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Proofs


1 What is a Proof? 

A proof is a method of ascertaining truth. There are many ways to do this: 

Jury Trial Truth is ascertained by twelve people selected at random. 

Word of God Truth is ascertained by communication with God, perhaps via a third party. 

Word of Boss Truth is ascertained from someone with whom it is unwise to disagree. 

Experimental Science The truth is guessed and the hypothesis is confirmed or refuted by experi­
ments. 

Sampling The truth is obtained by statistical analysis of many bits of evidence. For example, 
public opinion is obtained by polling only a representative sample. 

Inner Conviction/Mysticism “My program is perfect. I know this to be true.” 

“I don’t see why not...” Claim something is true and then shift the burden of proof to anyone 
who disagrees with you. 

“Cogito ergo sum” Proof by reasoning about undefined terms. 

This Latin quote translates as “I think, therefore I am.” It comes from the beginning of a 
famous essay by the 17th century Mathematician/Philospher, René Descartes. It may be one 
of the most famous quotes in the world: do a web search on the phrase and you will be 
flooded with hits. 

Deducing your existence from the fact that you’re thinking about your existence sounds like 
a pretty cool starting axiom. But it ain’t Math. In fact, Descartes goes on shortly to conclude 
that there is an infinitely beneficent God. 

Mathematics also has a specific notion of “proof” or way of ascertaining truth. 

Definition. A formal proof of a proposition is a chain of logical deductions leading to the proposition 
from a base set of axioms. 

The three key ideas in this definition are highlighted: proposition, logical deduction, and axiom. 
Each of these terms is discussed in a section below. 
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2 Propositions 

Definition. A proposition is a statement that is either true or false. 

This definition sounds very general, but it does exclude sentences such as, “Wherefore art thou 
Romeo?” and “Give me an A!”. 

Proposition 2.1. 2 + 3 = 5. 

This proposition is true. 

Proposition 2.2. Let p(n) ::= n2 + n + 41. 

∀n ∈ N p(n) is a prime number. 

The symbol ∀ is read “for all”. The symbol N stands for the set of natural numbers, which are 0, 1, 
2, 3, . . . ; (ask your TA for the complete list). A prime is a natural number greater than one that is 
not divisible by any other natural number other than 1 and itself, for example, 2, 3, 5, 7, 11, . . . . 

Let’s try some numerical experimentation to check this proposition: p(0) = 41 which is prime. 
p(1) = 43 which is prime. p(2) = 47 which is prime. p(3) = 53 which is prime. . . . p(20) = 461 
which is prime. Hmmm, starts to look like a plausible claim. In fact we can keep checking through 
n = 39 and confirm that p(39) = 1601 is prime. 

But if n = 40, then p(n) = 402 + 40 + 41 = 41 · 41, which is not prime. Since the expression 
is not prime for all n, the proposition is false! In fact, it’s not hard to show that no nonconstant 
polynomial can map all natural numbers into prime numbers. The point is in general you can’t 
check a claim about an infinite set by checking a finite set of its elements, no matter how large the 
finite set. Here are two even more extreme examples: 

Proposition 2.3. a4 + b4 + c4 = d4 has no solution when a, b, c, d are positive integers. In logical notation, 
letting Z+ denote the positive integers, we have 

∀a ∈ Z+∀b ∈ Z+∀c ∈ Z+∀d ∈ Z+ a 4 + b4 + c 4 �= d4 . 

Strings of ∀’s like this are usually abbreviated for easier reading: 

∀a, b, c, d ∈ Z+ a 4 + b4 + c 4 �= d4 . 

Euler (pronounced “oiler”) conjectured this 1769. But the proposition was proven false 218 years 
later by Noam Elkies at the liberal arts school up Mass Ave. He found the solution a = 95800, b = 
217519, c = 414560, d = 422481. 

Proposition 2.4. 313(x3 + y3) = z3 has no solution when x, y, z ∈ N. 

This proposition is also false, but the smallest counterexample has more than 1000 digits! 

Proposition 2.5. Every map can be colored with 4 colors so that adjacent1 regions have different colors. 
1Two regions are adjacent only when they share a boundary segment of positive length. They are not considered to 

be adjacent if their boundaries meet only at a few points. 
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This proposition is true and is known as the “four-color theorem”. However, there have been 
many incorrect proofs, including one that stood for 10 years in the late 19th century before the 
mistake was found. An extremely laborious proof was finally found about 15 years ago by a 
Mathematician named Haaken who used a complex computer program to categorize maps as 
four-colorable; the program left a couple of thousand maps uncategorized, and these were checked 
by hand by Haaken and his assistants—including his 15-year-old daughter. There was a lot of de-
bate about whether this was a legitimate proof: the argument was too big to be checked without 
a computer, and no one could guarantee that the computer calculated correctly, nor did anyone 
have the energy to recheck the four-colorings of thousands of maps that was done by hand. Fi­
nally, about five years ago, a humanly intelligible proof of the four color theorem was found (see 
http://www.math.gatech.edu/ thomas/FC/fourcolor.html). 

Proposition 2.6. The original Pentium chip divided properly. 

Intel’s “proofs” by authority and by sampling turned out to be invalid. The proposition is false. 

Proposition 2.7 (Goldbach). Every even integer greater than 2 is the sum of two primes. 

No one knows whether this proposition is true or false. This is the “Goldbach Conjecture,” which 
dates back to 1742. 

3 Axioms 

Definition. An axiom is a proposition that is assumed to be true. 

There is no proof that an axiom is true; you just assume it is true because you believe it is reason-
able. Here are some examples: 

Axiom 3.1. If a = b and b = c, then a = c. 

