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Why memory 
management?

The memory of a computer is a finite resource. 
Typical programs use a lot of memory over their 
lifetime, but not all of it at the same time.

The aim of memory management is to use that 
finite resource as efficiently as possible, 
according to some criterion.

2

Memory areas

The memory used by a program can be allocated 
from three different areas:

• a static area, which is laid out at compilation 
time, and allocated when the program starts,

• a stack, from which memory is allocated and 
freed dynamically, in LIFO order,

• a heap, from which memory is allocated and 
freed dynamically, in any order.
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Location of data

Each of the areas presented before is useful to 
store different kinds of data:

• global variables and constants go into the 
static area,

• local variables and function arguments go into 
the stack,

• all data outliving the function which created 
them go into the heap.
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Memory organisation

The three areas described before can be laid out 
as follows in memory:

Stack

Heap

Static area (+ code)
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Memory management

Managing the static area and the stack is trivial.

Managing the heap is much more difficult 
because of the irregular lifetimes of the blocks 
allocated from it.

All the techniques we will see apply exclusively 
to the management of the heap.
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Memory deallocation

Memory deallocation can be either explicit or 
implicit.

It is explicit when the language offers a way to 
declare a memory block as being free – e.g. using 
delete in C++ or free in C.

It is implicit when the run time system infers that 
information itself, usually by finding which 
allocated blocks are not reachable anymore.
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The dangers of explicit 
memory deallocation

There are several problems with explicit memory 
deallocation:

• memory can be freed too early, which leads to 
dangling pointers – and then to data 
corruption, crashes, etc.

• memory can be freed too late (or never), 
which leads to space leaks.
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The danger of implicit 
memory deallocation

Implicit memory deallocation is based on the 
following conservative assumption:

If a block of memory is still reachable, then it 
will be used again in the future.

Since this assumption is conservative, it is 
possible to have space leaks even with implicit 
memory deallocation – by keeping a reference to 
a memory block without accessing it anymore.
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Management of free 
memory

The memory management system must keep track 
of which parts of the heap are free, and which are 
allocated.

For that purpose, free blocks are stored in a data-
structure which can be as simple as a linked list. 
We will call that data-structure the free list even 
though it is technically not always a list.
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Allocation and 
deallocation

The aim of allocation is to find a free block big 
enough to satisfy the request, and possibly split it 
in two if it is too big: one part is then returned as 
the result of the allocation, while the other is put 
back in the free list.

On deallocation, adjacent free blocks can be 
coalesced to form bigger free blocks.
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Free list encoding

Since free blocks are not used by the program, 
they can be used to store the data required to 
encode the free list – e.g. links to successors and 
predecessors.

This implies that the smallest possible free block 
must be big enough to contain that information.

freeallocated a. f. a. f.
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Header field

Allocated blocks are not linked in the free list, 
and hence must not hold any kind of link.

However, the size of all blocks, allocated or not, 
must be stored in them: it is required both during 
allocation and deallocation.

This size is stored in a header field at the 
beginning of the block. This header word is also 
used for garbage collection.
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Fragmentation

The term fragmentation is used to designate two 
different – but similar – problems associated with 
memory management:

• external fragmentation refers to the 
fragmentation of free memory in many small 
blocks,

• internal fragmentation refers to the waste of 
memory due to the use of a free block larger 
than required to satisfy an allocation request.
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External fragmentation

The following two heaps have the same amount 
of free memory, but the first is fragmented while 
the second is not. As a consequence, some 
requests can be fulfilled by the second but not by 
the first.

Fragmented

Not fragmented
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Internal fragmentation

memory block

requested size

wasted 
memory

allocated size
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Allocation policies

Whenever a block of memory is requested, there 
will in general be several free blocks big enough 
to satisfy the request.

A policy must therefore be used to decide which 
of those candidates to choose.

There are several such policies: first fit, next fit, 
best fit, worst fit, etc.
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First and next fit

First fit chooses the first block in the free list big 
enough to satisfy the request, and split it.

Next fit is like first fit, except that the search for a 
fitting block will start where the last one stopped, 
instead of at the beginning of the free list.

