
Memory management
Part II

Michel Schinz (based on Erik Stenman’s slides)
Advanced Compiler Construction / 2006-04-07



Copying garbage 
collection



Copying GC

The idea of copying garbage collection is to split 
the heap in two semi-spaces of equal size: the 
from-space and the to-space.

Memory is allocated in from-space, while to-
space is left empty. When from-space is full, all 
reachable objects in from-space are copied to to-
space, and pointers to them are updated 
accordingly. Finally, the role of the two spaces is 
exchanged, and the program resumed.



Copying GC

R0 R1 R2 R3

From To

1

2 3

1
2

3

FromTo



Allocation in a
copying GC

In a copying GC, memory is allocated linearly in 
from-space.

There is no free list to maintain, and no search to 
perform in order to find a free block. All that is 
required is a pointer to the border between the 
allocated and free area of from-space.

Allocation in a copying GC is therefore as fast as 
stack allocation.



Forwarding pointers

Before copying an object, a check must be made 
to see whether it has already been copied. If this 
is the case, it must not be copied again. Rather, 
the already-copied version must be used.

How can this check be performed? By storing a 
forwarding pointer in the object in from-space, 
after it has been copied.



Cheney’s copying GC

The copying GC algorithm presented before does 
a depth-first traversal of the reachable graph. 
When it is implemented using recursion, it can 
lead to stack overflow.

Cheney’s copying GC is an elegant GC technique 
which does a breadth-first traversal of the 
reachable graph, requiring only one pointer as 
additional state.



Cheney’s copying GC

In any breadth-first traversal, one has to 
remember the set of nodes which have been 
visited, but whose children have not been.

The basic idea of Cheney’s algorithm is to use to-
space to store this set of nodes, which can be 
represented using a single pointer, called scan.

This pointer partitions to-space in two parts: the 
nodes whose children have been visited, and 
those whose children have not been visited.



Cheney’s copying GC

4

3

2

1

scan free

1

2

3

4

From To



Cost of copying GC

The collection takes time proportional to the 
amount of reachable data R. This is done to 
recover H/2 – R words of memory.

Therefore, the amortised cost of copying GC is:
c1 R / (H/2 – R).

That cost is high if R ≈ H/2, that is if few objects 
are unreachable. But it can be very low if most 
objects are collected, which is often the case with 
some kinds of languages (e.g. functional).



Copying GC
pros and cons

Copying GC completely avoids fragmentation by 
compacting memory at each collection. It also 
provides very fast allocation. Finally, its does not 
visit dead objects, unlike mark & sweep.

Its main disadvantages is that it needs twice the 
amount of memory compared to a marking GC, 
and that copying can become expensive with 
large objects. Since it moves objects around, it 
requires precise knowledge of the object graph.



Generational garbage 
collection



Generational GC

Empirical observation suggests that most objects 
die young.

The idea of generational garbage collection is to 
partition objects in generations – based on their 
age – and to collect the young generation more 
often than the old one(s).

This should improve the amount of memory 
collected per objects visited, and avoid repeated 
copying of long-lived objects.



Generational GC

In a generational GC, the heap is separated in at 
least two generations.

All objects are initially allocated in the youngest 
– and smallest – generation. When this 
generation is full, it is collected, and some 
surviving objects are promoted to the next 
generation based on a promotion policy.

When older generation are full, they also get 
collected, usually along with the younger one(s).



Kinds of collections

In a generational GC, we distinguish two kinds of 
collections:

• minor collections, during which only the 
youngest generation is collected,

• major collections, during which some old 
generation, and usually all younger 
generations, are collected.



Generational GC
minor collection

new old

R0 R1 R2 R3

2

3

4

5
1

1 3



Promotion policies

Generational GCs use a promotion policy to 
decide when objects should be advanced to an 
older generation.

The simplest one – all survivors are advanced – 
can promote very young objects, but is simple as 
object age does not need to be recorded.

To avoid promoting very young objects it is 
sufficient to wait until they survive a second 
collection before advancing them.



