
Minischeme project

Michel Schinz & Iulian Dragos
2006-03-17

The project

What you get:

• a compiler for minischeme, written in Scala,

• a virtual machine (VM), written in C.

What you have to do:

• improve the compiler and the VM, e.g. by
adding a garbage-collector and various
optimisations.

The minischeme language

Minischeme is a dialect of Scheme, itself a dialect
of Lisp. Its main characteristics are:

• untyped language,

• almost no side effects (one exception: I/O),

• functional: functions are first-class values,

• very simple: four keywords (define, let,
lambda and if).

The minischeme language

(define name expr)

Global definition, only valid at top level. All
global values are visible everywhere, but are
initialised in written order.

(let ((name1 expr1) …) body1 …)

Local value(s) definition: name1 … namen are
visible in body1 … bodym, but not in expr1 …
exprn.

The minischeme language
(lambda (name1 …) expr1 …)

Anonymous function definition.

(if exprcond exprthen exprelse)

Conditional: evaluate exprelse iff exprcond
evaluates to 0, otherwise evaluate exprthen.

(exprfun expr1 …)

Function application: call exprfun with expr1 …
exprn as arguments.

Minischeme example

Function to compute xy on integers:

;; raise x to the power of y
(define pow
 (lambda (x y)
 (if (= 0 y)
 1
 (if (= 0 (% y 2))
 (let ((z (pow x (/ y 2))))
 (* z z))
 (* x (pow x (- y 1)))))))

Minischeme primitives

Minischeme is equipped with a set of primitives.
They are meant to be used to write “predefined”
Scheme functions.

All primitives have a name starting with a dollar
sign, e.g. $print-int.

Primitives are invoked using the syntax of a
normal function call, but it is important to
understand that primitives are not functions!

Minischeme primitives

Minischeme is equipped with the following
primitives, most of which correspond directly to
one VM instruction:

• Arithmetic primitives: $+, $-, $*, $/, $%

• Logical primitives: $<, $<=, $=

• Array primitives: $alloc, $set, $get

• I/O primitives: $read-int, $print-int,
$read-char, $print-char

Minischeme primitives

These primitives can for example be used to
define the three basic operations on cells:

(define cons
 (lambda (f s)
 (let ((p ($alloc 2)))
 ($set p 0 f) ($set p 1 s) f)))
(define car (lambda (p) ($get p 0)))
(define cdr (lambda (p) ($get p 1)))

construct
a cell

get second
component

get first
component

Syntactic sugar

The minischeme compiler defines some syntactic
sugar for strings, translated to lists of integers:
each character of the string is represented by its
ASCII code.

For example, “Hello” is translated to (cons
72 (cons 101 (cons 108 (cons 108
(cons 111 0)))))

You will also add syntactic sugar for and and or.

The minivm virtual
machine

Minivm is a virtual machine designed for this
project. Its main characteristics are:

• register-based,

• very simple (17 instructions),

• accepts text as input.

Minivm design goals

Minivm was designed to be:

• simple, and therefore easy to implement,

• relatively close to real processors, to make the
compiler “interesting”.

It is certainly not the best design for a Scheme
virtual machine!

Minivm registers

Minivm has 32 registers, named R0…R31. Only
R31 is special: it is the program counter (PC).

In the project, we will assign specific roles to:

R0 – holds the constant 0,

R28 – holds the return address (LK),

R29 – points to the current stack frame (FP),

R30 – points to the global variables area (GP).

Minivm
memory management

Memory is composed of two areas:

1. the code area, containing the instructions
making up the program, and

2. the heap, from which blocks can be allocated
dynamically.

In particular, notice that there is no stack: “stack
frames” are allocated in the heap, and linked
together explicitly.

