
Object-oriented
languages

Michel Schinz (parts based on Yoav Zibin’s PhD thesis)
Advanced Compiler Construction / 2006-04-07

Object-oriented
languages

In an object-oriented (OO) language, all values
are objects, which belong to a class.

(Prototype-based OO languages do not have a
concept of class, but we’ll ignore them here.)

Objects encapsulate both state, stored in fields,
and behaviour, defined by methods.

Two of the most important features of OO
languages are inheritance and polymorphism.

Inheritance

Inheritance is a code reuse mechanism which
enables one class to inherit all fields and methods
of some other class, called its superclass.

Inheritance is nothing but code copying,
although it is usually implemented in a smarter
way to prevent code explosion.

Subtyping

In typed OO languages, classes usually define
types. These types are related to each other
through a subtyping (or conformance) relation.

Intuitively, a type T1 is a subtype of a type T2 –
written T1 ⊑ T2 – if T1 has at least the capabilities
of T2.

Inclusion polymorphism

When T1 ⊑ T2, a value of type T1 can be used
everywhere a value of type T2 is expected.

This ability to use a value of a subtype of T where
a value of type T is expected is called inclusion
polymorphism.

Inclusion polymorphism poses several interesting
implementation challenges, by preventing the
exact type of a value to be known at compilation
time.

Subtyping is not
inheritance

Inheritance and subtyping are not the same thing,
but many OO languages tie them together by
stating that: (a) every class defines a type, and (b)
the type of a class is a subtype of the type of its
superclass(es).

This is a design choice, not an obligation!

Several languages also have a way to separate the
two in some cases – e.g. Java has interfaces, C++
has private inheritance.

“Duck typing”

The distinction between inheritance and
subtyping is especially apparent in “dynamic”
OO languages like Smalltalk, Ruby, etc.

In those languages, inheritance is used only to
reuse code – no notion of type even exists!

Whether an object can be used in some situation
depends only on its capabilities (i.e. methods),
and not on the position of its class in the
inheritance hierarchy.

Challenges of inclusion
polymorphism

The following problems are difficult to solve
efficiently because of inclusion polymorphism:

• object layout – arranging object fields in
memory,

• method dispatch – finding which concrete
implementation of a method to call,

• membership tests – testing whether an object
is an instance of some type.

Object layout

The object layout problem

The object layout problem consists in finding
how to arrange the fields of an object in memory
so that they can be accessed efficiently.

Inclusion polymorphism makes the problem hard
because it forces the layout of different object
types to be compatible in some way.

Ideally, a field defined in a type T should appear
at the same offset in all descendants of T.

Object layout example

class A {
 int x;
}
class B extends A {
 int y;
}
void m(A a) { System.out.println(a.x); }

a can be an
instance of A or any

of its subtype

Object layout
single inheritance

In single-inheritance languages where subtyping
and inheritance are tied (e.g. Java), the object
layout problem can be solved easily as follows:

Fields are laid out sequentially, starting with those
of the superclass – if any.

This ensures that all fields belonging to a type T1
appear at the same location in all values of type
T2 ⊑ T1.

Object layout
single inheritance

Object layout example

class A {
 int x;
}

class B extends A {
 int y;
}

void m(A a) { System.out.println(a.x); }

access
position 0 of x

layout for
instances of A

layout for
instances of B

offset field
0 x

offset field
0 x

4 y

Object layout
multiple inheritance

Object layout
multiple inheritance

In a multiple inheritance setting, the object layout
problem becomes much more difficult.

For example, in the following hierarchy, how do
we layout fields?

int x int y

int z

A B

C

Unidirectional layout

If a standard, unidirectional layout is used, then
some space must be wasted! Example:

offset field
0 x

offset field
0 –

4 y
offset field
0 x

4 y

8 z

layout for A layout for B

layout for C

wasted

Bidirectional layout

For this hierarchy, it is however possible to use a
bidirectional layout to avoid wasted space.

offset field
0 x

offset field
-4 y

offset field
-4 y

0 x

4 z

layout for A layout for B

layout for C

Bidirectional layouts

There does not always exist a bidirectional layout
which wastes no space.

