
Instruction scheduling

Michel Schinz
Advanced Compiler Construction / 2006-06-23

1

Instruction ordering

When a compiler emits the instructions 
corresponding to a program, it imposes a total 
order on them.

However, that order is usually not the only valid 
one, in the sense that it can be changed without 
modifying the program’s behaviour.

For example, if two instructions i1 and i2 appear 
sequentially in that order and are independent, 
then it is possible to swap them.

2

Instruction scheduling

Among all the valid permutations of the 
instructions composing a program – i.e. those 
which preserve the program’s behaviour – some 
can be more desirable than others. For example, 
one order might lead to a faster program on some 
machine, because of architectural constraints.

The aim of instruction scheduling is to find a 
valid order which optimises some metric, like 
execution speed.

3

Pipeline stalls

Modern, pipelined architectures can usually issue 
at least one instruction per clock cycle.

However, an instruction can be executed only if 
the data it needs is ready. Otherwise, the pipeline 
stalls for one or several cycles.

Stalls can appear because some instructions (e.g. 
division) require several cycles to complete, or 
because data has to be fetched from memory.

4

Scheduling example

The following example will illustrate how proper 
scheduling can reduce the time required to 
execute a piece of code.

We assume the following delays for instructions:

Instruction(s) Delay

LOAD, STOR 3

MUL 2

ADD 1

5

Scheduling example
Cycle Instruction

1 LOAD R1 R29 0

4 ADD R1 R1 R1

5 LOAD R2 R29 4

8 MUL R1 R1 R2

9 LOAD R2 R29 8

12 MUL R1 R1 R2

13 LOAD R2 R29 12

16 MUL R1 R1 R2

18 STOR R1 R29 16

Cycle Instruction

1 LOAD R1 R29 0

2 LOAD R2 R29 4

3 LOAD R3 R29 8

4 ADD R1 R1 R1

5 MUL R1 R1 R2

6 LOAD R2 R29 12

7 MUL R1 R1 R3

9 MUL R1 R1 R2

11 STOR R1 R29 16

After scheduling (including renaming), the last instruction 
is issued at cycle 11 instead of 18!

6



Dependencies among 
instructions

An instruction i2 depends on an instruction i1 
when it is not possible to execute i2 before i1 
without changing the behaviour of the program.

The most common reason for dependency is 
data-dependency: i2 uses a value which is 
computed by i1.

However, as we will see, there are other kinds of 
dependencies.

7

Data dependencies

We distinguish three kinds of dependencies 
between two instructions n1 and n2:

1. true dependency – n2 reads a value written 
by n1 (read after write, RAW),

2. anti-dependency – n2 writes a value which is 
read by n1 (write after read, WAR),

3. anti-dependency – n2 writes a value which is 
written by n1 (write after write, WAW).

8

Anti-dependencies

Anti-dependencies are not real dependencies, in 
the sense that they do not arise from the flow of 
data. They are due to a single location – e.g. a 
register – being used to store different values.

Most of the time, anti-dependencies can be 
removed by renaming locations – e.g. registers.

9

Computing dependencies

Identifying dependencies among instructions 
which only access registers is easy.

Instructions which access memory are harder to 
handle. In general, it is not possible to know 
whether two such instructions refer to the same 
memory location. Conservative approximations 
therefore have to be used.

10

Dependency graph

The dependency graph represents dependencies 
among instructions.

Its nodes are the instructions to schedule, and 
there is an edge from n1 to n2 iff the instruction of 
n2 depends on n1.

By topologically sorting the nodes of this graph, it 
is possible to compute all possible schedules of a 
set of instructions.

11

Dependency graph 
example

Name Instruction

a LOAD R1 R29 0

b ADD R1 R1 R1

c LOAD R2 R29 4

d MUL R1 R1 R2

e LOAD R2 R29 8

f MUL R1 R1 R2

g LOAD R2 R29 12

h MUL R1 R1 R2

i STOR R1 R29 16
true dependency

antidependency

b

d

gf

h

c

e

i

a

12



How hard is scheduling?

Optimal instruction scheduling is NP-complete.

As always, this implies that we will use heuristics 
to find a good – but sometimes not optimal – 
solution to that problem.

13

List scheduling

List scheduling is a technique to schedule the 
instructions of a single basic block.

Its basic idea is to simulate the execution of the 
instructions, and to try to schedule instructions 
only when all their operands can be used without 
stalling the pipeline.

14

List scheduling algorithm

The list scheduling algorithm maintains two lists:

• ready is the list of instructions which could 
be scheduled without stall, ordered by priority,

• active is the list of instructions which are 
being executed.

At each step, the highest-priority instruction from 
ready is scheduled, and moved to active, 
where it stays for a time equal to its delay.

15

Prioritising nodes

Instructions are sorted by priority in the ready list. 
How are those priorities computed?

The most common scheme is to use the length of 
the longest latency-weighted path from the node 
to a root of the dependency graph as the priority.

Other schemes exits, though. For example, a 
node’s priority can be the number of its 
immediate successors.

16

List scheduling example
Cycle ready active

1 [a13,c12,e10,g8] [a]

2 [c12,e10,g8] [a,c]

3 [e10,g8] [a,c,e]

4 [b10,g8] [b,c,e]

5 [d9,g8] [d,e]

6 [g8] [d,g]

7 [f7] [f,g]

8 [] [f,g]

9 [h5] [h]

10 [] [h]

11 [i3] [i]

12 [] [i]

13 [] [i]

14 [] []

b10

d9

g8f7

h5

c12

e10

i3

a13

priority

17

Scheduling and register 
allocation

It is hard to decide whether scheduling should be 
done before or after register allocation.

If register allocation is done first, it can introduce 
anti-dependencies when reusing registers.

If scheduling is done first, register allocation can 
introduce spilling code, destroying the schedule.

Solution: schedule first, then allocate registers 
and schedule once more if spilling was necessary.

18



Summary

Instruction scheduling tries to find an order in 
which instructions should be issued to improve 
some metric – typically execution time.

List scheduling is an instruction scheduling 
technique. It works by always scheduling the next 
instruction that is ready, i.e. whose operands are 
available. When several candidate instructions 
exist, a heuristic is used to decide which one to 
schedule next.

19


