6 #3$5=r3 $4=r1 $6=r2

Figure 10: Unfolded add (rl and r2 into r3)

the picture looks different:

From the view of the compiler writer, many languages
can be easily compiled for stack machine code. To
achieve better performance with a register machine, the
compiler must perform optimizations, e.g., global reg-
ister allocation (which needs data flow analysis). This
would eliminate one of the advantages of using an inter-
preter, namely simplicity.

Moreover, in an interpreter the spill> and move in-
structions necessary in register architectures are much
more time consuming than in hardware, since each in-
struction also has to execute an instruction dispatch.
This is not balanced by the fact that the other instruc-
tions also have to perform instruction dispatches, since
the other instructions usually have higher semantic con-
tent. l.e., the proportion of spill code is higher for vir-
tual register machines than for real register machines.

In hardware, the instruction and the register numbers
are decoded 1n parallel. A simple software implementa-
tion of a register machine has to fetch and/or decode the
register numbers using separate instructions. Even with
the amount of instruction-level parallelism that super-
pipelined and superscalar processors offer today and in
the near future, this still costs much time. Since hard-
ware registers cannot be accessed in an indexed way, the
virtual machines registers have to be kept and accessed
in memory, costing even more time. Fig. 9 shows a three
register add without instruction dispatch on the MIPS
architecture (10 cycles on the R3000).

There is an alternative implementation of a register

2If there are more values than the compiler can keep in regis-
ters, some values have to be stored into memory and loaded back
later. This is called spilling.

lw $2,0($5) #get arguments

lw $3,4($5) #3$5=stack pointer
addu $5,$5,4 #update stack pointer
addu $2,%$2,$3 #perform operation
sw $2,0($5) #tstore result

Figure 11: Add in a simple stack implementation

lw $2,4($5) #get other argument, $5=sp
addu $5,$5,4 #update stack pointer
addu $6,%$6,$2 #perform operation, $6=tos

Figure 12: Add, the top of stack is kept in a register

machine: The registers accessed can be encoded into the
instruction by unfolding it, i.e., by creating a version of
the instruction for every combination of registers. The
registers can then be accessed directly, and therefore
be kept in real machine registers, if there are enough?.
Fig. 10 shows one version of the add instruction. How-
ever, this strategy causes code explosion, and will prob-
ably suffer a severe performance hit on machines with
small first-level caches: E.g., there would be 288-512
versions of every three-register instruction in a virtual
machine with 8 registers (the lower bound is for com-
mutative operations); the add instruction alone would
need 4.5 KB in a direct threaded implementation on
the MIPS architecture. The size of the first-level (real
machine) instruction cache on the R4000 is just 8 KB.

A simple stack machine does better than a simple
register machine (see Fig. 11). Tt has the same num-
ber of operand fetches and stores; in addition, many
instructions update the stack pointer. But there is no
fetching/decoding to learn where the operands are.

If there are enough registers, the number of operand
fetches and stores can be reduced by keeping n top-of-
stack values in registers (see Fig. 12). This is not always
beneficial; if an instruction takes x items from the stack
and stores y items to the stack, keeping the top n items
in registers

e is better than keeping just n — 1 items, if
z>n A y > n, due to fewer loads from and stores
to the stack.

e is usually slower than keeping n — 1 items, if
£y AN z<n Ay<n, due to additional moves
between registers.

3However, the availability of registers should not be taken for
granted even on register-rich RISCs. E.g., when I tried to keep
the top of stack (of Forth’s stack-oriented virtual machine) in a
register on the MIPS architecture, gcc (versions 2.3.3 and 2.4.5)
spilled the return stack pointer to memory, an important internal
register of the virtual machine.

e is as fast as keeping n — 1 items in the other cases.

This holds for all machines where loads, stores, and
moves cost more than zero cycles. Moreover, machines
that can exploit a high amount of instruction-level par-
allelism can profit from the prefetching effect of keep-
ing more items in registers. On a related note, keeping
one item in a register also speeds up floating-point and
other long-latency instructions, where the store back to
the stack would expose the latency.

Keeping one item in a register is never a disadvan-
tage, if there are enough registers. Whether keeping
two items is a good idea, depends on the virtual ma-
chine and how it is used. E.g., for Forth it is not a good
idea (see Section 6).

3 Stack caching

Keeping a constant number of items in registers is sim-
ple, but causes unnecessary operand loads and stores.
E.g., an instruction taking one item from the stack and
producing no item (e.g., a conditional branch) has to
load an item from the stack, that will not be used if
the next instruction pushes a value on the stack (e.g., a
literal). Tt would be better to keep a varying number of
items in registers, on an on-demand basis, like a cache.

