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Introduction to
 data-flow analysis
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Data-flow analysis

Data-flow analysis is a global analysis framework 
which can be used to compute – or, more 
precisely, approximate – various properties of 
programs.

The results of those analysis can be used to 
perform several optimisations like common sub-
expression elimination, dead-code elimination, 
constant propagation, register allocation, etc.
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Example of data-flow 
analysis: liveness

A variable is said to be live at a given point if its 
value will be read later. While liveness is clearly 
undecidable, a conservative approximation can 
be computed using data-flow analysis.

This approximation can then be used, for 
example, to allocate registers: a set of variables 
which are never live at the same time can share a 
single register.
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Requirements of data-flow 
analysis

Data-flow analysis requires the program to be 
represented as a control flow graph (CFG).

To compute properties about the program, it 
assigns values to the nodes of the CFG. Those 
values must be related to each other by a special 
kind of partial order called a lattice.

We therefore start by introducing control flow 
graphs and lattice theory.
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Control flow graphs
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Control flow graph

A control flow graph (CFG) is a graphical 
representation of a program.

The nodes of the CFG are the statements of that 
program.

The edges of the CFG represent the flow of 
control: there is an edge from n1 to n2 if and only 
if control can flow immediately from n1 to n2. 
That is, if the statements of n1 and n2 can be 
executed in direct succession.
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CFG example

x!12

y!5

if x<y

x!y x!2*y

z!x/y
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Predecessors and 
successors

In the CFG, the set of the immediate predecessors 
of a node n is written pred(n).

Similarly, the set of the immediate successors of a 
node n is written succ(n).
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Basic block

A basic block is a maximal sequence of 
statements for which control flow is purely linear. 

That is, control always enters a basic block from 
the top – its first instruction – and leaves from the 
bottom – its last instruction.

Basic blocks are often used as the nodes of a 
CFG, in order to reduce its size.
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CFG example
(nodes are basic blocks)

x!12

y!5 

if x<y

x!y x!2*y

z!x/y
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Lattice theory
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Partial order

A partial order is a mathematical structure (S,!)
composed of a set S and a binary relation ! on S, 
satisfying the following conditions:

• reflexivity: ∀x ∈ S, x ! x

• transitivity: ∀x,y,z ∈ S, x ! y " y ! z ⇒ x ! z

• anti-symmetry: ∀x,y ∈ S, x ! y " y ! x ⇒ x = y
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Partial order example

In Java, the set of types along with the sub-typing 
relation form a partial order.

According to that order, the type String is 
smaller (i.e. a sub-type) of the type Object.

The type String and Integer are not 
comparable: none of them is a sub-type of the 
other.
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Upper bound

Given a partial order (S,!) and a set X ⊆ S, y ∈ S 

is an upper bound for X, written X ! y, if

∀x ∈ X, x ! y.

A least upper bound (l.u.b.) for X, written #X, is 
defined by:

X ! #X " ∀y ∈ S, X ! y ⇒ #X ! y

Notice that a least upper bound does not always 
exist.
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Lower bound

Given a partial order (S, !) and a set X ⊆ S, y ∈ S 

is an lower bound for X, written y ! X, if

∀x ∈ X, y ! x.

A greatest lower bound for X, written $X, is 
defined by:

$X ! X " ∀y ∈ S, y ! X ⇒ y ! $X

Notice that a greatest lower bound does not 
always exist.
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Lattice

A lattice is a partial order L = (S,!) for which #X 
and $X exist for all X ⊆ S.

A lattice has a unique greatest element, written 
! and pronounced “top”, defined as != #S.

It also has a unique smallest element, written ⊥ 

and pronounced “bottom”, defined as ⊥ = $S.

The height of a lattice is the length of the longest 
path from ⊥ to !.
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Finite partial orders and 
lattices

A partial order (S,!) is finite if the set S contains a 
finite number of elements.

For such partial orders, the lattice requirements 
reduce to the following:

• ! and ⊥ exist,

• every pair of elements x,y in S has a least 
upper bound – written x # y – as well as a 
greatest lower bound – written x $ y.
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Cover relation

In a partial order (S,!), we say that an element y 
covers another element x if:

(x % y) ∧ (∀z ∈ S, x ! z % y ⇒ x = z)

where x % y ⇔ x ! y ∧ x ! y.

Intuitively, y covers x if y is the smallest element 
greater than x.
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Hasse diagrams

A partial order can be represented graphically by 
a Hasse diagram.

In such a diagram, the elements of the set are 
represented by dots.

If an element y covers an element x, then the dot 
of y is placed above the dot of x, and a line is 
drawn to connect the two dots.
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Hasse diagram example

Hasse diagram for partial order (S,!) where
S = { 0, 1, …, 7 } and x ! y ⇔ (x & y) = x

7 (111)

0 (000)

1 (001) 4 (100)
2 (010)

3 (011) 6 (110)
5 (101)

bit-wise and
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Partial order examples

Which of the following partial orders are lattices?

1 2 3

4 5 6
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Fixed points
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Monotone function

A function f : L " L is monotone if and only if:

∀x,y ∈ S, x ! y ⇒ f(x) ! f(y)

This does not imply that f is increasing, as 
constant functions are also monotone.

Viewed as functions, $ and # are monotone in 
both arguments.
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Fixed point theorem

Definition: a value v is a fixed point of a function 
f if and only if f(v) = v.