This seems very reasonable! But sometimes the right choice of axiom is not clear. 

Axiom 3.2 (Euclidean geometry). Given a line l and a point p not on l, there is exactly one line 
through p parallel to l. 

Axiom 3.3 (Spherical geometry). Given a line l and a point p not on l, there is no line through p 
parallel to l. 

Axiom 3.4 (Hyperbolic geometry). Given a line l and a point p not on l, there are infinitely many 
lines through p parallel to l. 

No one of the three preceding axioms is better than the others; all yield equally good proofs. Of 
course, a different choice of axioms makes different propositions true. Still, a set of axioms should 
not be chosen arbitrarily. In particular, there are two basic properties that one would want in any 
set of axioms; it should be consistent and complete. 

Definition. A set of axioms is consistent if no proposition can be proven to be both true and false. 
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This is an absolute must. One would not want to spend years proving a proposition true only to 
have it proven false the next day! Proofs would become meaningless if axioms were inconsistent. 

Definition. A set of axioms is complete if it can be used to prove or disprove every proposition. 

Completeness is an attractive property; we would like to believe that any proposition could be 
proven or disproven with sufficient work and insight. 

Surprisingly, making a complete, consistent set of axioms is not easy. Bertrand Russell and Alfred 
Whitehead tried during their entire careers to find such axioms for basic arithmetic and failed. 
Then Kurt Gödel proved that no set of axioms can be both consistent and complete! This means 
that any set of consistent axioms (an absolute must) can not be complete; there will be true state­
ments that can not be proven. For example, it might be that Goldbach’s conjecture is true, but 
there is no proof! 

In 6.042 we will not worry about the precise set of axioms underpinning our proofs. The require­
ments are only that you be upfront about what you are assuming, that the background knowledge 
of Math that you assume is self-consistent, and that you do not try to avoid homework and exam 
problems by declaring everything an axiom! 

4 Logical Deductions 

Logical deductions or inference rules are used to combine axioms and true propositions to construct 
more true propositions. 

A fundamental inference rule is modus ponens. This rule says that if p is true and p −→ q is true, 
then q is true. The expression p −→ q is read “p implies q” or “if p, then q.” A truth table for −→ is 
shown below: 

p q p → q 
T T T 
T F F 
F T T 
F F T 

Inference rules are sometimes written in a funny notation. For example, modus ponens is written: 

Rule. 

p, p −→ q 
q 

When the statements above the line, called the antecedents, are true, then we can infer that the 
statement below the line, called the conclusion or the consequent, is also true. There are many other 
natural inference rules, for example: 

Rule. 

p −→ q, q −→ r 
p −→ r 
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Rule. 

p −→ q, ¬q 
¬p 

Rosen describes additional standardized inference rules useful in proofs. As with axioms, we will 
not be too formal about the set of legal inference rules. Each step in a proof should be clear and 
“logical”; in particular, you should state what previously proved facts are used to derive each new 
conclusion. 

5 Good Proofs and Bad Proofs 

An estimated 1/3 of all mathematical papers contain errors. Even some of the world’s most fa­
mous mathematicians have botched proofs. Here are some famous examples. 

•	 Andrew Wiles recently announced a proof of Fermat’s Last Theorem. It was several hundred 
pages long. It took mathematicians months of hard work to discover it had a fatal flaw (so 
Wiles produced another proof of several hundred pages; this one seems to have convinced 
people). 

•	 Gauss’s 1799 Ph.D. thesis is usually referred to as being the first rigorous proof of the Funda­
mental Theorem of Algebra (every polynomial has a zero over the complex numbers). But it 
contains quotes like 

”If a branch of an algebraic curve enters a bounded region, it must necessarily 
leave it again. ... Nobody, to my knowledge, has ever doubted [this fact]. But 
if anybody desires it, then on another occasion I intend to give a demonstration 
which will leave no doubt.” 

Fields Medalist Steve Smale writes about this, calling it an ”immense gap” in the proof that 
was not filled in until 1920, more than a hundred years later. 

•	 In 1900 Poincare carelessly claimed a certain very simple topological characterization of the 
3-dimensional sphere. Later realizing it was not so obvious, he demoted the claim to the 
status of a ”conjecture” in 1904. The Poincare Conjecture is now one of the biggest open 
questions in mathematics (two Fields Medals have been given out for partial progress on it). 

Here are some of the characteristics of a good proof: 

• It is clear and correct! 

•	 It has a nice structure, like a good program. It is broken up into separate parts that define 
and prove key intermediate properties. This makes it easy to understand the reason the 
whole thing works. It also makes it more likely that pieces can be reused. 

•	 The pieces are general and abstract. This avoids the clutter of unnecessary hypotheses, use-
less restrictions, etc. Again, the analogy to programming holds; a subroutine should be as 
generally applicable as possible. 
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•	 Important conclusions are not “justified” by being “left to the reader,” nor by intimidating 
phrases like “it is obvious that . . . ” or “any moron can see that . . . .” These phrases save the 
writer’s time, but consume the reader’s time. Mistakes in proofs are typically found in these 
parts “left to the reader.” 

•	 Like a scientific experiment, someone else must be able to “replicate” (i.e. understand) your 
proof. 

Proofs are important. They permit you to convince yourself and others that your reasoning is 
correct. The insights gained can help you understand why something is true and whether it will 
stay true when other things change. Proofs are particularly important in computer science and 
electrical engineering. Bugs have proven costly for Intel, AT&T, and Airbus. A good proof is 
strong evidence that no bugs exist. 
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