Moreover, finding an optimal bidirectional layout
– one minimising the wasted space – has been
shown to be NP-complete.

Finally, computing a good bidirectional layout
requires the whole hierarchy to be known! It must
be done at link time, and is not really compatible
with Java-style dynamic linking.

Multiple inheritance
accessor methods

Another way of solving the object layout problem
in a multiple inheritance setting is to always use
accessor methods to read and write fields.

The fields of a class can then be laid out freely.
Whenever the offset of a field is not the same as
in the superclass from which it is inherited, the
corresponding accessor method(s) are redefined.

Multiple inheritance
other layout techniques
Bidirectional layout often wastes space, but field
access is extremely fast. Accessor methods never
waste space, but slow down field access.

Two-dimensional bidirectional layout slows
down field access slightly – compared to
bidirectional – but never wastes space. However,
it also requires the full hierarchy to be known.

Other layout schemes – not covered here – have
been developed for C++.

Object layout summary

The object layout problem can be solved trivially
in a single-inheritance setting, by laying out the
fields sequentially, starting with those of the
superclass.

In a multiple-inheritance setting, solutions to that
problem are more complicated, and must
generally trade space for speed, or speed for
space. They also typically require the whole
hierarchy to be known in advance.

Method dispatch

The method dispatch
problem

The method dispatch problem consists in finding,
given an object and a method identity, the exact
piece of code to execute.

Inclusion polymorphism makes the problem hard
since it prevents the problem to be solved
statically – i.e. at compilation time. Efficient
dynamic dispatching methods therefore have to
be devised.

Method dispatch example

class A {
 int x;
 void m() { println(“m in A”); }
 void n() { println(“n in A”); }
}
class B extends A {
 int y;
 void m() { println(“m in B”); }
 void o() { println(“o in B”); }
}
void f(A a) { a.m(); }

a can be an
instance of A or any of

its subtype

Method dispatch
single subtyping

Method dispatch
single inheritance

In single-inheritance languages where subtyping
and inheritance are tied, the method dispatch
problem can be solved easily as follows:

Method pointers are stored sequentially, starting
with those of the superclass, in a virtual method
table (VMT) shared by all instances of the class.

This ensures that the implementation for a given
method is always at the same position in the VMT,
and can be extracted quickly.

Virtual method table

A

int x

void m()
void n()

B

int y

void m()
void o()

Hierarchy

A a1 = new A();
A a2 = new A();
B b = new B();

Program

a1

a2

b

0: VMT
4: x

0: VMT
4: x

0: VMT
4: x
8: y

0: A.m
4: A.n

0: B.m
4: A.n
8: B.o

code for

A.m

code for

A.n

code for

B.m

code for

B.o

Memory organisation

Dispatching with VMTs

Using a VMT, dispatching is accomplished in
three steps:

1. the VMT of the selector is extracted,

2. the code pointer for the invoked method is
extracted from the VMT,

3. the method implementation is invoked.

Each of these steps typically requires a single –
but expensive – instruction on current CPUs.

VMTs pros and cons

VMTs provide very efficient dispatching, and do
not use much memory. They work even in
languages like Java where new classes can be
added to the bottom of the hierarchy at run time.

Unfortunately, they do not work for dynamic
languages or in the presence of any kind of
“multiple subtyping” – e.g. multiple interface
inheritance in Java.

Method dispatch
multiple subtyping

Java interfaces

To understand why VMTs cannot be used with
multiple subtyping, consider Java interfaces.

interface Drawable { void draw(); }
void draw(List<Drawable> ds) {
 for (Drawable d: ds) d.draw();
}

When the draw method is invoked, the only
thing which is known about d is that it has a
draw method – but its class can be anywhere in
the hierarchy!