It appears that next fit results in significantly more 
fragmentation than first fit, as it mixes blocks 
allocated at very different times.
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Best and worst fit

Best fit chooses the smallest block bigger than 
the requested one.

Worst fit chooses the biggest, with the aim of 
avoiding the creation of too many small 
fragments – but doesn’t work well in practice.

The major problem of these techniques is that 
they require an exhaustive search of the free list, 
unless segregation techniques are used.
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Segregated free lists

Instead of having a single free list, it is possible to 
have several of them, each holding free blocks of 
(approximately) the same size.

These segregated free lists are organised in an 
array, to quickly find the appropriate free list 
given a block size.

When a given free list is empty, blocks from 
“bigger” lists are split in order to repopulate it.
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Buddy system

Buddy systems are a variant of segregated free 
lists.

The heap is viewed as one large block which can 
be split in two smaller blocks, called buddies, of 
a given size. Those smaller blocks can again be 
split in two smaller buddies, and so on.

Coalescing is fast in such a system, since a block 
can only be coalesced with its buddy, provided it 
is free too.
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Kinds of buddy systems

Examples of buddy systems:

• In a binary buddy system –!the most common 
kind – the blocks of a given free list are twice 
as big as those in the previous free list.

• In a Fibonacci buddy system, the size of the 
blocks of successive free lists forms a 
Fibonacci sequence (sn = sn-1 + sn-2).
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Binary buddy system 
example
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Allocation of a 10 bytes block.

allocated block 
(wastes 6 bytes)
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Automatic memory 
management

The (unattainable) goal of automatic memory 
management is to automatically deallocate dead 
objects.

Dead objects are those which will not be 
accessed anymore in the future. Objects which 
are not dead are said to be live.

Since liveness is undecidable in general, 
reachability (to be defined) is used as a 
conservative approximation.
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The reachability graph

At any time during the execution of a program, 
we can define the set of reachable objects as 
being:

• the objects immediately accessible from 
global variables, the stack or registers,

• the objects which are reachable from other 
reachable objects, by following pointers.

This forms the reachability graph.

roots
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Reachability graph 
example

R0

R1

R2

R3

Reachable Unreachable
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Garbage collection

Garbage collection (GC) is a common name for a 
set of techniques which automatically reclaim 
objects which are not reachable anymore.

We will examine several garbage collection 
techniques: reference counting, mark & sweep 
GC and copying GC.
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Reference counting

The idea of reference counting is simple:

Every object carries a count of the number of 
pointers which reference it. When this count is 
zero, the object is unreachable and can be 
deallocated.

Reference counting requires collaboration from 
the compiler – or the programmer – to make sure 
that reference counts are properly maintained.
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Reference counting
pros and cons

Reference counting is relatively easy to 
implement, even as a library. It reclaims memory 
immediately.

However, it has an important impact on space 
consumption, and speed of execution: every 
object must contain a counter, and every pointer 
write must update it.

But the biggest problem is cyclic structures...
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Reference count of
cyclic structures

The reference count of objects which are part of a 
cycle in the object graph never reaches zero, 
even when they become unreachable.

This is the major problem of reference counting.

rc = 1

rc = 1

rc = 1
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Cyclic structures and 
reference counting

The problem with cyclic structures is due to the 
fact that reference counts do not compute 
reachability, but a weaker approximation.

In other words, we have:

reference_count(x) = 0  ⇒  x is unreachable

but not the other way around.
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Uses of reference 
counting

Due to its problem with cyclic structures, 
reference counting is seldom used.

It is still interesting for systems which do not 
allow cyclic structures to be created (e.g. hard 
links on Unix file systems).

It has also been used in combination with a 
mark!& sweep GC, the latter being run 
infrequently to collect cyclic structures.
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Mark & sweep GC

Mark & sweep garbage collection is a GC 
technique which proceeds in two phases:

• in the marking phase, the reachability graph is 
traversed and reachable objects are marked,

• in the sweeping phase, all allocated objects 
are examined, and unmarked ones are freed.

GC is triggered by a lack of memory, and must 
complete before the program can be resumed.
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Mark & sweep GC

R0

R1

R2

R3
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Marking objects

Reachable objects must be marked in some way.

