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Interpreters

An interpreter is a program which executes 
another program, represented as some kind of 
data-structure. Common program representations 
include:

• raw text (source code),

• trees (AST of the program),

• linear sequences of instructions.



Why interpreters?

Interpreters enable the execution of a program 
without requiring its compilation to native code. 

They simplify the implementation of 
programming languages and – on modern 
hardware – are efficient enough for most tasks.



Text-based interpreters

Text-based interpreters directly interpret the 
textual source of the program.

They are very seldom used, except for trivial 
languages where every expression is evaluated at 
most once (i.e. no loops or functions).

Plausible example: a calculator program, which 
evaluates arithmetic expressions while parsing 
them.



Tree-based interpreters

Tree-based interpreters walk over the abstract 
syntax tree of the program to interpret it.

Their advantage compared to string-based 
interpreters is that parsing (and name/type 
analysis, if applicable) is done only once.

Plausible example: a graphing program, which 
has to repeatedly evaluate a function supplied by 
the user to plot it.



Virtual machines

Virtual machines behave in a similar fashion as 
real machines (i.e. CPUs), but are implemented in 
software. They accept as input a program 
composed of a sequence of instructions.

Virtual machines often provide more than the 
interpretation of programs: they manage memory, 
threads, and sometimes I/O.



Virtual machines history

Perhaps surprisingly, virtual machines are a very 
old concept, dating back to ~1950.

They have been (and still are) used in the 
implementation of many important languages, 
like SmallTalk, Lisp, Forth, Pascal, and more 
recently Java and C#.



Why virtual machines?

Since the compiler has to generate code for some 
machine, why prefer a virtual over a real one?

• for simplicity: a VM is usually more high-level 
than a real machine, which simplifies the task 
of the compiler,

• for portability: compiled VM code can be run 
on many actual machines,

• to ease execution monitoring.



Drawback of virtual 
machines

The only drawback of virtual machines compared 
to real machines is that the former are slower 
than the latter.

This is due to the overhead associated with 
interpretation (fetching and decoding 
instructions, etc.).

Moreover, the high number of indirect jumps in 
interpreters causes pipeline stalls in modern 
processors.



Kinds of virtual machines

There are two kinds of virtual machines:

• stack-based VMs, which use a stack to store 
intermediate results, variables, etc.

• register-based VMs, which use a limited set of 
registers for that purpose, like a real CPU.

There is some controversy as to which kind is 
better, but most VMs today are stack-based.



Virtual machines input

Virtual machines take as input a program 
expressed as a sequence of instructions.

Each instruction is identified by its opcode 
(operation code), a simple number. Often, 
opcodes occupy one byte, hence the name byte 
code.

Some instructions have additional arguments, 
which appear after the opcode in the instruction 
stream.



Basic implementation 
techniques

Virtual machines are implemented in much the 
same way as a real processor:

• the next instruction to execute is fetched from 
memory and decoded,

• the operands are fetched, the result computed, 
and the state updated,

• the process is repeated.

overhead



VMs implementation 
languages

Many VM today are written in C(++), because 
these languages are at the right abstraction level 
for the task, and fast.

As we will see later, an extension of gcc enables 
one particularly interesting optimisation, which 
means that several VMs are written for gcc.



typedef enum {
  add, /* ... */
} Instruction;

void interpret() {
  static Instruction program[] = { add /* ... */ };
  Instruction* ip = program;
  int* sp;
  for (;;) {
    switch (*ip++) {
    case add:
      sp[1] = sp[0] + sp[1];
      sp++;
      break;
      /* ... */
    }
  }
}

Implementing a VM in C

switch-based 
interpretation loop



Optimising VMs

The basic implementation of a virtual machine 
presented earlier can be made faster using several 
techniques. We will now look at the following:

• threaded code,

• top of stack caching,

• super-instructions,

• JIT compilation.



Threaded code

In a switch-based interpreter, each instruction 
requires two jumps:

• one indirect jump to the branch handling the 
current instruction,

• one direct jump from there to the main loop.

It would be better to avoid the second one, by 
jumping directly to the code handling the next 
instruction. This is called threaded code.
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Implementing threaded 
code

To implement threaded code, there are two main 
techniques:

• with indirect threading, instructions index an 
array containing pointers to the code handling 
them,

• with direct threading, instructions are pointers 
to the code handling them.



Threaded code in C

To implement threaded code, it must be possible 
to manipulate code pointers.

In ANSI-C, the only way to do this is to use 
function pointers.

The Gnu C compiler (gcc) allows the 
manipulation of labels as values, which is much 
more efficient!



Direct threaded code in 
ANSI C

typedef void (*Instruction)();

int* sp;

void add() {
  sp[1] = sp[0] + sp[1];
  sp++;
}

Instruction program[] = { add /* ... */ };
Instruction* ip = program;

void interpret() {
  for (;;)
    (*ip++)();
}

Warning: quite 
inefficient in 

practice!