Java interfaces

In the VMT of
Shape (and its

descendants), draw
is at offset 0

In the VMT of
Window, draw is

at offset 8

Object

hashCode

Drawable

draw

Shape

draw

Circle

draw

Rectangle

draw

Window

minimise
close
draw

Dispatching matrix

A trivial way to solve the problem is to use a
global dispatching matrix, containing code
pointers and indexed by classes and methods.

hashCode draw close minimise

Object hashCodeO

Shape hashCodeO

Circle hashCodeO drawC

Rectangle hashCodeO drawR

Window hashCodeO drawW closeW minimiseW

Dispatching matrix
pros and cons

The dispatching matrix makes dispatching very
fast.

However, for any non-trivial hierarchy, it
occupies so much memory that it is never used
as-is in practice.

Various compression techniques have been
devised. These techniques usually trade some
dispatching efficiency for reduced memory usage.

Null elimination

The dispatching matrix is very sparse in practice.
Even in our trivial example, 50% of the slots are
empty.

A first technique to compress the matrix is
therefore to take advantage of this sparsity. This is
called null elimination, since the empty slots of
the matrix usually contain null.

Several null elimination techniques exist, but we
will examine only one: column displacement.

Column displacement

One way of eliminating nulls is to transform the
matrix into a linear array by shifting either its
columns or its rows. Many holes of the matrix
can be filled in the process, by carefully choosing
the amount by which columns (or rows) are
shifted.

This technique is know as column (or row)
displacement. In practice, column displacement
gives better results than row displacement.

Column displacement
hashCode draw close minimise

Object hashCodeO

Shape hashCodeO

Circle hashCodeO drawC

Rectangle hashCodeO drawR

Window hashCodeO drawW closeW minimiseW

hashCodeO

hashCodeO

hashCodeO

hashCodeO

hashCodeO

drawC

drawR

drawW

closeW

minimiseW

hashCode

draw

close

minimisewaste: 50%

waste: none!

Dispatching is very fast: the offsets
associated to the class and method
are added, and the appropriate
code pointer is extracted.

Duplicates elimination

Apart from being sparse, the dispatching matrix
also contains a lot of duplicated information.
Null elimination does not take advantage of this
duplication, and even though it achieves good
compression, it is possible to do better.

The idea of duplicates elimination techniques is
to try to share as much information as possible
instead of duplicating it.

Compact dispatch table is such a technique.

Compact dispatch tables

The idea of compact dispatch tables is to split the
dispatch matrix in small sub-matrices called
chunks.

Each individual chunk will tend to have duplicate
rows, which can be shared by representing each
chunk as an array of pointers to rows.

Compact dispatch tables
hashCode draw

hashCodeO

hashCodeO

hashCodeO drawC

hashCodeO drawR

hashCodeO drawW

close minimise

closeW minimiseW

Object

Shape

Circle

Rectangle

Window

closeW minimiseW

hashCodeO

hashCodeO drawC

hashCodeO drawR

hashCodeO drawW

m
at

ri
x

ch
un

k
1

ch
un

k
2

chunk array

Dispatching with compact
dispatch tables

Dispatching with compact dispatch tables
consists in:

1. extracting the row containing the method to
call from the appropriate chunk,

2. extracting the code pointer from the row,

3. invoking the method.

Hybrid techniques

VMTs and the more sophisticated techniques
handling multiple subtyping are not exclusive.

All Java implementations use VMTs to dispatch
when the type of the selector is a class type, and
more sophisticated – and slower – techniques
when it is an interface type.

The JVM even has different instructions for the
two kinds of dispatch: invokevirtual and
invokeinterface.

Method dispatch
optimisations

Inline caching

Even when efficient dispatching structures are
used, the cost of performing a dispatch on every
method call can become important.

In practice, it turns out that many calls which are
potentially polymorphic are in fact monomorphic.

The idea of inline caching is to take advantage of
this fact by recording – at every call site – the
target of the latest dispatch, and assuming that
the next one will be the same.

Inline caching
implementation

Inline caching works by patching code.

At first, all method calls are compiled to call a
standard dispatching function. Whenever this
function is invoked, it computes the target of the
call, and then patches the original call to refer to
the computed target.