Minivm instructions

The minivm instruction set can be categorised as
follows:

• Arithmetic: ADD, SUB, MUL, DIV, MOD

• Control: ISLT, ISLE, ISEQ, CMOV

• Memory: ALOC, LOAD, STOR, LINT

• Input/output: RINT, PINT, RCHR, PCHR

Minivm
arithmetic instructions

ADD R1 R2 R3 R1 ! R2 + R3

SUB R1 R2 R3 R1 ! R2 - R3

MUL R1 R2 R3 R1 ! R2 * R3

DIV R1 R2 R3 R1 ! R2 / R3

MOD R1 R2 R3 R1 ! R2 mod R3

Minivm
control instructions

ISLT R1 R2 R3 R1 ! R2 < R3 [false: 0, true: 1]

ISLE R1 R2 R3 R1 ! R2 ! R3 [false: 0, true: 1]

ISEQ R1 R2 R3 R1 ! R2 = R3 [false: 0, true: 1]

CMOV R1 R2 R3 if R3 = 0 then R1 ! R2

Minivm
memory instructions

LINT R1 C R1 ! C

LOAD R1 R2 C R1 ! Mem[R2 + C]

STOR R1 R2 C Mem[R2 + C] ! R1

ALOC R1 R2 R1 ! new block of R2 bytes

Minivm
Input/output instructions

RINT R R ! read integer from input

PINT R print R on output

RCHR R R ! read character from input

PCHR R print char(R) on output

Minivm
calling conventions

Arguments are passed in registers R1…R27.

Functions with more than 27 (26, actually)
arguments are not supported yet, but they easily
could be.

The return value is put in R1.

Minivm code example

fact: LINT R2 else
 CMOV R31 R2 R1
 LINT R2 12
 ALOC R2 R2
 STOR R29 R2 0
 CMOV R29 R2 R0
 STOR R28 R29 4
 STOR R1 R29 8
 LINT R2 1
 SUB R1 R1 R2
 LINT R27 fact
 LINT R28 ret
 CMOV R31 R27 R0

ret: LOAD R2 R29 8
 MUL R1 R1 R2
 LOAD R28 R29 4
 LOAD R29 R29 0
 CMOV R31 R28 R0
else: LINT R1 1
 CMOV R31 R28 R0

return

unlink
framelink

and initialise
frame

call fact
recursively

The minischeme compiler

We give you a working implementation (in Scala)
of a minischeme compiler, with the following
limitations:

• anonymous functions are only allowed at the
top-level (i.e. no closures),

• the produced code is not very good.

Your job will be to remove those limitations (and
others) later.

Minischeme compiler
organisation

Scanner

Parser

Name analyser

Code generator

tokens

tree

attributed tree

minivm code

Scanner

Token

Generator

NameAnalyzer

Code, Label,
Instruction,

Opcode,
Register

Symbol

Tree

Parser
Main

The minivm

We give you a working implementation (in C) of
minivm, with the following limitations:

• no garbage collector: memory is never freed,
and the VM exits when all available memory
has been used,

• not as efficient as it could be.

Once again, your job will be to improve it!

minivm organisation

Emulator MemoryLoader

Main

parse
textual input,
transform to

binary
parse command
line, connect
components

manage
memory

(including GC)

execute code

minivm overview

The loader parses assembler files, resolve labels
and produces a binary version of the program;
that binary version is accessed by the emulator.

The emulator interprets the program. It can run in
interactive mode, where it waits for user input
after each step.

The memory manager allocates and reclaims
(rather, will reclaim) memory in the heap area.

The project will start with a set of assignments
which all groups will have to complete :

• a small warm-up exercise (not graded),

• a threaded version of the emulator,

• a mark & sweep garbage collector,

• closure conversion,

• tail call elimination.

Project overview Project overview

After the assignments, every group will have to
choose and complete one advanced project:

• a precise, copying garbage collector,

• a JIT compiler for the virtual machine,

• advanced optimisations,

• a linear-scan register allocator,

• etc.

Project evaluation

At the end of each assignment, you will have to
send us your code electronically (using moodle).

At the end of the advanced project, you will have
to present your work either through a small
written report, or a short oral presentation
(depending on the number of students attending
the course).

