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Object-oriented 
languages

In an object-oriented (OO) language, all values 
are objects, which belong to a class.

(Prototype-based OO languages do not have a 
concept of class, but we’ll ignore them here.)

Objects encapsulate both state, stored in fields, 
and behaviour, defined by methods.

Two of the most important features of OO 
languages are inheritance and polymorphism.



Inheritance

Inheritance is a code reuse mechanism which 
enables one class to inherit all fields and methods 
of some other class, called its superclass.

Inheritance is nothing but code copying, 
although it is usually implemented in a smarter 
way to prevent code explosion.



Subtyping

In typed OO languages, classes usually define 
types. These types are related to each other 
through a subtyping (or conformance) relation.

Intuitively, a type T1 is a subtype of a type T2 – 
written T1 ⊑ T2 – if T1 has at least the capabilities 
of T2.



Inclusion polymorphism

When T1 ⊑ T2, a value of type T1 can be used 
everywhere a value of type T2 is expected.

This ability to use a value of a subtype of T where 
a value of type T is expected is called inclusion 
polymorphism.

Inclusion polymorphism poses several interesting 
implementation challenges, by preventing the 
exact type of a value to be known at compilation 
time.



Subtyping is not 
inheritance

Inheritance and subtyping are not the same thing, 
but many OO languages tie them together by 
stating that: (a) every class defines a type, and (b) 
the type of a class is a subtype of the type of its 
superclass(es).

This is a design choice, not an obligation!

Several languages also have a way to separate the 
two in some cases – e.g. Java has interfaces, C++ 
has private inheritance.



“Duck typing”

The distinction between inheritance and 
subtyping is especially apparent in “dynamic” 
OO languages like Smalltalk, Ruby, etc.

In those languages, inheritance is used only to 
reuse code – no notion of type even exists!

Whether an object can be used in some situation 
depends only on its capabilities (i.e. methods), 
and not on the position of its class in the 
inheritance hierarchy.



Challenges of inclusion 
polymorphism

The following problems are difficult to solve 
efficiently because of inclusion polymorphism:

• object layout – arranging object fields in 
memory,

• method dispatch – finding which concrete 
implementation of a method to call,

• membership tests – testing whether an object 
is an instance of some type.



Object layout



The object layout problem

The object layout problem consists in finding 
how to arrange the fields of an object in memory 
so that they can be accessed efficiently.

Inclusion polymorphism makes the problem hard 
because it forces the layout of different object 
types to be compatible in some way.

Ideally, a field defined in a type T should appear 
at the same offset in all descendants of T.



Object layout example

class A {
  int x;
}
class B extends A {
  int y;
}
void m(A a) { System.out.println(a.x); }

a can be an 
instance of A or any 

of its subtype



Object layout
single inheritance



In single-inheritance languages where subtyping 
and inheritance are tied (e.g. Java), the object 
layout problem can be solved easily as follows:

Fields are laid out sequentially, starting with those 
of the superclass – if any.

This ensures that all fields belonging to a type T1 
appear at the same location in all values of type 
T2 ⊑ T1.

Object layout
single inheritance



Object layout example

class A {
  int x;
}

class B extends A {
  int y;
}

void m(A a) { System.out.println(a.x); }

access 
position 0 of x

layout for 
instances of A

layout for 
instances of B

offset field
0 x

offset field
0 x

4 y



Object layout
multiple inheritance



Object layout
multiple inheritance

In a multiple inheritance setting, the object layout 
problem becomes much more difficult.

For example, in the following hierarchy, how do 
we layout fields?

int x int y

int z

A B

C



Unidirectional layout

If a standard, unidirectional layout is used, then 
some space must be wasted! Example:

offset field
0 x

offset field
0 –

4 y
offset field
0 x

4 y

8 z

layout for A layout for B

layout for C

wasted



Bidirectional layout

For this hierarchy, it is however possible to use a 
bidirectional layout to avoid wasted space.

offset field
0 x

offset field
-4 y

offset field
-4 y

0 x

4 z

layout for A layout for B

layout for C



Bidirectional layouts

There does not always exist a bidirectional layout 
which wastes no space.