This requires different implementations of an instruc-
tion for different cache states. Every allowed mapping
of stack items to machine registers constitutes a cache
state.

There are several sensible options on the set of states
allowed. Basically, we would like the set to be finite, so
we can use finite state machines to describe the effect
of executing or compiling instructions. The relations
of the states should minimize the amount of work nec-
essary for getting from one state to another. Fig. 13
shows a three-state machine for stack caching in two
registers. Transitions are shown for words with various
stack effects (due to space limitations not for all stack
effects).

In general, the selection of a set of states and transi-
tions for a given number of states and registers is an op-
timization problem that we leave for future work. Here
we present just a few insights.

3.1 Stack pointer updates

In addition to stack accesses, many stack pointer up-
dates can be optimized away, too: The cache state can
also contain the information how much the contents of
the stack pointer register differ from the actual value of
the stack pointer. A good strategy that does not intro-
duce additional states 1s to let the difference correspond
to the number of stack items in the cache (see Fig. 13).
This means that the stack pointer need not be updated

-w
-ww
w--ww

stack[0]: $8
stack[1]: $9
sp offset:

-WWw
W-ww

stack[0]: $9

sp offset: 1 W=

sp offset: 0

WWwW--

Figure 13: A simple cache state machine (transitions
are marked with stack effects. w w -- w represents an
instruction that takes two word-sized items from the
stack and puts one result back on the stack (e.g., add).)

addu $9,%$8,$9

Figure 14: Add in stack caching (starting in the full
state of the three-state machine)

in instruction implementations that can access all stack
items in registers, i.e., hopefully most of the time.

Stack caching with stack pointer update minimization
leads to code that is as good as that of the unfolded
register machine (see Fig. 14).

3.2 Minimal organization

As a minimum, there should be one state for every num-
ber of stack items in registers (as in Fig. 13). To mini-
mize the amount of work, the bottom of the cached stack
items should be in the same register in all states; the
other stack items should be allocated similarly. This ar-
rangement of states avoids the need to move stack items
around on the bottom of the cache whenever something
on the top changes.

3.3 Overflows and underflows

There is a movement cost, however: If something has to
be pushed when the cache is full, all stack items in the
cache have to be moved to other registers. Fortunately,

cached: 5

$9 $8 $7 $6 $5K
¢
cached: 4 »)
$9 $8 $7 $6
cached: 3 ‘e
$9 $8 $7
¢

cached: 2
.

overflow

Q

cached: 1
so)

| G

cached: 5
$7 $6 $5 $9 $8R

0

cached: 4

$7 $6 $5 $9
‘ cached: 3 <
$7$6$5

‘ '
| cached: 2 “

K

7

' $7 $6
” WW-- W ’
cached: 1 l' cached: 1
$9 . 7
| G

©“

Figure 15: Overflow transition in a minimal organiza-
tion (the top-of-stack is rightmost, $9 contains the deep-
est cached item)

overflows are very rare if the cache is sufficiently large
(if the cache is small, there are not many moves). It
can be made rarer by choosing an appropriate followup
state for overflowing instructions:

Choosing the full state as overflow followup state min-
imizes the traffic between the stack cache and memory.
But there are also other costs associated with overflow-
ing: the movement of stack items to other registers and
the updating of the stack pointer. In particular, on pro-
cessors where a move costs the same as a store, the tran-
sition to any state costs the same. So it can be better
to choose a non-full state as the overflow follow-up state
(see Fig. 15), in order to reduce the number of overflows
(even though this increases the number of underflows a
bit). Which state is the best, is probably best deter-
mined empirically. While there are theoretical results
[HS85], they are based on a random walk model, where
pushes and pops occur equally likely irrespective of pre-
vious events. It is not clear that this model describes
the behaviour of real programs, and our empirical re-
sults indicate that it does not (see Section 6).

In the same way an optimal followup state for under-
flow can be selected. It is probably useful to put at least
the values in registers that the underflowing instruction
produces, i.e., the underflow followup state can be de-
pendent on the executed instruction.

Note that the optimal followup states for overflow and
underflow depend on each other. l.e., if a suboptimal

Figure 16: Avoiding moves with additional states

behaviour for underflows is selected, the corresponding
overflow followup state will tend to be fuller than for
the optimal underflow behaviour, in order to reduce the
number of costly underflows.