Direct threaded code in 
ANSI C (with tail calls)

typedef void (*Instruction)();

int* sp;

void add(Instruction* ip, int* sp) {
  sp[1] = sp[0] + sp[1];
  (*ip)(ip + 1, sp + 1);
}

Instruction program[] = {
  add /* ... */
};

leads to 
stack overflow, 
unless compiler 
performs tail call 

optimisation



Direct threaded code with 
gcc’s labels as values

typedef void* Instruction;

void interpret() {
  static Instruction program[] = { &&add /* ... */ };
  Instruction* ip = program;
  int* sp;

  goto *ip++;

 add:
  sp[1] = sp[0] + sp[1];
  sp++;
  goto *ip++;
}

label address

computed goto



Top of stack caching

In a stack-based VM, the stack is typically 
represented as an array in memory. Since almost 
all instructions access that array, it can be 
interesting to store some of it in registers.

Keeping a fixed number of stack elements in 
registers is usually a bad idea: imagine what 
happens when an instruction pops one stack 
element, and the next one pushes one element.

Caching a varying number of elements is better.



Top of stack caching

Caching a varying number of stack elements in 
registers complicates the implementation of 
instructions.

There must be one implementation of each VM 
instruction per cache state – defined as the 
number of stack elements currently cached in 
registers.

(Some instructions can have the same 
implementation for several states)



Top of stack caching

For example, if we admit that between zero and 
two stack elements can be cached in registers, 
there are three implementations of the add 
instruction, one per cache state:

• the first fetches both operands from the stack,

• the second fetches one operand from the 
stack, the other from registers,

• the last fetches both operands from registers.



(Static) super-instructions

Since instruction dispatch is expensive in a VM, 
one way to reduce its cost is to dispatch less...

This can be done by grouping several instructions 
which often appear in sequence into a super-
instruction.

Profiling is typically used to determine which 
sequences should be transformed into super-
instructions, and the instruction set of the VM is 
then modified accordingly.



Dynamic
super-instructions

It is also possible to generate super-instructions at 
run time, to adapt them to the program being run. 
This is the idea behind dynamic super-
instructions.

It is possible to push this technique to its limits, 
and generate one super-instruction for every basic 
block of the program! This effectively transform 
all basic blocks into single (super-)instructions.



Just-in-time compilation

Virtual machines can be sped up through the use 
of just-in-time (or dynamic) compilation.

The basic idea is relatively simple: instead of 
interpreting the code, first compile it to native 
code, and then run that.

In practice, there are several difficulties to solve.



JIT: how to compile?

JIT compilers have one constraint that off-line 
compilers do not have: they must be fast – fast 
enough to make sure the time lost compiling the 
code is regained during its execution.

For that reason, JIT compilers usually do not use 
costly optimisation techniques – HotSpot server 
being one exception.



JIT: what to compile?

Some code is executed only once over the whole 
run of a program. It is usually faster to interpret 
that code than go through JIT compilation.

Therefore, it is better to start by interpreting all 
code, monitoring execution to see which code is 
executed often – a so-called hot spot.

Once a hot spot is identified, it gets compiled to 
native code.



Virtual machine 
generators

Several tools have been written to automate the 
creation of virtual machines based on a high-
level description.

vmgen is such a tool, which we will briefly 
examine.



vmgen

Based on a single description of the VM, vmgen 
can produce:

• an efficient interpreter, with optional tracing,

• a disassembler,

• a profiler.

The interpreter includes all the optimisations we 
have seen – threaded code, super-instructions, 
top-of-stack caching – and more.



vmgen

Example of instruction description:

sub ( i1 i2 -- i )
i = i1-i2;

name stack effect

body (pure C code)



Real-world virtual 
machines

As an example of a real virtual machine, we will 
now look at the Java Virtual Machine.

Other virtual machines worth mentioning 
include:

• Microsoft’s CLR,

• the Parrot VM, designed for Perl 6,

• etc.



The Java Virtual Machine 
(JVM)

The Java Virtual Machine is a stack-based VM 
targeted towards the execution of compiled Java 
programs.

It is quite high-level, and has almost all concepts 
of Java 1.0: classes, interfaces, methods, 
exceptions, monitors, etc.

While the Java language has evolved over the 
years, the JVM has remained the same.



The JVM model

The JVM is composed of:

• a stack, which stores intermediate values,

• a set of local variables, private to the method 
being executed,

• a heap, from which memory is allocated.

It accepts class files as input, each of which 
contain the definition of a single class/interface.



The language of the JVM

The JVM has 201 instructions to perform various 
tasks like loading of values on the stack, 
arithmetic operations, conditional jumps, etc.

One interesting feature of the JVM is that all 
instructions are typed. This features is used to 
support verification.

Example instructions: iadd (integer addition), 
invokevirtual (method invocation), etc.



JVM bytecode verification

A novel feature of the JVM is that it verifies 
programs before executing them, to make sure 
that they satisfy some safety requirements.

To enable this, all instructions are typed, and 
several restrictions are put on programs, e.g.:

• the stack size at any point in a method must 
be computable in advance,

• jumps must target statically known locations.



HotSpot JVM

HotSpot is the name of Sun’s implementation of 
the JVM. Main features:

• interpreter which monitors execution to detect 
hot spots – later compiled to native code,

• two separate JIT compilers:

1. a client compiler, fast but non-optimising,

2. a server compiler, slower but optimising 
(based on SSA).



Summary

Interpreters enable the execution of a program 
without having to compile it to native code, 
thereby simplifying P.L. implementation.

Virtual machines are the most common kind of 
interpreters, and are a good compromise between 
ease of implementation and speed.

Several techniques exist to make VMs fast: 
threaded code, top-of-stack caching, super-
instructions, JIT compilation, etc.