Moreover, finding an optimal bidirectional layout 
– one minimising the wasted space – has been 
shown to be NP-complete.

Finally, computing a good bidirectional layout 
requires the whole hierarchy to be known! It must 
be done at link time, and is not really compatible 
with Java-style dynamic linking.



Multiple inheritance
accessor methods

Another way of solving the object layout problem 
in a multiple inheritance setting is to always use 
accessor methods to read and write fields.

The fields of a class can then be laid out freely. 
Whenever the offset of a field is not the same as 
in the superclass from which it is inherited, the 
corresponding accessor method(s) are redefined.



Multiple inheritance
other layout techniques
Bidirectional layout often wastes space, but field 
access is extremely fast. Accessor methods never 
waste space, but slow down field access.

Two-dimensional bidirectional layout slows 
down field access slightly – compared to 
bidirectional – but never wastes space. However, 
it also requires the full hierarchy to be known.

Other layout schemes – not covered here – have 
been developed for C++.



Object layout summary

The object layout problem can be solved trivially 
in a single-inheritance setting, by laying out the 
fields sequentially, starting with those of the 
superclass.

In a multiple-inheritance setting, solutions to that 
problem are more complicated, and must 
generally trade space for speed, or speed for 
space. They also typically require the whole 
hierarchy to be known in advance.



Method dispatch



The method dispatch 
problem

The method dispatch problem consists in finding, 
given an object and a method identity, the exact 
piece of code to execute.

Inclusion polymorphism makes the problem hard 
since it prevents the problem to be solved 
statically – i.e. at compilation time. Efficient 
dynamic dispatching methods therefore have to 
be devised.



Method dispatch example

class A {
  int x;
  void m() { println(“m in A”); }
  void n() { println(“n in A”); }
}
class B extends A {
  int y;
  void m() { println(“m in B”); }
  void o() { println(“o in B”); }
}
void f(A a) { a.m(); }

a can be an 
instance of A or any of 

its subtype



Method dispatch
single subtyping



Method dispatch
single inheritance

In single-inheritance languages where subtyping 
and inheritance are tied, the method dispatch 
problem can be solved easily as follows:

Method pointers are stored sequentially, starting 
with those of the superclass, in a virtual method 
table (VMT) shared by all instances of the class.

This ensures that the implementation for a given 
method is always at the same position in the VMT, 
and can be extracted quickly.



Virtual method table

A

int x

void m()
void n()

B

int y

void m()
void o()

Hierarchy

A a1 = new A();
A a2 = new A();
B b = new B();

Program

a1

a2

b

0: VMT
4: x

0: VMT
4: x

0: VMT
4: x
8: y

0: A.m
4: A.n

0: B.m
4: A.n
8: B.o

code for 

A.m

code for 

A.n

code for 

B.m

code for 

B.o

Memory organisation



Dispatching with VMTs

Using a VMT, dispatching is accomplished in 
three steps:

1. the VMT of the selector is extracted,

2. the code pointer for the invoked method is 
extracted from the VMT,

3. the method implementation is invoked.

Each of these steps typically requires a single – 
but expensive – instruction on current CPUs.



VMTs pros and cons

VMTs provide very efficient dispatching, and do 
not use much memory. They work even in 
languages like Java where new classes can be 
added to the bottom of the hierarchy at run time.

Unfortunately, they do not work for dynamic 
languages or in the presence of any kind of 
“multiple subtyping” – e.g. multiple interface 
inheritance in Java.



Method dispatch
multiple subtyping



Java interfaces

To understand why VMTs cannot be used with 
multiple subtyping, consider Java interfaces.

interface Drawable { void draw(); }
void draw(List<Drawable> ds) {
  for (Drawable d: ds) d.draw();
}

When the draw method is invoked, the only 
thing which is known about d is that it has a 
draw method – but its class can be anywhere in 
the hierarchy!