Another solution to the movement problem on over-
flows is to introduce more states: instead of moving all
stack items, just the bottom cached stack item is stored
to memory and the register where it resided is reused to
keep the top of stack. Of course, this new mapping of
stack items to registers has to be represented in a new
state. The moves would have to be performed when the
new state is left. To avoid this, appropriate neighbours
for this new state should be introduced. If this approach
1s performed consequently, all such moves can be elimi-
nated, but the number of states 1s nearly multiplied by
the number of cache registers. Combinations of both
solutions to this problem are possible (see Fig. 16).

3.4 Stack manipulation instructions

Stack manipulation instructions also cause moves in the
minimal state machine. As before, these moves can be
optimized away by introducing more states. For stack
shuffling instructions (e.g., swap and rot), the extreme
form of this approach creates all assignments of stack
items to registers where no register occurs twice. For
duplicating instructions (e.g., dup and over), the ex-
treme form results in an infinite number of cache states,
since an unlimited number of such instructions causes
an equally unlimited number of stack items to reside in

Figure 17: A cache organization where one duplication
is allowed (dup duplicates the top of stack, over dupli-
cates the second item, swap swaps the two top items,
rot rotates the third item to the top, drop pops the top
item)

the cache, and an infinite number of states is needed
to record all these possibilities. If the number of cache
states 1s to be limited, the number of duplications repre-
sented in the states has to be limited. E.g., the number
of stack items in the cache could be limited, the num-
ber of duplicates of each item, or the total number of
duplications. Figure 17 shows a two register cache or-
ganization where one duplication is allowed.

If there are several stacks, the simple solution is to
treat them separately, with separate caches (and sepa-
rate state machines). They can also be treated in a uni-
fied manner, sharing the same set of registers. Moves
between the stacks can again be optimized by introduc-
ing additional states.

3.5 Reducing the number of states

In practice finiteness is not enough, there are also other
limits to the number of states. Figure 18 gives an idea
of the number of states of various cache organizations
with a varying number of registers. The “minimal” or-
ganization has only one state for a certain number of
stack items in registers; “overflow move optimization”
removes the moves on overflow by introducing more
states; “arbitrary shuffles” optimizes shuffle instructions
in a similar way, “n + 1 stack items” supports keeping
up to n + 1 stack items in n registers, in any order and
with any kind of duplication; these two cases show that
the number of states can grow explosively. “One dupli-
cation” is the “minimal” organization, extended with
states that represent one (arbitrary) duplication of a
stack item. “Two stacks” is the “minimal” organiza-
tion, combined with caching up to two items of another
stack in the same registers, also in a “minimal” organi-
zation.

For organizations with many states, nearly all states

will be rarely used. If a smaller number of states is de-
sired, many of these states can be eliminated. Transi-
tions to such states have to be rerouted, possibly incur-
ring higher transition costs. However, these costs have
to be payed rarely, only when the state would have been
used.

This brings up the question of what transitions there
should be in the first place. The simplest criterion is the
cost of the transition itself. However, there are often
several transitions costing the same (e.g., consider the
overflow case in the “minimal” organization). In such
cases a transition should be chosen to the node that
has the smallest average transition cost (e.g., a half-full
state in the above-mentioned overflow case, because it
minimizes the costly overflows and underflows). Indeed,
the cost of the transition should be considered to include
the average transition cost of the successor node.* Or,
even better, if the future is known, the actual future
cost can be used to select the transition.

The choice of transitions also influences the usage
counts of the states. It is desirable to have a strongly
biased distribution of usage counts, in order to be able
to eliminate many states, but also to achieve high real
machine instruction cache hit rates. This biasing can be
achieved by selecting a specific state and choosing tran-
sitions that get closer to this canonical state if there is
a choice.

3.6 Prefetching

If stack item prefetching is desired, states with too few
stack items in registers should be forbidden. This will
cause slightly higher memory traffic: the prefetches will
be useless if a number of pushes follows that causes the
stack cache to overflow. In addition, on overflow the
prefetched values have to be stored into memory, un-
less the cache state also contains information about the
prefetched values (corresponding to dirty bits in hard-
ware caches). Prefetching more than one value can also
introduce moves (an underflow variant of the overflow
problem). If it is used, prefetching should overcompen-
sate these costs by reducing the number of delay slots.

4 Dynamic stack caching

In dynamic stack caching the interpreter maintains the
state of the cache and the compiler need not even be
aware of the existence of a cache. This means that there
is a copy of the whole interpreter for every cache state.
The execution of an instruction can change the state of
the cache, and the next instruction has to be executed
in the copy of the interpreter corresponding to the new
state.