Since only one bit is required for the mark, it is 
possible to store it in the header word, along with 
the size.

It is also possible to use “external” bit maps to 
store mark bits.
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Reachable graph traversal

The mark phase requires a depth-first traversal of 
the reachable graph. This is usually implemented 
by recursion.

Recursive function calls use stack space, and 
since the depth of the reachable graph is not 
bounded, the GC can overflow its stack!

Several techniques have been developed to either 
recover from those overflows, or avoid them by 
storing the stack in the objects being traced.
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Sweeping objects

Once the mark phase has terminated, all 
allocated but unmarked objects can be freed. This 
is the job of the sweep phase, which traverses the 
whole heap sequentially, looking for unmarked 
objects and moving them to the free list.

Notice that unreachable objects cannot become 
reachable again. It is therefore possible to sweep 
objects on demand, to only fulfil the current 
memory need. This is called lazy sweep.
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Finding reachable objects

Until now, we have assumed that the reachability 
graph can be computed by the GC.

This is a strong assumption: the GC must be able 
to identify at run time all pointers found in the 
root set, and in allocated objects. Clearly, this 
requires collaboration from the compiler.

When the compiler does not – or cannot, due to 
language characteristics – collaborate, the GC 
must conservatively approximate reachability.
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Identifying the root set

To identify the root set, the GC must know which 
registers and stack locations contain live pointers.

To enable that identification, the compiler emits 
pointer maps, which describe the location of live 
pointers at every point where a GC can 
potentially be triggered (e.g. allocation, function 
call).
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Identifying pointers

To locate pointers appearing inside of objects, 
several techniques can be used:

• if the type of the object can be extracted from 
it (often the case in OO languages), then the 
location of pointers can be found that way,

• a tagging scheme can be used, to distinguish 
pointers from other values like integers.
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Tagging

If the allocator makes sure that all objects are 
allocated at 2m bytes boundaries, then the lowest 
m bits of all pointers will be zero.

If the system moreover ensures that integers 
always have a lowest bit of one, by representing n 
as 2n+1, then it becomes possible to distinguish 
integers from pointers by looking at the low bit.

This technique is called tagging.

41

Mark & sweep
pros and cons

Mark & sweep GC is better than reference 
counting in that it reclaims circular structures. It 
is also relatively easy to implement.

Its main disadvantages result from the fact that 
memory is not compacted after collection, hence:

• fragmentation can be a problem,

• allocation is “slow” – at least compared with 
the copying GCs we will examine later.
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Cost of mark & sweep

The mark phase takes time proportional to the 
amount of reachable data R. The sweep phase 
takes time proportional to the heap size H. This is 
done to recover H – R words of memory.

Therefore, the amortised cost of mark & sweep 
GC is: (c1 R + c2 H) / (H – R).

That cost is high if R ! H, that is if few objects are 
unreachable.
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Conservative
mark & sweep GC

Sometimes, the compiler does not (or simply 
cannot) enable the GC to identify pointers.

It is still possible in that case to perform mark & 
sweep GC, provided that the approximation of 
the reachability graph errs on the safe side. That 
is, it sometimes includes unreachable objects, but 
never excludes reachable ones.

This is the idea behind conservative GC (non-
conservative GC is said to be precise).
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Conservative 
identification of pointers

A conservative GC scans the registers, the stack, 
global variables and all allocated objects, looking 
for potential pointers to heap objects.

A value is considered to be a valid pointer if it 
represents the address of an allocated block.

Whenever such a value is found, the 
corresponding block is marked and recursively 
searched for pointers, as usual.
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Reducing 
misidentifications

Some characteristics of the architecture and the 
compiler can be used to reduce the amount of 
misidentifications – non-pointers mistaken for 
pointers.

• With most compilers one has the guarantee 
that if a block is reachable, then exists at least 
one pointer referencing its beginning.

• Some architecture require pointers to be 
aligned in memory.
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Summary

Memory management is an important part of the 
run time system, especially for languages offering 
implicit memory deallocation.

Implicit memory deallocation generally uses 
reachability as a good but conservative 
approximation of liveness.

Reference counting cannot reclaim cyclic 
structures while other forms of garbage 
collection, like mark & sweep, can.
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