Java interfaces

In the VMT of 
Shape (and its 

descendants), draw 
is at offset 0

In the VMT of 
Window, draw is 

at offset 8

Object

hashCode

Drawable

draw

Shape

draw

Circle

draw

Rectangle

draw

Window

minimise
close
draw



Dispatching matrix

A trivial way to solve the problem is to use a 
global dispatching matrix, containing code 
pointers and indexed by classes and methods.

hashCode draw close minimise

Object hashCodeO

Shape hashCodeO

Circle hashCodeO drawC

Rectangle hashCodeO drawR

Window hashCodeO drawW closeW minimiseW



Dispatching matrix
pros and cons

The dispatching matrix makes dispatching very 
fast.

However, for any non-trivial hierarchy, it 
occupies so much memory that it is never used 
as-is in practice.

Various compression techniques have been 
devised. These techniques usually trade some 
dispatching efficiency for reduced memory usage.



Null elimination

The dispatching matrix is very sparse in practice. 
Even in our trivial example, 50% of the slots are 
empty.

A first technique to compress the matrix is 
therefore to take advantage of this sparsity. This is 
called null elimination, since the empty slots of 
the matrix usually contain null.

Several null elimination techniques exist, but we 
will examine only one: column displacement.



Column displacement

One way of eliminating nulls is to transform the 
matrix into a linear array by shifting either its 
columns or its rows. Many holes of the matrix 
can be filled in the process, by carefully choosing 
the amount by which columns (or rows) are 
shifted.

This technique is know as column (or row) 
displacement. In practice, column displacement 
gives better results than row displacement.



Column displacement
hashCode draw close minimise

Object hashCodeO

Shape hashCodeO

Circle hashCodeO drawC

Rectangle hashCodeO drawR

Window hashCodeO drawW closeW minimiseW

hashCodeO

hashCodeO

hashCodeO

hashCodeO

hashCodeO

drawC

drawR

drawW

closeW

minimiseW

hashCode

draw

close

minimisewaste: 50%

waste: none!

Dispatching is very fast: the offsets 
associated to the class and method 
are added, and the appropriate 
code pointer is extracted.



Duplicates elimination

Apart from being sparse, the dispatching matrix 
also contains a lot of duplicated information. 
Null elimination does not take advantage of this 
duplication, and even though it achieves good 
compression, it is possible to do better.

The idea of duplicates elimination techniques is 
to try to share as much information as possible 
instead of duplicating it.

Compact dispatch table is such a technique.



Compact dispatch tables

The idea of compact dispatch tables is to split the 
dispatch matrix in small sub-matrices called 
chunks.

Each individual chunk will tend to have duplicate 
rows, which can be shared by representing each 
chunk as an array of pointers to rows.



Compact dispatch tables
hashCode draw

hashCodeO

hashCodeO

hashCodeO drawC

hashCodeO drawR

hashCodeO drawW

close minimise

closeW minimiseW

Object

Shape

Circle

Rectangle

Window

closeW minimiseW

hashCodeO

hashCodeO drawC

hashCodeO drawR

hashCodeO drawW

m
at

ri
x
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k 
1
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2

chunk array



Dispatching with compact 
dispatch tables

Dispatching with compact dispatch tables 
consists in:

1. extracting the row containing the method to 
call from the appropriate chunk,

2. extracting the code pointer from the row,

3. invoking the method.



Hybrid techniques

VMTs and the more sophisticated techniques 
handling multiple subtyping are not exclusive.

All Java implementations use VMTs to dispatch 
when the type of the selector is a class type, and 
more sophisticated – and slower – techniques 
when it is an interface type.

The JVM even has different instructions for the 
two kinds of dispatch: invokevirtual and 
invokeinterface.



Method dispatch
optimisations



Inline caching

Even when efficient dispatching structures are 
used, the cost of performing a dispatch on every 
method call can become important.

In practice, it turns out that many calls which are 
potentially polymorphic are in fact monomorphic.

The idea of inline caching is to take advantage of 
this fact by recording – at every call site – the 
target of the latest dispatch, and assuming that 
the next one will be the same.



Inline caching 
implementation

Inline caching works by patching code.

At first, all method calls are compiled to call a 
standard dispatching function. Whenever this 
function is invoked, it computes the target of the 
call, and then patches the original call to refer to 
the computed target.

