
Functional languages
Part II – tail calls

Michel Schinz
Advanced Compiler Construction / 2006-05-05

Tail calls and their
elimination

Loops in functional
languages

Several functional programming languages do not
have an explicit looping statement. Instead,
programmers resort to recursion to loop.

For example, the central loop of a Web server
written in Scheme might look like this:

(define web-server-loop
 (lambda ()
 (wait-for-connection)
 (fork handle-connection)
 (web-server-loop)))

The problem

Unfortunately, recursion is not equivalent to the
looping statements usually found in imperative
languages: recursive function calls, like all calls,
consume stack space while loops do not...

In our example, this means that the Web sever
will eventually crash because of a stack overflow
– this is clearly unacceptable!

A solution to this problem must be found...

The solution

In our example, it is obvious that the recursive
call to web-server-loop could be replaced by
a jump to the beginning of the function. If the
compiler could detect this case and replace the
call by a jump, our problem would be solved!

This is the idea behind tail call elimination.

Tail calls

The reason why the recursive call of web-
server-loop could be replaced by a jump is
that it is the last action taken by the function :

(define web-server-loop
 (lambda ()
 (wait-for-connection)
 (fork handle-connection)
 (web-server-loop)))

Calls in terminal position – like this one – are
called tail calls.

Recursive tail calls

Tail calls which refer to the function which
defines them are called (directly) recursive tail
calls.

The tail call of our example is of that kind.

Tail calls examples

In the functions below, which calls are tail calls?

(define map
 (lambda (f l)
 (if (null? l)
 l
 (cons (f (car l))
 (map f (cdr l))))))
(define fold
 (lambda (f z l)
 (if (null? l)
 z
 (fold f (f z (car l)) (cdr l)))))

recursive
tail call

tail call

Tail call elimination

When a function performs a tail call, its own
activation frame is dead, as by definition nothing
follows the tail call.

Therefore, it is possible to first free the activation
frame of a function about to perform such a call,
then load the parameters for the call, and finally
jump to the function’s code.

This technique is called tail call elimination (or
optimisation), abbreviated TCE.

Consider the following function definition and
call:

(define sum
 (lambda (z l)
 (if (null? l)
 z
 (sum (+ z (car l)) (cdr l)))))
(sum 0 (list3 1 2 3))

How does the stack evolve, with and without tail
call elimination?

TCE example (1)

Without tail call elimination, each recursive call
to sum makes the stack grow, to accommodate
activation frames.

TCE example (2)

0

(1 2 3)

0

(1 2 3)

1

(2 3)

0

(1 2 3)

1

(2 3)

3

(3)

0

(1 2 3)

1

(2 3)

3

(3)

6

()

With tail call elimination, the dead activation
frames are freed before the tail call, resulting in a
stack of constant size.

TCE example (3)

0

(1 2 3)

1

(2 3)

3

(3)

6

()

Tail call “optimisation”?

Tail call elimination is more than just an
optimisation! Without it, writing an endless loop
using recursion is simply impossible.

For that reason, full tail call elimination is
actually required in some languages, e.g.
Scheme.

In other languages, like C, it is simply an
optimisation performed by some compilers in
some cases.

TCE in uncooperative
environments

TCE in uncooperative
environments

When generating assembly language, it is easy to
perform TCE, as the target language is sufficiently
low-level to express the deallocation of the
activation frame and the following jump.

When targeting higher-level languages, like C or
the JVM, this becomes difficult – although recent
VMs like .NET’s support tail calls. We explore
several techniques which have been developed to
perform TCE in such contexts.

Single function approach

The “single function” approach consists in
compiling the whole program to a single function
of the target language.

This makes it possible to compile tail calls to
simple jumps within that function, and other calls
to recursive calls to it.

This technique is rarely applicable in practice,
due to limitations in the size of functions of the
target language.

Trampolines

With trampolines, functions never perform tail
calls directly. Rather, they return a special value
to their caller, informing it that a tail call should
be performed. The caller performs the call itself.

For this scheme to work, it is necessary to check
the return value of all functions, to see whether a
tail call must be performed. The code which
performs this check is called a trampoline.

Baker’s technique

Baker’s technique consists in first transforming
the whole program to a form called continuation-
passing style (CPS). In CPS, all calls are tail calls.

Consequently, it is possible to periodically shrink
the whole stack. In C, this can be done using
setjmp/longjmp, in Java by throwing an
exception, etc.

Extended trampolines

Extended trampolines trade some of the space
savings of standard trampolines for speed.

Instead of returning to the trampoline on every
tail call, the number of successive tail calls is
counted at run time. When that number reaches a
predefined limit l, a non-local return is performed
to transfer control to a trampoline “waiting” at the
bottom of the chain, thereby reclaiming l
activation frames in one go.

Techniques comparison
None

Single
function

Trampolines

Baker's

Extended
trampolines

non-tail call

tail call

normal return

trampoline return

non-local return

Tail call elimination
for minischeme

TCE example

loop:
 LINT R1 8
 ALOC R1 R1
 STOR R29 R1 0
 CMOV R29 R1 R0
 STOR R28 R29 4
 LINT R27 loop
 LOAD R28 R29 4
 LOAD R29 R29 0
 CMOV R31 R27 R0

loop:
 LINT R1 8
 ALOC R1 R1
 STOR R29 R1 0
 CMOV R29 R1 R0
 STOR R28 R29 4
 LINT R27 loop
 LINT R28 ret
 CMOV R31 R27 R0
ret:
 LOAD R28 R29 4
 LOAD R29 R29 0
 CMOV R31 R28 R0

(define loop
 (lambda ()
 (loop)))

Without TCE With TCE

unlink
activation

frame

Implementing tail call
elimination

Tail call elimination is implemented by:

• identifying the tail calls,

• compiling those tail calls specially, by
deallocating the activation frame of the caller
before jumping to the called function.

Identifying tail calls

To identify tail calls, we first assume that all calls
are marked with a unique number. We then
define a function T which returns the marks
corresponding to the tail calls.

For example, given the following expression:

(lambda (x)
 (if 1(even? x) 2(g 3(h x)) 4(h 5(g x))))

T produces the set { 2,4 }.

Identifying tail calls

T[(lambda (args) body1 … bodyn)] = T[bodyn]

T[(let (defs) body1 … bodyn)] = T[bodyn]

T[(if cond then else)] = T[then] ∪ T[else]

T[m(e1 e2 … en)] = { m }

T[v] = T[n] = ∅

Note: T is only defined for functions, not for top-
level expressions or definitions.

Summary

Tail call elimination consists in compiling tail
calls specially, so that the activation frame of the
caller is freed before the called function is
invoked.

This technique reduces memory usage and, more
importantly, makes it possible to write loops
using recursion without overflowing the stack.

Tail call elimination can be hard to implement
when the target platform is uncooperative.