4This infinitely recursive definition would result in infinite
costs, but it is possible to shift the scale into a finite range.

registers 1 2 3 4 5 6 7 8 n

“minimal” 2 3 4 5 6 7 8 9 n+1

overflow move opt. | 2 5 10 17 26 37 50 65 n?+1
arbitrary shuffles 2 5 16 65 326 1,957 13,700 109,601 E:?=o n!/i!
n+1stackitems |3 15 121 1,356 19,531 335,923 6,725,601 153,391,689 S

one duplication 3 7 14 25 41 63 92 129 | n(n+1)(n+2)/6+n+1
two stacks 3 6 9 12 15 18 21 24 3n

Figure 18: The number of cache states

$L2: #add in state O0: cache empty

lw $4,0($6) #get arguments,

lw $3,4($6) #$6=stack pointer

lw $2,0($5) #get next instruction, $5=instp
addu $6,%$6,8 #stack pointer update

lw $2,4($2) #table lookup, next state: 1
addu $5,$5,4 #advance instrcution pointer

j $2 #jump to next instruction

addu $4,$4,$3 #operation

$L3: #add in state 1: tos in $4

lw $2,0($6) #get other argument
1w $3,0($5)

addu $6,%$6,4 #stack pointer update
1w $3,4($3) #tnext state: 1

addu $5,%$5,4

h| $3

addu $4,$4,$2 #operation

$L4: #add in state 2: tos in $7, second in $4
1w $2,0($5)

#nop

1w $2,4($2) #next state: 1

addu $4,$4,$7 #operation

h| $2

addu $5,%$5,4

Figure 19: Add in dynamic stack caching with table
lookup

This implies a change of the instruction dispatch rou-
tine. In a switch-based implementation, the instruction
just has to jump to the appropriate copy of the switch.
For direct threading the changes are not so simple: The
easy solution performs a table lookup (see Fig. 19). This
costs a (real machine) load instruction on current RISC
processors; to make bad news worse, this load instruc-
tion may cost more than one cycle, since it increases the
data dependence path length of the instruction dispatch
sequence, which will often become the critical path of
an instruction, especially if much of the rest has been
optimized away (as in the add in state 2 in Fig. 19). On
CISCs the lookup may come for free (1486) or at little
cost. The other solution is to store the instructions for a
state at a fixed offset from the corresponding routines in

the other states. Then the address of the routine for an
instruction can be computed by adding the base address
of the instruction and the offset of the state. This costs
a (real machine) add instruction on many processors,
but may come for free on others (SPARC). The problem
with this approach is that no portable language I know
supports placing routines at specific points in memory;
what’s worse, even some assemblers do not support it
(e.g., the DecStation assembler).

If instruction dispatch becomes more expensive, dy-
namic stack caching i1s probably not worth the trouble.
E.g., none of the add implementationsin Fig. 19 is faster
(on both the R3000 and R4000) than the add in Fig. 12
with direct threading.

Since the whole interpreter has to be replicated for ev-
ery state, only state machines with a few dozen states
or less are practicable (depending on the size of the in-
terpreter and the (real machine) instruction cache). In
other words, the stack cache should have the minimal
organization, maybe with a few frills like a bit of return
stack® caching, or, if there are few registers for caching,
one duplication, to make better use of them. Eliminat-
ing the moves of stack manipulation instructions does
not pay in many cases: The instruction dispatch has to
be performed anyway, and the moves can often be done
in parallel, i.e., in the delay slots.

Since the state of the cache is represented in only one
value, i.e., the program counter of the processor, it is
not possible to treat two caches (e.g., for an integer and
a floating-point stack) with separate state machines in
dynamic caching. The states of both caches have to be
represented in a single state machine. This multiplies
their number and makes big caches for more than one
stack impractical.

5 Static stack caching

In static stack caching the compiler keeps track of the
state of the cache and generates the code accordingly.

This approach offers several big advantages over dy-
namic stack caching:

e There is no need for a special instruction dispatch

SLanguages with user-visible stacks (e.g., Forth) have a sepa-
rate stack for storing the return addresses of calls.

routine and its possible performance disadvantages,
direct threading can be used.

e Stack manipulations can be optimized away com-
pletely, 1.e., not even an instruction dispatch is exe-
cuted. The compiler just notes the state transition.

e There i1s no need to replicate the whole interpreter
for every state: The implementation of the same
instruction in many states can be the same, e.g.,
when the arguments of the instruction are accessed
in the same registers, but some other stack items re-
side in different registers (in dynamic stack caching
they would have different instruction dispatch rou-
tines for continuing in different states). More-
over, implementations of rarely used instructions
for rarely used states can be left out. The compiler
will then generate code for a transition into a state
for which the instruction is implemented.

