
Advanced compiler
construction

Michel Schinz
2006-03-17

General course
information

Teachers

Teacher:

Michel Schinz

Michel.Schinz@epfl.ch

Assistant:

Iulian Dragos

INR 321, ☎ 368 68 64

Iulian.Dragos@epfl.ch

Course goal

The goal of this course is to teach you:

1. how to compile high-level (functional and
OO) programming languages, and

2. how to optimise the generated code.

Outline

The course is split in two main parts, of
approximately the same length.

Part I: compilation of high-level languages
(virtual machines, memory management,
closure conversion, etc.)

Part II: optimisations (data-flow analysis, SSA
form, etc.)

Evaluation

Evaluation will be based on:

• a project, made in groups of two persons,

• an individual oral exam at the end of the
semester.

Notice that the oral exam will take place in the
last week of the semester, not after it.

Project

You will have to improve a compiler and a virtual
machine (VM) for minischeme a tiny dialect of
Scheme, itself a dialect of Lisp. Example:

(define map

 (lambda (f l)

 (if (null? l)

 nil

 (cons (f (head l))

 (map f (tail l))))))

The compiler is written in Scala, the VM in C.

Project parts

The project will contain two parts:

1. a common part, where all groups will have to
complete the same “simple” tasks (e.g. add
automatic memory management to the VM),

2. an individual part, where all groups will have
to choose one advanced task, try to complete
it and describe their work in a short report
(e.g. implement a JIT compiler for the VM).

Web resources

The course has a Web page:
http://lamp.epfl.ch/teaching/

advancedCompiler/2006/

Moreover, we will use Moodle to handle the
project:
http://moodle.epfl.ch/

Course overview

What is a compiler?

Your current view of a compiler must be
something like this:

Scanner

Parser

Analyser

Generator

Lexical analysis

Syntactical analysis

Name & type analysis

Code generation

Character stream

Token stream

Tree

Attributed tree

Executable code

What is a compiler?

Real compilers are often more complicated…

Scanner

Parser

Analyser

Generator

several
simplification and

optimisation
phases

sophisticated run
time system

Simplification and
optimisation phases

Simplification phases transform the program so
that complex concepts (e.g. pattern matching,
closures, …) are translated using simpler ones.

Optimisation phases transform the program so
that it – hopefully – makes better use of some
resource (e.g. CPU cycles, memory, etc.).

Of course, all these phases must preserve the
semantics of the original program!

Intermediate
representations

Simplification and optimisation phases must
represent the program in some way.

One possibility is to use the representation of the
parser – the abstract syntax tree (AST).

The AST is perfectly suited to certain tasks, but
other intermediate representations (IR) exist and
are more appropriate in some situations.

Kinds of intermediate
representations

Intermediate representations can broadly be split
in three categories:

• graphical IRs which represent the program as
a graph,

• linear IRs which represent the program as a
linear sequence of instructions, and

• hybrid IRs, which are partly graphical, partly
linear.

Graphical IRs

Graphical IRs represent the program as a graph.

They are often used in the initial phases of the
compiler. In particular, the AST produced by the
parser is a graphical IR.

Examples: ASTs, some kinds of control-flow
graphs (CFG), etc.

Graphical IR example

x!12

y!5

if x<y

x!y x!2*y

z!x/y

Linear IRs

Linear IRs represent the program as a sequence of
instructions.

They are often used in the final phases of the
compiler, since machine code itself is linear.

Examples: three-address code, stack languages.

Linear IR example

 x!12

 y!5

 if x<y goto L1

 x!y

 goto L2

L1: x!2*y

L2: z!x/y

Hybrid IRs

Hybrid IRs have graphical and linear
components.

For example, most control-flow graphs are
hybrid: the nodes in the CFG are linear
sequences of instructions – called basic blocks –
but the CFG itself is a graph.

Hybrid IR example

x!12

y!5

if x<y

x!y x!2*y

z!x/y

basic block

SSA form

Static single-assignment (SSA) form is an IR with
an important characteristic: all “variables” are
assigned exactly once.

This characteristic makes a lot of optimisations
easier. For example, identifying common sub-
expressions is trivial.

Transforming an imperative program to SSA form
implies the introduction of so-called !-functions.

SSA example

 x1!12

 y1!5

 if x1<y1 goto L1

 x2!y1
 goto L2

L1: x3!2*y1
L2: x4!"(x2,x3)

 z1!x4/y1

The "-function
“magically” selects

the correct x

Intermediate languages

Intermediate representations which can be
represented textually as a program are often
called intermediate languages.

Intermediate languages are similar to normal
programming languages, but designed with
different goals (e.g. simplicity, not conciseness).

Some intermediate languages are typed. This can
help debugging the compiler, as the result of each
phase can be type-checked.

Run time system

Implementing a high-level programming
language usually means more than just writing a
compiler.

A complete run time system must be written, to
assist the execution of compiled programs by
providing various services: memory management,
threads, etc.

Automatic memory
management

Most recent languages offer automatic memory
management: the programmer allocates memory
explicitly, but de-allocation is performed
automatically.

The de-allocation of memory is usually
performed by a part of the run time system called
the garbage collector (GC).

Virtual machines

Instead of targeting a real processor, a compiler
can target a virtual one, usually called a virtual
machine.

The produced code is then interpreted by a
program emulating the virtual machine.

Virtual machines
advantages

Virtual machines are interesting for several
reasons:

• the compiler can target a single (and usually
high-level) architecture,

• the program can easily be monitored during
execution, e.g. to prevent malicious
behaviour, or provide debugging facilities,

• the distribution of compiled code is easier.

Virtual machines
disadvantages

The main (only?) disadvantage of virtual
machines is their speed: it is always slower to
interpret a program in software than to execute it
directly in hardware.

Dynamic compilation
(a.k.a. JIT compilation)

To make virtual machines faster, dynamic (or just-
in-time) compilation was invented.

The idea is simple: Instead of interpreting a piece
of code, the virtual machine translates it to
machine code, and hands it to the processor for
execution.

This is usually faster than interpretation.

Summary

Compilers for high-level languages are more
complex than the ones you’ve studied, since:

• they must translate high-level concepts like
pattern-matching, closures, etc.

• they must be accompanied by a sophisticated
run time system, and

• they should produced optimised code.

These will be the subjects of our study.

Real-world examples

The Scala compiler (v2.0)

The (new) Scala compiler is composed of
approximately 13 phases:

• the first 10 are mostly simplification phases,
which work on the AST and translate concepts
like nested classes, closures, etc.

• the last 3 work on a hybrid IR called ICode.

The run time system is a standard JVM, since the
compiler emits standard Java class files.

The OCaml compilers

There are two OCaml compilers: the first
produces code for a virtual machine, the second
produces machine code for several architectures.

The virtual machine, called ZAM2, is a stack-
based VM designed for the efficient interpretation
of OCaml programs.

Two implementations of the ZAM2 exist: a
threaded-code interpreter, and a JIT compiler.

The OCaml compilers

The two compilers share:

• a common front-end, composed of the
scanner, parser, type-checker and a first
simplification phase,

• part of the run time system (mostly the GC).

The native compiler has a lot more phases, which
handle problems like register allocation.

