
Interpreters &
virtual machines

Michel Schinz
Advanced Compiler Construction / 2006-03-24

Interpreters

An interpreter is a program which executes
another program, represented as some kind of
data-structure. Common program representations
include:

• raw text (source code),

• trees (AST of the program),

• linear sequences of instructions.

Why interpreters?

Interpreters enable the execution of a program
without requiring its compilation to native code.

They simplify the implementation of
programming languages and – on modern
hardware – are efficient enough for most tasks.

Text-based interpreters

Text-based interpreters directly interpret the
textual source of the program.

They are very seldom used, except for trivial
languages where every expression is evaluated at
most once (i.e. no loops or functions).

Plausible example: a calculator program, which
evaluates arithmetic expressions while parsing
them.

Tree-based interpreters

Tree-based interpreters walk over the abstract
syntax tree of the program to interpret it.

Their advantage compared to string-based
interpreters is that parsing (and name/type
analysis, if applicable) is done only once.

Plausible example: a graphing program, which
has to repeatedly evaluate a function supplied by
the user to plot it.

Virtual machines

Virtual machines behave in a similar fashion as
real machines (i.e. CPUs), but are implemented in
software. They accept as input a program
composed of a sequence of instructions.

Virtual machines often provide more than the
interpretation of programs: they manage memory,
threads, and sometimes I/O.

Virtual machines history

Perhaps surprisingly, virtual machines are a very
old concept, dating back to ~1950.

They have been (and still are) used in the
implementation of many important languages,
like SmallTalk, Lisp, Forth, Pascal, and more
recently Java and C#.

Why virtual machines?

Since the compiler has to generate code for some
machine, why prefer a virtual over a real one?

• for simplicity: a VM is usually more high-level
than a real machine, which simplifies the task
of the compiler,

• for portability: compiled VM code can be run
on many actual machines,

• to ease execution monitoring.

Drawback of virtual
machines

The only drawback of virtual machines compared
to real machines is that the former are slower
than the latter.

This is due to the overhead associated with
interpretation (fetching and decoding
instructions, etc.).

Moreover, the high number of indirect jumps in
interpreters causes pipeline stalls in modern
processors.

Kinds of virtual machines

There are two kinds of virtual machines:

• stack-based VMs, which use a stack to store
intermediate results, variables, etc.

• register-based VMs, which use a limited set of
registers for that purpose, like a real CPU.

There is some controversy as to which kind is
better, but most VMs today are stack-based.

Virtual machines input

Virtual machines take as input a program
expressed as a sequence of instructions.

Each instruction is identified by its opcode
(operation code), a simple number. Often,
opcodes occupy one byte, hence the name byte
code.

Some instructions have additional arguments,
which appear after the opcode in the instruction
stream.

Basic implementation
techniques

Virtual machines are implemented in much the
same way as a real processor:

• the next instruction to execute is fetched from
memory and decoded,

• the operands are fetched, the result computed,
and the state updated,

• the process is repeated.

overhead

VMs implementation
languages

Many VM today are written in C(++), because
these languages are at the right abstraction level
for the task, and fast.

As we will see later, an extension of gcc enables
one particularly interesting optimisation, which
means that several VMs are written for gcc.

typedef enum {
 add, /* ... */
} Instruction;

void interpret() {
 static Instruction program[] = { add /* ... */ };
 Instruction* ip = program;
 int* sp;
 for (;;) {
 switch (*ip++) {
 case add:
 sp[1] = sp[0] + sp[1];
 sp++;
 break;
 /* ... */
 }
 }
}

Implementing a VM in C

switch-based
interpretation loop

Optimising VMs

The basic implementation of a virtual machine
presented earlier can be made faster using several
techniques. We will now look at the following:

• threaded code,

• top of stack caching,

• super-instructions,

• JIT compilation.

Threaded code

In a switch-based interpreter, each instruction
requires two jumps:

• one indirect jump to the branch handling the
current instruction,

• one direct jump from there to the main loop.

It would be better to avoid the second one, by
jumping directly to the code handling the next
instruction. This is called threaded code.

add

sub

mul

main

Non-threaded and
threaded code

add

sub

mul

main loop

Non-threaded
(switch-based)

Threaded

Implementing threaded
code

To implement threaded code, there are two main
techniques:

• with indirect threading, instructions index an
array containing pointers to the code handling
them,

• with direct threading, instructions are pointers
to the code handling them.

Threaded code in C

To implement threaded code, it must be possible
to manipulate code pointers.

In ANSI-C, the only way to do this is to use
function pointers.

The Gnu C compiler (gcc) allows the
manipulation of labels as values, which is much
more efficient!

Direct threaded code in
ANSI C

typedef void (*Instruction)();

int* sp;

void add() {
 sp[1] = sp[0] + sp[1];
 sp++;
}

Instruction program[] = { add /* ... */ };
Instruction* ip = program;

void interpret() {
 for (;;)
 (*ip++)();
}

Warning: quite
inefficient in

practice!