Caches with several thousand states are feasible,
and probably even more with table compression
techniques.

e The compiler knows the future instruction stream
and can generate optimal code for it.

Of course, there is also a disadvantage: It is not pos-
sible to execute the same code in different states. The
compiler has to reconcile the states of different control
flows at control flow joins. Apart from this fundamental
problem there are also the practical problems of insuffi-
cient knowledge in the compiler and avoiding compiler
complexity. In particular, the compiler usually knows
nothing about the states of callers and callees.

The traditional solution for the call problem is to have
a calling convention. In the case of stack caching this
means that all procedures start in a specific state and
return in a specific (possibly different) state. The tran-
sition into these states can be performed by the call and
return instructions respectively.

A simple solution for the control flow join problem is
to have a “control flow convention”: at every basic block
boundary (i.e., at every branch and branch target) the
code is in a canonical state. The transition into this
state can be performed by the branch instructions. For
branch targets the transitions have to be performed by
the instruction before the target. A slightly more com-
plex, but faster solution is to have the branch perform
the transition to the state at the branch target without
causing a reset to a canonical state before the branch
target.

Due to the need for a calling convention a return stack
cache cannot be used as effectively as in dynamic stack
caching. However, a one-register return stack cache can
be used to good effect: at the start of a procedure the
register 1s filled with the return address. This is equiv-
alent to the leaf procedure optimization on RISCs.

Prog. Instr. loads updates rloads rupdates calls
compile [1,562,172 0.76 0.55 0.17 0.32 0.13
gray |[1,588,545 0.69 0.43 0.21 0.39 0.17
prims2x [5,766,854 0.75 0.43 0.18 0.34 0.16
cross (4,914,610 0.74 0.51 0.19 0.33 0.14

Figure 20: The measured programs and some of their
characteristics: instructions, loads from (=stores to) the
stack, stack pointer updates, return stack loads/stores,
return stack pointer updates, and calls per instruction.

Generating optimal code using knowledge of the next
instructions in the basic block is possible in linear time
using a two-pass algorithm, as a specialization of the ap-
proach taken in tree pattern matching [PLG88, FHP91].
The first pass just determines which of the possible code
sequences is optimal, the second pass then generates
the code. Both passes use finite state machines and are
therefore fast. The usefulness of this technique depends
on the organization of the cache state machine. It is
only useful if there is more than one transition possible
for an instruction from a given state and if choosing the
right one requires foresight.

From a certain point of view there is not much differ-
ence between static stack caching and using a register
architecture for the virtual machine. Indeed, it can be
seen as a framework to make virtual register machines
more usable: It provides automatic register allocation
and spilling without lots of overhead instructions. It
also provides principles for keeping the number of dif-
ferent implementations of an instruction small, if neces-
sary. And it provides a simple, stack-based interface to
the higher levels of the compiler. And the low level of
the compiler does not have to handle the complexities
of register allocation, it is just a simple and fast state
machine. However, there is quite a bit of complexity
in the generator that generates the instructions and the
tables for the compiler.

6 Empirical results

We instrumented a Forth system to collect data about
the behaviour of various stack caching organizations.®
Several real-world applications were used as bench-
marks: interpreting/compiling a 1800-line program
(compile), running a parser generator on an Oberon
grammar (gray), a text filter for generating C code
from a specification of Forth primitives (prims2z), and a
cross-compiler generating a Forth image for a computer
with different byte-order (eross). Figure 20 shows the
number of loads from the stack (same as the number
of stores to the stack), stack pointer updates and ex-

8The raw data is available at ftp://ftp.complang.tuwien.ac.at
/pub/misc/stack-caching-data.

/instruction ,
21 /
/
/
/
/
7/
/
/
7/
,” loads+stores ——
11 / moves — —
/
, updates ——--
/
/
,,,,,,,,,,,,, o oo - - — - -
/
/
7
'
- . .
0 T T T T T 1 items in regs
0 1 2 3 4 6

Figure 21: Keeping a constant number of items in reg-
isters: Memory accesses, moves, and stack pointer up-
dates per instruction vs. number of items kept in regis-
ters

ecuted (virtual) instructions for these programs on an
implementation without any kind of stack caching. It
also gives the number of return stack loads/stores and
stack pointer updates. The return stack is not consid-
ered in the rest of the measurements. Applying return
stack caching should have similar effects as for the data
stack, with one exception: Most return stack accesses
are simple pushes (on calls) or pops (on returns); there-
fore, always keeping one return stack item in a register
has virtually no effect.

