
Register allocation
Michel Schinz (based on Erik Stenman’s slides)

Advanced Compiler Construction / 2006-06-09



Register allocation



Storage of values

Programs manipulate values, which are first 
defined – i.e. computed – and later used for 
further computation, possibly several times.

Between the time it is defined and used, a value 
must be stored somewhere. There are two 
options: in memory, or in a machine register.

Registers are the best location to store values, as 
they are faster than memory, and often the only 
location where computation is possible.



Register allocation

Since registers are a better location to store values 
than memory, all values should be stored in them, 
ideally.

Unfortunately, registers are a very scarce resource 
compared to memory. They must therefore be 
used as sparingly as possible.

The aim of register allocation is to decide how to 
use registers, i.e. which values to put in them, 
and when.



Register allocation 
techniques

There are several kinds of register allocation 
techniques:

• local techniques, which work on basic blocks 
or single expressions,

• global techniques, which work on whole 
functions,

• inter-procedural techniques, which work on 
several procedures at a time.



Register allocation by 
graph colouring



Register allocation by 
graph colouring

Register allocation by graph colouring is a global 
register allocation technique which performs 
well. It is probably the most commonly used 
technique in optimising compilers.

Its idea is to express the register allocation 
problem as a graph colouring problem, which is 
then solved using heuristics.



Interference graph

The interference graph represents the interference 
among program values.

The nodes of the interference graph represent 
program values, and there is an edge from n1 to 
n2 if the values corresponding to n1 and n2 are 
simultaneously live.



Interference graph 
example

Interference graph

x

y

z

t u

Live ranges

x y z t u

x←1

y←2

z←x+y

t←y

u←x+t

print z

print t

print u



Graph colouring

The goal of graph colouring is to find a way to 
assign K colours to the nodes of a graph so that 
no two nodes connected by an edge have the 
same colour.

Graph colouring can be used to allocate registers 
to values, by trying to colour the interference 
graph with as many colours as there are registers 
in the target machine. This is not always possible, 
in which case some values must be spilled – i.e. 
stored in memory.



Graph colouring 
complexity

Graph colouring is an NP-complete problem.

Heuristics therefore have to be used to perform 
register allocation by graph colouring. In 
practice, they give good results.

We will examine one such heuristic, colouring by 
simplification.



Colouring by 
simplification

Colouring by simplification works as follows: as 
long as the graph G has at least a node n with 
fewer than K neighbours – K being the numbers 
of available colours – n is removed from G, and 
colouring proceeds with that simplified graph.

Clearly, if the simplified graph is K-colourable, 
then so is G: since n has less than K neighbours, 
those use at most K-1 colours, and there is 
therefore at least one colour available for n.



Colouring by 
simplification: example

1

4 5

2

3

Stack of removed nodes: 5 2 1 3

4

3

1 2

5

To illustrate colouring by simplification, we can 
colour the following graph with K=3 colours.



Spilling

During simplification, it is perfectly possible to 
reach a point where all nodes have at least K 
neighbours.

When this occurs, a node must be chosen and its 
value must be stored in memory instead of in a 
register. This is called spilling.

As a first approximation, we can assume that the 
spilled value does not interfere with any other 
value, and remove its node from the graph.



Potential and actual spills

When colours are assigned to nodes, it can 
happen that a node initially designated as spilled 
can be coloured because its neighbours do not 
use all available colours.

When this happens, the potential spill is not 
turned into an actual spill.

This technique is known as optimistic colouring.



Consequences of spilling

When a node is really spilled, the program has to 
be rewritten to take this into account: each time 
the spilled value is used, it must be fetched from 
memory, and each time it is defined, the new 
value must be written back to memory.

This rewriting changes the interference graph, 
and therefore the allocation process must be 
restarted completely. In practice, it converges in 
one or two iterations in most cases.



Coalescing

When two nodes n1 and n2 in the interference 
graph do not share an edge, it is possible to 
coalesce them by replacing them by their union.

This has two consequences: the positive one is 
that all instructions which copy the value of n1 
into the value of n2 – or the other way around – 
can be removed from the program; the negative 
one is that the resulting graph can be harder to 
colour.



Coalescing example
x←1
y←2
z←x+y
t←y
u←x+t
print z
print t
print u

x

y

z

t u

x←1
yt←2
z←x+yt
u←x+yt
print z
print yt
print u

x z

yt u

coalescing of y 
and t



Coalescing heuristics

Several heuristics have been developed to decide 
when coalescing is safe, i.e. when it is guaranteed 
that it will not turn a K-colourable graph into one 
which is not K-colourable.

Using such heuristics, it is possible to interleave 
simplification steps with safe coalescing steps, 
thereby removing many useless move operations.



Live-range splitting

It can sometimes be beneficial to split a long live 
range in two or more parts, by saving the value to 
memory at one point, and re-fetching it later. This 
technique is called live-range splitting.

However, it is hard to find good heuristics to 
decide which live-ranges should be split, and 
where.



Live-range splitting 
example

x y z

x←1

y←x+2

z←y*2

y←y+z

print z

print y

print x

x y z

x←1

y←x+2

store x

z←y*2

y←y+z

print z

print y

x←fetch

print x

splitting x’s 
range

not 2-colourable

2-colourable



Pre-coloured nodes

It is often necessary to put some values in specific 
registers, e.g. to adhere to calling conventions.

This can be handled as follows: if the machine 
has K registers, then K values will be created to 
represent them. In the interference graph, the 
nodes corresponding to those values will be pre-
coloured, to ensure that they get “allocated” to 
their corresponding register.



Linear scan register 
allocation



Linear scan

Linear scan is a global register allocation 
technique which is substantially simpler – and 
faster – than graph colouring. It still gives very 
good results.

It is especially interesting for applications where 
compilation time must be kept as low as possible, 
for example in JIT compilers.



Linear scan algorithm

Linear scan works on a linear representation of 
the program. Live ranges must be known for all 
values.

The algorithm scans live ranges from first to last. 
Whenever there are less than K values live at the 
same time, they are all put in registers. When all 
registers are allocated and a new value becomes 
live, one of them must be spilled. The one whose 
live range ends last is systematically chosen.



Linear scan example
Live ranges

a b c d e

Allocation

R1 R2

a

a b

a b

b

d b

d e

d

c is spilled



Summary

Register allocation is an optimisation which tries 
to make efficient use of registers, by storing as 
many values in them as possible.

Most techniques used in practice are global, i.e. 
they work on complete procedures.

We have examined two of them: graph colouring, 
which gives very good results but is relatively 
complicated; and linear scan, which is not as 
good, but faster and a lot simpler.