All methods have to handle the potential
mispredictions of this technique, and invoke the
dispatching function when they happen.

Inline caching example
for (Drawable d: ds) d.draw();

Circle RectangleCircle Circle Rectangleds=

...
dispatch
...

loop
body

...
drawC
...

...
drawC
...

initial state
(go through

dispatch
function)

cache hit cache hit cache miss
(detected by
drawC which
falls back to

dispatch
function)

cache hit

...
drawC
...

patched
...
drawR
...

patched

Inline caching
pros and cons

Inline caching greatly speeds up method calls by
avoiding expensive dispatches in most cases.

However, it can also slow down method calls
which are really polymorphic! For example, if the
list ds in our previous example contained an
alternating sequence of circles and rectangles.

Polymorphic inline caching addresses this issue.

Polymorphic inline
caching

Inline caching replaces the call to the dispatch
function by a call to the latest method that was
dispatched to.

Polymorphic inline caching (PIC) replaces it
instead by a call to a specialised dispatch routine,
generated on the fly. That routine handles only a
subset of the possible receiver types – namely
those which were encountered previously at that
call site.

PIC example
for (Drawable d: ds) d.draw();

Circle RectangleRectangle Circle Circleds=

...
dispatch
...

loop
body

...
PIC_d2
...

...
PIC_d2
...

if circle
 drawC
else
 dispatch

PIC_d1

if rectangle
 drawR
else if circle
 drawC
else
 dispatch

PIC_d2specialised
dispatch function

...
PIC_d1
...

patched
...
PIC_d2
...

patched

PIC and inlining

An interesting feature of PIC is that the methods
called from the specialised dispatch function can
be inlined into it, provided they are small
enough. For example, PIC_d2 could become:

if rectangle
 // inlined code of drawR
else if circle
 // inlined code of drawC
else
 dispatch

Method dispatch
summary

The method dispatch problem is solved by virtual
method tables in a single-subtyping context.

In presence of multiple subtyping, some
compressed form of a global dispatching matrix is
used. Compression techniques take advantage of
the sparsity and redundancy of that matrix.

Inline caching and its polymorphic variant can
dramatically reduce the cost of dispatching.

Membership test

The membership test
problem

The membership test problem consists in
checking whether an object belongs to a given
type.

This problem must be solved very often. In Java,
for example, this is required on every use of the
instanceof operator, type cast or array store
operation, and every time an exception is thrown
– to identify the matching handler.

Membership test example

class A { }
class B extends A { }
boolean f(A a) { return a instanceof A; }

a can be an
instance of A or any of

its subtype

Membership test
single subtyping

Membership test
single subtyping

Like the other two problems we examined, the
membership test is relatively easy to solve in a
single subtyping setting.

We will examine two techniques which work in
that context: relative numbering and Cohen’s
encoding.

Relative numbering

The idea of relative numbering is to number the
types in the hierarchy during a preorder traversal.

This numbering has the interesting characteristic
that the numbers attributed to all descendants of
a given type form a continuous interval.

Membership tests can therefore be made very
efficiently, by checking whether the number
attributed to the type of the object being tested
belongs to a given interval.

Relative numbering

Object

Number

Integer Double

Throwable

Error Exception

ThreadDeath AWTError IOException

1

2

3 3 4 4

4 5

6

7 7 8 8

8 9

10 10

10

10

10

x instanceof Throwable ⇔ 5 ≤ x.tid ≤ 10

Cohen’s encoding

The idea of Cohen’s encoding is to first partition
the types according to their level in the hierarchy.
(The level of a type T is the length of the path
from the root to T).

Then, all types are numbered so that no two types
at a given level have the same number.

Finally, a display is attached to all types T, which
maps all levels l smaller or equal to that of T to
the number of the ancestor of T at level l.