To compare the total argument access overhead
of various organizations, the components have to be
weighed and added. We used the following weights:
loads, stores, moves and stack pointer updates cost one
cycle, instruction dispatches cost four cycles. Since the
number of loads from and stores to the stack in memory
is equal, we will only display their sum in the figures.
The figures display the total sum of all programs.

First, we measured the effect of keeping a constant
number of stack items in registers (see Fig. 21). Tt
is easy to see that keeping one item in a register 1s best
(see also Fig. 26): Tt significantly reduces the number
of loads and stores. Keeping more items in registers re-
duces loads and stores, but introduces too many moves
to be useful. Of course, the number of stack pointer up-
dates cannot be reduced with this technique. On a Dec-
Station (R3000) keeping one item in a register causes a
speedup of 11% for prims2z and 7% for cross.”

Next, we measured dynamic stack caching on min-
imal organizations with a varying number of registers
and varying overflow followup states. We did not op-
timize the underflow followup state; instead, we used

"The other programs run too fast to produce exact timings.
Explicit register declarations were used to keep gcc from spilling
important registers.

10N

~ cycles/
Instruction

o

0.5 1

0.2
— 4
¥_5/67
8§ 9 10
0 e gyerflow to
01 2 3 4 5 6 7 8 9 10

Figure 22: Dynamic Stack Caching: Argument access
overhead in cycles/instruction of minimal organizations
with different numbers of registers vs. overflow followup
state

the state that has those items in registers that the un-
derflowing instruction produces. In Fig. 22 the lines
represent the performance of cache organizations that
use a specific number of registers, while varying the
overflow followup state. E.g., the line labelled with “4”
represents the organizations that use four registers; the
lowest (optimal) point on this line is for the organiza-
tion that uses state 3 as the overhead followup state,
i.e., the state where the registers contain the top three
stack items and one register is free. The argument ac-
cess overhead is approximately halved for every register
that is added.® Another interesting result is that the
optimal overflow followup states are rather full, while
we expected them to be about half-full, based on the
results in [HS85]. In this light, the underflow behaviour
we used 1s probably close to optimal.

Figure 23 shows how the components of the argu-
ment access overhead vary for different overflow fol-
lowup states of organizations with six registers. The
fuller the overflow followup state, the more overflows
there are, increasing the number of moves. At the same
time, the memory traffic decreases, since less data, that
would have fit into the cache, 1s stored and later loaded
again. Although the number of overflows increases, the
number of stack pointer updates decreases, because the
increase in overflows is outweighed by the decrease in
underflows (note that underflows are usually one item

8 This holds up to about 14 registers, then the decrease slows
down.

/instruction loads+stores

0.057 moves — — —
updates — -
0.025 1
0 = » overflow to

Figure 23: Dynamic Stack Caching: Memory accesses,
moves, and stack pointer updates per instruction of
organizations with 6 registers for varying overflow fol-
lowup states

~cycles/
1nstruction

2.

0 T T T T T » canonical state
0 1 2 3 4 5 6

Figure 24: Static Stack Caching: Argument access over-
head in cycles per (original) instruction of various orga-
nizations vs. canonical state

at a time, while overflows typically spill several items at
a time). However, this does not hold for higher numbers
of registers.

For static stack caching we looked at organizations
based on minimal organizations, that also contained
states that represent the application of one stack ma-
nipulation word to a state of the minimal organization
(but only if the arguments of the stack manipulation
word are already in registers). These organizations were
combined with the control flow convention approach; we
tried all the states of the minimal organization as canon-
ical state (which also served as overflow followup state).
In Fig. 24 the lines represent the performance of cache

11

. . loads+stores ——

/instruction moves — — —

1.57 updates ——--
dispatches ———- /

 canonical state

Figure 25: Static Stack Caching: Memory accesses,
moves, stack pointer updates and instruction dispatches
per (original) instruction of organizations with 6 regis-
ters for varying canonical states

organizations that use a specific number of registers,
while varying the canonical state. L.e., the line labelled
“4” represents the organizations that use four registers.
The lowest point on this line is for using state 2 as the
canonical state, 1.e., the state where two stack items are
cached in two of the registers.