Roots for generational GC

The roots to be used for a minor collection must 
also include all inter-generational pointers, i.e. 
pointers from older generations to younger ones.

new old

R0 R1 R2 R3

2

31

4



Inter-generational pointers

Inter-generational pointers can be handled in two 
ways:

1. by scanning older generations during minor 
collection,

2. by detecting pointer writes using a write 
barrier – implemented either in software or 
through hardware support – and 
remembering those which create inter-
generational pointers.



Inter-generational pointers
remembered sets

A remembered set contains all old objects 
pointing to young objects.

The write barrier maintains this set by adding 
objects to it iff:

• the object into which the pointer is stored is 
not yet in the remembered set,

• the pointer is stored in an old object, and 
points to a young one.

can also be 
done later by collector



Inter-generational pointers
card marking

Card marking is another technique to detect 
inter-generational pointers.

Memory is divided into small, fixed sized areas 
called cards. A card table remembers, for each 
card, whether it potentially contains inter-
generational pointers.

On each pointer write, the card is marked in the 
table, and marked cards are scanned for inter-
generational pointers during collection.



Nepotism

Since old generations are not collected as often 
as young ones, it is possible for dead old objects 
to prevent collection of dead young objects.

new old

R0 R1 R2 R3

2

31

4

5 6 7



Generational GC
pros and cons

Generational GC tends to reduce GC pause times 
since only the youngest generation – which is 
also the smallest – is collected most of the time. It 
also avoids copying long-lived objects over and 
over.

The management of inter-generational pointers 
has its cost, however, and nepotism is a problem.



Other kinds of 
garbage collectors



Incremental and 
concurrent GCs

An incremental garbage collector can perform 
garbage collection in small, incremental steps, 
thereby reducing the length of GC pauses.

A concurrent garbage collector can work in 
parallel with the main program.

Incremental and concurrent GCs must both be 
able to deal with modifications to the reachability 
graph performed by the main program while they 
attempt to compute it.



Hybrid GCs

The various garbage collection techniques we 
have seen can be combined in hybrid GCs.

For example, the OCaml garbage collector is a 
generational GC where allocation happens 
linearly in the first generation, like in a copying 
GC. All objects which survive a GC are copied to 
a second generation, which is collected by an 
incremental mark & sweep GC.



Additional garbage 
collector features



Finalisers

Some GCs make it possible to associate finalisers 
with objects.

Finalisers are functions which are called when an 
object is about to be collected. They are generally 
used to free “external” resources associated with 
the object about to be freed.

Since there is no guarantee about when finalisers 
are invoked, the resource in question should not 
be scarce.



Finalisers design and 
implementation issues

Finalisers are tricky:

• what do we do if a finaliser makes the 
finalised object reachable again – e.g. by 
storing it in a global variable?

• how do finalisers interact with concurrency – 
e.g. in which thread are they run?

• how can they be implemented efficiently in a 
copying GC, which doesn’t visit dead objects?



References

When the GC encounters a reference, it usually 
treats it as a strong reference, meaning that the 
referenced object will be considered as reachable 
and survive the collection.

It is sometimes useful to have weaker kinds of 
references, which can refer to an object without 
preventing it from being collected.



Weak references

The term weak reference designates references 
which do not prevent an object from being 
collected.

During a GC, if an object is only reachable 
through weak references, it is collected, and all 
(weak) references pointing to it are cleared.

Weak references are useful to implement caches, 
canonicalising mappings, etc.



Example: Java references

Java provides several kinds of “non-strong” 
references, which are, from strongest to weakest:

• soft references, cleared when memory is low,

• weak references, cleared as early as possible,

• phantom references, similar to weak 
references except that the referenced object is 
not available – and therefore cannot be 
resurrected.



Summary

Copying GCs copy reachable objects from one 
semi-space to the other on every collection. This 
avoids all fragmentation, and makes allocation 
very fast.

Generational GCs put young objects in a 
separate, smaller area, collected more often. This 
reduces collection pauses, and avoids the 
repeated copying of long-lived objects.