0

1

2

3

Cohen’s encoding

Object

Number

Integer Double

Throwable

Error Exception

ThreadDeath AWTError IOException

1

1 1 1 2

1 1 1 1 1 2 1 2 3 1 2 4

1 2 3 1 1 2 3 2 1 2 4 3

x instanceof Throwable ⇔
x.level ≥ 1 ⋀ x.display[1] == 2

display

le
ve

l

Relative numbering and
Cohen’s encoding

While Cohen’s encoding is more complicated
and requires more memory than relative
numbering, it has the advantage of being
incremental. That is, it is possible to add new
types to the hierarchy without having to
recompute all the information attached to types.

This characteristic is important for systems – like
Java – where new types can be added at run time.

Membership test
multiple subtyping

Membership test
multiple subtyping

In a multiple subtyping setting, neither relative
numbering nor Cohen’s encoding can be used
directly.

Techniques which work with multiple subtyping
can however be derived from them. We will
examine three of them: range compression,
packed encoding and PQ encoding.

Range compression

Range compression is a generalisation of relative
numbering to a multiple subtyping setting.

The idea of this technique is to uniquely number
all types of the hierarchy by traversing one of its
spanning forests. Then, each type carries the
numbers of all its descendants, represented as a
list of disjoint intervals.

A

Range compression

B

C D E

F G H I1 2

3

4

5

6

7

8

9[1,6]

[1,3]

[1,1] [2,2] [5,5] [7,7]

[5,5]
[7,8]

[2,2]
[5,6]

[1,3]
[5,9]

x instanceof B ⇔ x.tid ∈ [1,3] ∨ x.tid ∈ [5,9]

Packed encoding

Packed encoding is a generalisation of Cohen’s
encoding to a multiple inheritance setting.

The idea of this technique is to partition types
into slices – as few as possible – so that all
ancestors of all types are in different slices. Types
are then numbered uniquely in all slices. Finally,
a display is attached to every type T, mapping
slices to the ancestor of T in that slice.

A

Packed encoding

B

C D E

F G H I1 24

1 1

1 1 2

1 2 3 4111231111211 11

11 1 111 1 2

1 1

x instanceof B ⇔ x.display[1] == 1

display

Cohen’s and packed
encoding

It is easy to see that Cohen’s encoding is a special
case of packed encoding, where levels play the
role of slices.

In a single inheritance setting, it is always valid to
use levels as slices, since it is impossible for a
type to have two ancestors at the same level – i.e.
in the same slice.

PQ encoding borrows ideas from packed
encoding and relative numbering.

It works by partitioning types into slices – as few
as possible – and all types get one unique identity
per slice. The numbering of types is done so that
the following property holds:

For all types T in a slice S, all descendants of T –
independently of their slice – are numbered
consecutively in slice S.

PQ encoding

A

PQ encoding
(single slice)

B

C D E

F G H I

1

2

3 4

5

9

7

6 8

[1,6]

[2,4]

[3,3] [4,4]

[4,6]

[6,6]

[6,8]

[8,8]

[2,9]

x instanceof B ⇔ x.tid ∈ [2,9]

A

PQ encoding
(multiple slices)

B

C D E

F G H I

x instanceof B ⇔ x.tid[0] ∈ [2,9]
x instanceof J ⇔ x.tid[1] ∈ [7,10]

J1 1

2 3

3 5 4 6

5 4

6 9

7 8

8 10

9 2 10 7[1,6]

[2,4]

[3,3] [4,4] [6,6] [8,8]

[4,6] [6,8]

[2,9] [7,10]

Hybrid techniques

Like for the dispatch problem, it is perfectly
possible to combine several solutions to the
membership test problem.

For example, a Java implementation could use
Cohen’s encoding to handle membership tests for
classes, and PQ encoding for interfaces.

Membership test
summary

In a single subtyping context, two simple
solutions to the membership test exits: relative
numbering and Cohen’s encoding.

Generalisations of these techniques exist for
multiple subtyping contexts: range compression,
packed and PQ encoding. Those techniques
enable the membership test to be solved
efficiently, but the building of the supporting data
structures is relatively complicated.