Due to the high frequency of cache resets to the
canonical state, the best canonical state (for organiza-
tions with more than three registers) is the two-register
state. It decreases the number of underflows fairly well
without introducing too many moves on cache reset (see
Fig. 25). Increasing the number of registers beyond five
has hardly any effect, because the cache is usually re-
set before it overflows five registers. So the number of
loads, stores, moves, and updates stays at a certain level
(about 0.1 loads and stores and 0.2 moves and stack
pointer updates per instruction), whereas it approaches
0 in dynamic caching. However, static caching also re-
duces the number of executed instructions. Note that
Fig. 24 displays the overhead per original instruction;
since instruction dispatch is not counted in the other
figures, here the dispatches that are optimized away are
subtracted from the other overhead.

The majority of cache resets in the programs we mea-
sured is caused by calls and returns. Indeed, in these
programs every third or fourth instruction is a call or re-
turn. So, the best way to reduce the number of cache re-
sets and to increase static stack caching performance in
these programs would be procedure inlining. Note that
a lower number of cache resets will increase the num-
ber of useful registers and change the optimal canonical
state, asymptotically approaching the behaviour of dy-
namic stack caching.

_ cycles/
Instruction
2.
|
\
\
\ constant # of regs ——
\ dynamic - - -
! static —-—--
I
! [y
N\
\
\
\
\
\
\,
\\
\\\‘_ 777777777777777
0 ———————————————— registers
01 2 3 45 6 7 8 9

Figure 26: Comparison of the approaches: argument ac-
cess overhead in cycles/instruction vs. number of regis-
ters used

We did not evaluate the effect of reducing the number
of instances of the instructions. However, the distribu-
tion of the execution frequency of the instructions (10%
account for 90% of the executed instructions) makes us
believe that vast reductions are possible with little neg-
ative impact on the execution time.

Comparison. Figure 26 compares the three ap-
proaches. For dynamic and static stack caching the
best of the evaluated organizations for a specific num-
ber of registers was chosen. Note that the coincidence of
the lines for dynamic and static stack caching is partly
an artifact of the weights we have chosen for the var-
ious overheads, in particular, the weight of instruction
dispatch. E.g., if instruction dispatch costs five cycles,
static stack caching rivals dynamic stack caching also for
higher numbers of registers; if instruction dispatch costs
even more, static stack caching is better than dynamic
stack caching everywhere, and its line would be partly
below 0 (i.e., the dispatches optimized away outweigh
the remaining argument access overhead).

Finally, we took a closer look at the empirical data
in order to see how well the random walk model
of [HS85] describes the behaviour of our programs: In
cross and compile, the number of overflows is not re-
duced by changing the overflow followup state of the
10-register cache from a state with seven items in reg-
isters (state 7) to a state with fewer items in registers.
This means that, after none of the overflows (and there
were 1110 in these programs with these cache organiza-
tions), more than three more stack items were pushed
before an underflow happened. In other words, there’s
a very strong tendency to go down after going up. By
contrast, the random walk model assumes that the be-
haviour is independent of previous behaviour. It pre-

19

dicts that (whether there was an overflow or not) in
state 7 of a 10-register cache there is a higher probabil-
ity of overflow than underflow. Obviously, the random
walk model does not describe the behaviour of these
programs well. What about the other programs? In
prims2z, the overflows do not decrease for overflow fol-
lowup states below state 5, giving essentially the same
picture. Only in gray this symptom does not appear
in the 10-register cache. This is probably due to the
fact that gray performs a graph walk using recursion.
Still, in less than 10 of the 279 overflows to state b, gray
overflows another time before underflowing. Until bet-
ter models are available, stack-based designs have to be
evaluated empirically.

7 Related work

Much of the knowledge about interpreters is folk-
lore. The discussions in the Usenet newsgroup
comp.compilers [c.c] contain much folk wisdom and
personal experience reports.

Probably the most complete current treatment on in-
terpreters is [DV90]. Tt also contains an extensive bib-
liography. Another book that contains several articles
on interpreter efficiency is [Kra83]. Most of the pub-
lished literature on interpreters concentrates on decod-
ing speed [Bel73, Kli81], semantic content, virtual ma-
chine design and time/space tradeoffs [Kli81, Pit87].

Stack caching has been used first in hardware stack
machines [Bla77, HS85, HFWZ87, HL89, Koo89] and
for speeding up procedure calls in processors designed
at Bell Labs [DM82] and UC Berkeley (register win-
dows) [HP90]. For interpreters, [DV90] proposed dy-
namic stack caching with a minimal cache organization
without stack pointer update minimization and with
the full state as followup state. They do not discuss
other possible organizations and apparently they used
only the Sieve benchmark for their empirical evaluation.
They report speedups (probably over an implementa-
tion that does not keep any part of the stack in registers)
of 16% for Forth on an 8086 with a two-register cache
and 17% for M-Code (a virtual machine for Modula-2)
on an 68020 with a three register cache.