All methods have to handle the potential 
mispredictions of this technique, and invoke the 
dispatching function when they happen.



Inline caching example
for (Drawable d: ds) d.draw();

Circle RectangleCircle Circle Rectangleds=

...
dispatch
...

loop 
body

...
drawC
...

...
drawC
...

initial state 
(go through 

dispatch 
function)

cache hit cache hit cache miss 
(detected by 
drawC which 
falls back to 

dispatch 
function)

cache hit

...
drawC
...

patched
...
drawR
...

patched



Inline caching
pros and cons

Inline caching greatly speeds up method calls by 
avoiding expensive dispatches in most cases.

However, it can also slow down method calls 
which are really polymorphic! For example, if the 
list ds in our previous example contained an 
alternating sequence of circles and rectangles.

Polymorphic inline caching addresses this issue.



Polymorphic inline 
caching

Inline caching replaces the call to the dispatch 
function by a call to the latest method that was 
dispatched to.

Polymorphic inline caching (PIC) replaces it 
instead by a call to a specialised dispatch routine, 
generated on the fly. That routine handles only a 
subset of the possible receiver types – namely 
those which were encountered previously at that 
call site.



PIC example
for (Drawable d: ds) d.draw();

Circle RectangleRectangle Circle Circleds=

...
dispatch
...

loop 
body

...
PIC_d2
...

...
PIC_d2
...

if circle
  drawC
else
  dispatch

PIC_d1

if rectangle
  drawR
else if circle
  drawC
else
  dispatch

PIC_d2specialised 
dispatch function

...
PIC_d1
...

patched
...
PIC_d2
...

patched



PIC and inlining

An interesting feature of PIC is that the methods 
called from the specialised dispatch function can 
be inlined into it, provided they are small 
enough. For example, PIC_d2 could become:

if rectangle
  // inlined code of drawR
else if circle
  // inlined code of drawC
else
  dispatch



Method dispatch 
summary

The method dispatch problem is solved by virtual 
method tables in a single-subtyping context.

In presence of multiple subtyping, some 
compressed form of a global dispatching matrix is 
used. Compression techniques take advantage of 
the sparsity and redundancy of that matrix.

Inline caching and its polymorphic variant can 
dramatically reduce the cost of dispatching.



Membership test



The membership test 
problem

The membership test problem consists in 
checking whether an object belongs to a given 
type.

This problem must be solved very often. In Java, 
for example, this is required on every use of the 
instanceof operator, type cast or array store 
operation, and every time an exception is thrown 
– to identify the matching handler.



Membership test example

class A { }
class B extends A { }
boolean f(A a) { return a instanceof A; }

a can be an 
instance of A or any of 

its subtype



Membership test
single subtyping



Membership test
single subtyping

Like the other two problems we examined, the 
membership test is relatively easy to solve in a 
single subtyping setting.

We will examine two techniques which work in 
that context: relative numbering and Cohen’s 
encoding.



Relative numbering

The idea of relative numbering is to number the 
types in the hierarchy during a preorder traversal.

This numbering has the interesting characteristic 
that the numbers attributed to all descendants of 
a given type form a continuous interval.

Membership tests can therefore be made very 
efficiently, by checking whether the number 
attributed to the type of the object being tested 
belongs to a given interval.



Relative numbering

Object

Number

Integer Double

Throwable

Error Exception

ThreadDeath AWTError IOException

1

2

3 3 4 4

4 5

6

7 7 8 8

8 9

10 10

10

10

10

x instanceof Throwable ⇔ 5 ≤ x.tid ≤ 10



Cohen’s encoding

The idea of Cohen’s encoding is to first partition 
the types according to their level in the hierarchy. 
(The level of a type T is the length of the path 
from the root to T).

Then, all types are numbered so that no two types 
at a given level have the same number.

Finally, a display is attached to all types T, which 
maps all levels l smaller or equal to that of T to 
the number of the ancestor of T at level l.