Direct threaded code in
ANSI C (with tail calls)

typedef void (*Instruction)();

int* sp;

void add(Instruction* ip, int* sp) {
 sp[1] = sp[0] + sp[1];
 (*ip)(ip + 1, sp + 1);
}

Instruction program[] = {
 add /* ... */
};

leads to
stack overflow,
unless compiler
performs tail call

optimisation

Direct threaded code with
gcc’s labels as values

typedef void* Instruction;

void interpret() {
 static Instruction program[] = { &&add /* ... */ };
 Instruction* ip = program;
 int* sp;

 goto *ip++;

 add:
 sp[1] = sp[0] + sp[1];
 sp++;
 goto *ip++;
}

label address

computed goto

Top of stack caching

In a stack-based VM, the stack is typically
represented as an array in memory. Since almost
all instructions access that array, it can be
interesting to store some of it in registers.

Keeping a fixed number of stack elements in
registers is usually a bad idea: imagine what
happens when an instruction pops one stack
element, and the next one pushes one element.

Caching a varying number of elements is better.

Top of stack caching

Caching a varying number of stack elements in
registers complicates the implementation of
instructions.

There must be one implementation of each VM
instruction per cache state – defined as the
number of stack elements currently cached in
registers.

(Some instructions can have the same
implementation for several states)

Top of stack caching

For example, if we admit that between zero and
two stack elements can be cached in registers,
there are three implementations of the add
instruction, one per cache state:

• the first fetches both operands from the stack,

• the second fetches one operand from the
stack, the other from registers,

• the last fetches both operands from registers.

(Static) super-instructions

Since instruction dispatch is expensive in a VM,
one way to reduce its cost is to dispatch less...

This can be done by grouping several instructions
which often appear in sequence into a super-
instruction.

Profiling is typically used to determine which
sequences should be transformed into super-
instructions, and the instruction set of the VM is
then modified accordingly.

Dynamic
super-instructions

It is also possible to generate super-instructions at
run time, to adapt them to the program being run.
This is the idea behind dynamic super-
instructions.

It is possible to push this technique to its limits,
and generate one super-instruction for every basic
block of the program! This effectively transform
all basic blocks into single (super-)instructions.

Just-in-time compilation

Virtual machines can be sped up through the use
of just-in-time (or dynamic) compilation.

The basic idea is relatively simple: instead of
interpreting the code, first compile it to native
code, and then run that.

In practice, there are several difficulties to solve.

JIT: how to compile?

JIT compilers have one constraint that off-line
compilers do not have: they must be fast – fast
enough to make sure the time lost compiling the
code is regained during its execution.

For that reason, JIT compilers usually do not use
costly optimisation techniques – HotSpot server
being one exception.

JIT: what to compile?

Some code is executed only once over the whole
run of a program. It is usually faster to interpret
that code than go through JIT compilation.

Therefore, it is better to start by interpreting all
code, monitoring execution to see which code is
executed often – a so-called hot spot.

Once a hot spot is identified, it gets compiled to
native code.

Virtual machine
generators

Several tools have been written to automate the
creation of virtual machines based on a high-
level description.

vmgen is such a tool, which we will briefly
examine.

vmgen

Based on a single description of the VM, vmgen
can produce:

• an efficient interpreter, with optional tracing,

• a disassembler,

• a profiler.

The interpreter includes all the optimisations we
have seen – threaded code, super-instructions,
top-of-stack caching – and more.

vmgen

Example of instruction description:

sub (i1 i2 -- i)
i = i1-i2;

name stack effect

body (pure C code)

Real-world virtual
machines

As an example of a real virtual machine, we will
now look at the Java Virtual Machine.

Other virtual machines worth mentioning
include:

• Microsoft’s CLR,

• the Parrot VM, designed for Perl 6,

• etc.

The Java Virtual Machine
(JVM)

The Java Virtual Machine is a stack-based VM
targeted towards the execution of compiled Java
programs.

It is quite high-level, and has almost all concepts
of Java 1.0: classes, interfaces, methods,
exceptions, monitors, etc.

While the Java language has evolved over the
years, the JVM has remained the same.

The JVM model

The JVM is composed of:

• a stack, which stores intermediate values,

• a set of local variables, private to the method
being executed,

• a heap, from which memory is allocated.

It accepts class files as input, each of which
contain the definition of a single class/interface.

The language of the JVM

The JVM has 201 instructions to perform various
tasks like loading of values on the stack,
arithmetic operations, conditional jumps, etc.

One interesting feature of the JVM is that all
instructions are typed. This features is used to
support verification.

Example instructions: iadd (integer addition),
invokevirtual (method invocation), etc.

JVM bytecode verification

A novel feature of the JVM is that it verifies
programs before executing them, to make sure
that they satisfy some safety requirements.

To enable this, all instructions are typed, and
several restrictions are put on programs, e.g.:

• the stack size at any point in a method must
be computable in advance,

• jumps must target statically known locations.

HotSpot JVM

HotSpot is the name of Sun’s implementation of
the JVM. Main features:

• interpreter which monitors execution to detect
hot spots – later compiled to native code,

• two separate JIT compilers:

1. a client compiler, fast but non-optimising,

2. a server compiler, slower but optimising
(based on SSA).

Summary

Interpreters enable the execution of a program
without having to compile it to native code,
thereby simplifying P.L. implementation.

Virtual machines are the most common kind of
interpreters, and are a good compromise between
ease of implementation and speed.

Several techniques exist to make VMs fast:
threaded code, top-of-stack caching, super-
instructions, JIT compilation, etc.