8 Conclusion

Apart from optimizing instruction dispatch and increas-
ing the semantic content of the instructions, another
factor determines the performance of an interpreter: ac-
cessing the arguments of the instructions. For inter-
preters conventional register architectures do not enjoy
the same advantages as on hardware implementations.
Their disadvantages are compiler complexity, slowness
and/or big interpreters.

The performance of virtual stack machines can be im-
proved by caching stack items in registers. There is a
large variety of stack cache organizations. Stack caching
can be employed in two ways: In dynamic stack caching
the interpreter keeps track of the state of the cache. A
copy of the complete interpreter has to be kept for every
state of the cache, making only cache organization with
few states feasible. Moreover, on many processors dy-
namic stack caching increases instruction dispatch time,
eliminating the speed advantage of stack caching. In
static caching, the compiler keeps track of the cache
state. This allows using organizations with more states,
it allows fast direct threading, and stack manipulation
operations can often be optimized away completely. But
there 1s a bit of overhead for making the state conform
to calling conventions and reconciling the cache states
on control flow joins.

Acknowledgements

Konrad Schwarz, Robert Bernecky, Andi Krall, Franz
Puntigam and Manfred Brockhaus, Marcel Hendrix, Ul-
rich Neumerkel and the referees provided valuable com-
ments on earlier version of this paper. Marty Fraeman,
John Hayes and Chris Bailey discussed about program
behaviour and their experiences with the random walk
model with me.

References

[Bel73] James R. Bell. Threaded code. Communi-

cations of the ACM, 16(6):370-372, 1973.

[Bla77] Russell P. Blake. Exploring a stack archi-
tecture. JEEE Computer, 10(5):30-39, May

1977.
[c.c]

comp.compilers.
Usenet Newsgroup; archives available from

ftp://primost.cs.wisc.edu.

[DM8&2] David R. Ditzel and H. R. McLellan. Regis-
ter allocation for free: The C machine stack
cache. In Symposium on Architectural Sup-
port for Programming Languages and Sys-

tems, pages 48-56, 1982.

[DVI0] Eddy H. Debaere and Jan M. Van Campen-
hout. Interpretation and Instruction Path

Coprocessing. The MIT Press, 1990.

[FHP91] Christopher W. Fraser, Robert R. Henry,
and Todd A. Proebsting. BURG — Fast
Optimal Instruction Selection and Tree
Parsing, 1991. Available via anony-
mous ftp from kaese.cs.wisc.edu, file

pub/burg.shar.Z.

12

[HFWZ87] John

[HL8Y]

[HP90]

[HS85]

[K1i81]

[Koo89]

[Kra83]

[Pit87]

[PLGSS]

R. Hayes, Martin E. Fraeman,
Robert L. Williams, and Thomas Zaremba.
An architecture for the direct execution of
the Forth programming language. In Ar-
chitectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-
IT), pages 42-48, 1987.

John Hayes and Susan Lee. The architec-
ture of the SC32 Forth engine. Journal of
Forth Application and Research, 5(4):493-
506, 1989.

John L. Hennessy and David A. Patterson.
Computer Architecture. A Quantitative Ap-
proach. Morgan Kaufman Publishers, 1990.

Makoto Hasekawa and Yoshiharu Shigei.
High-speed top-of-stack scheme for inter-
preters: A management algorithm and its
analysis. In International Symposium on
Computer Archictecture (ISCA), pages 48—
54, 1985.

Paul Klint. Interpretation techniques.
Software—Practice and Ezperience, 11:963—
973, 1981.

Philip J. Koopman, Jr. Stack Computers.
Ellis Horwood Limited, 1989.

Glen Krasner, editor. Smalltalk-80: Bits of
History, Words of Advice. Addison-Wesley,
1983.

Thomas Pittman. Two-level hybrid in-
terpreter /native code execution for com-
bined space-time efficiency. In Symposium
on Interpreters and Interpretive Techniques

(SIGPLAN °87), pages 150-152, 1987.

Eduardo Pelegri-Llopart and Susan L. Gra-
ham. Optimal code generation for expres-
sion trees: An application of the BURS the-
ory. In Fifteenth Annual ACM Symposium
on Principles of Programming Languages,

pages 294-308, 1988.