0

1

2

3

Cohen’s encoding

Object

Number

Integer Double

Throwable

Error Exception

ThreadDeath AWTError IOException

1

1 1 1 2

1 1 1 1 1 2 1 2 3 1 2 4

1 2 3 1 1 2 3 2 1 2 4 3

x instanceof Throwable ⇔
x.level ≥ 1 ⋀ x.display[1] == 2

display

le
ve

l



Relative numbering and 
Cohen’s encoding

While Cohen’s encoding is more complicated 
and requires more memory than relative 
numbering, it has the advantage of being 
incremental. That is, it is possible to add new 
types to the hierarchy without having to 
recompute all the information attached to types.

This characteristic is important for systems – like 
Java – where new types can be added at run time.



Membership test
multiple subtyping



Membership test
multiple subtyping

In a multiple subtyping setting, neither relative 
numbering nor Cohen’s encoding can be used 
directly.

Techniques which work with multiple subtyping 
can however be derived from them. We will 
examine three of them: range compression, 
packed encoding and PQ encoding.



Range compression

Range compression is a generalisation of relative 
numbering to a multiple subtyping setting.

The idea of this technique is to uniquely number 
all types of the hierarchy by traversing one of its 
spanning forests. Then, each type carries the 
numbers of all its descendants, represented as a 
list of disjoint intervals.



A

Range compression

B

C D E

F G H I1 2

3

4

5

6

7

8

9[1,6]

[1,3]

[1,1] [2,2] [5,5] [7,7]

[5,5]
[7,8]

[2,2]
[5,6]

[1,3]
[5,9]

x instanceof B ⇔ x.tid ∈ [1,3] ∨ x.tid ∈ [5,9]



Packed encoding

Packed encoding is a generalisation of Cohen’s 
encoding to a multiple inheritance setting.

The idea of this technique is to partition types 
into slices – as few as possible – so that all 
ancestors of all types are in different slices. Types 
are then numbered uniquely in all slices. Finally, 
a display is attached to every type T, mapping 
slices to the ancestor of T in that slice.



A

Packed encoding

B

C D E

F G H I1 24

1 1

1 1 2

1 2 3 4111231111211 11

11 1 111 1 2

1 1

x instanceof B ⇔ x.display[1] == 1

display



Cohen’s and packed 
encoding

It is easy to see that Cohen’s encoding is a special 
case of packed encoding, where levels play the 
role of slices.

In a single inheritance setting, it is always valid to 
use levels as slices, since it is impossible for a 
type to have two ancestors at the same level – i.e. 
in the same slice.



PQ encoding borrows ideas from packed 
encoding and relative numbering.

It works by partitioning types into slices – as few 
as possible – and all types get one unique identity 
per slice. The numbering of types is done so that 
the following property holds:

For all types T in a slice S, all descendants of T – 
independently of their slice – are numbered 
consecutively in slice S.

PQ encoding



A

PQ encoding
(single slice)

B

C D E

F G H I

1

2

3 4

5

9

7

6 8

[1,6]

[2,4]

[3,3] [4,4]

[4,6]

[6,6]

[6,8]

[8,8]

[2,9]

x instanceof B ⇔ x.tid ∈ [2,9]



A

PQ encoding
(multiple slices)

B

C D E

F G H I

x instanceof B ⇔ x.tid[0] ∈ [2,9]
x instanceof J ⇔ x.tid[1] ∈ [7,10]

J1 1

2 3

3 5 4 6

5 4

6 9

7 8

8 10

9 2 10 7[1,6]

[2,4]

[3,3] [4,4] [6,6] [8,8]

[4,6] [6,8]

[2,9] [7,10]



Hybrid techniques

Like for the dispatch problem, it is perfectly 
possible to combine several solutions to the 
membership test problem.

For example, a Java implementation could use 
Cohen’s encoding to handle membership tests for 
classes, and PQ encoding for interfaces.



Membership test 
summary

In a single subtyping context, two simple 
solutions to the membership test exits: relative 
numbering and Cohen’s encoding.

Generalisations of these techniques exist for 
multiple subtyping contexts: range compression, 
packed and PQ encoding. Those techniques 
enable the membership test to be solved 
efficiently, but the building of the supporting data 
structures is relatively complicated.