Fixed point theorem: In a lattice L with finite 
height, every monotone function f has a unique 
least fixed point fix(f), and it is given by:

fix(f) = ⊥ # f(⊥) # f2(⊥) # f3(⊥) # …
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Fixed points and 
equations

Fixed points are interesting as they enable us to 
solve systems of equations of the following form:

x1 = F1(x1, …, xn)
x2 = F2(x1, …, xn)
…
xn = Fn(x1, …, xn)

where xi are variables, and Fi : Ln " L are 
monotone functions.
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Solving equation systems

An equation system like the one just presented 
has a unique least solution which is the least 
fixed point of the composite function F : Ln " Ln 

defined as:

F(x1, …, xn) = (F1(x1, …, xn), …, Fn(x1, …, xn))
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Solving inequation 
systems

Systems of inequations of the following form:

x1 ! F1(x1, …, xn)
x2 ! F2(x1, …, xn)
…
xn ! Fn(x1, …, xn)

can be solved similarly by observing that
x ! y ⇔ x = x $ y and rewriting the inequations.
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Data-flow analysis
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Data-flow analysis 
overview

Data-flow analysis works on a control-flow graph 
and a lattice L. The lattice can either be fixed for 
all programs, or depend on the analysed one.

A variable vn ranging over the values of L is 
attached to every node n of the CFG.

A set of (in)equations for these variables are then 
extracted from the CFG – according to the 
analysis being performed – and solved using the 
fixed point technique.
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Data-flow analysis 
example: liveness

As we have seen, liveness is a property which can 
be approximated using data-flow analysis.

The lattice to use in that case is L = { P(V),    } 
where V is the set of variables appearing in the 
analysed program, and P is the power set 
operator (set of all subsets).

⊆
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Data-flow analysis 
example: liveness

For a program containing three variables x, y and 
z, the lattice for liveness is the following:

{}

{x} {y} {z}

{x,y} {x,z} {y,z}

{x,y,z}
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Data-flow analysis 
example: liveness

To every node n in the CFG, we attach a variable 
vn giving the set of variables live before that node.

The value of that variable is given by:

vn = (vs1 & vs2 & … \ written(n)) & read(n)

where s1, s2, … are the successors of n, read(n) is 
the set of program variables read by n, and 
written(n) is the set of variables written by n.
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CFG constraints solution

Data-flow analysis 
example: liveness

x!read-int

y!read-int

if (x < y)

z!x z!y

print-int z

1

2

3

4 5

6

v1 = v2 \ { x }
v2 = v3 \ { y }
v3 = v4 ∪ v5 ∪ { x, y }

v4 = v6 ∪ { x } \ { z }

v5 = v6 ∪ { y } \ { z }

v6 = { z }

v1 = { }
v2 = { x }
v3 = { x, y }
v4 = { x }
v5 = { y }
v6 = { z }
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Fixed point algorithm

Iteration x1 x2 x3 x4 x5 x6

0 {"} {"} {"} {"} {"} {"}

1 { } { } { x, y } { x } { y } { z }

2 { } { x"} { x, y } { x } { y } { z }

3 { } { x"} { x, y } { x } { y } { z }

To solve the data-flow constraints, we construct 
the composite function F and compute its least 
fixed point by iteration.

F(x1, x2, x3, x4, x5, x6) =
  (x2\{x}, x3\{y}, x4&x5&{x,y}, x6&{x}\{z}, x6&{y}\{z}, {z})
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Work-list algorithm

Computing the fixed point by simple iteration as 
we did works, but is wasteful as the information 
for all nodes is re-computed at every iteration.

It is possible to do better by remembering, for 
every variable v, the set dep(v) of the variables 
whose value depends on the value of v itself.

Then, whenever the value of some variable v 
changes, we only re-compute the value of the 
variables which are in dep(v).
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Work-list algorithm

x1 = x2 = … = xn = ⊥
q = [ v1, …, vn ]
while (q ! [])

assume q = [ vi, … ]
y = Fi (x1, …, xn)
q = q.tail
if (y ! xi)

for (v ∈ dep(vi))
if (v ∉ q) q.append(v)

xi = y
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Work-list algorithm 
liveness example

q x1 x2 x3 x4 x5 x6

[v1,v2,v3,v4,v5,v6] {} {} {} {} {} {}

[v2,v3,v4,v5,v6] {} {} {} {} {} {}

[v3,v4,v5,v6] {} {} {} {} {} {}

[v4,v5,v6,v2] {} {} {x,y} {} {} {}

[v5,v6,v2,v3] {} {} {x,y} {x} {} {}

[v6,v2,v3,v3] {} {} {x,y} {x} {y} {}

[v2,v3,v4,v5] {} {} {x,y} {x} {y} {z}

[v3,v4,v5,v1] {} {x} {x,y} {x} {y} {z}

[v4,v5,v1] {} {x} {x,y} {x} {y} {z}

[v5,v1] {} {x} {x,y} {x} {y} {z}

[v1] {} {x} {x,y} {x} {y} {z}

[] {} {x} {x,y} {x} {y} {z}
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Work-list algorithm 
improvements

In our liveness example, the work-list algorithm 
would have terminated in only six iterations if the 
initial queue had been reversed!

This is due to the fact that liveness analysis is a 
backward analysis: the value of variable vn 
depends on the successors of n. For such 
analysis, it is better to organise the queue with 
the latest nodes first.
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Working with basic 
blocks

Until now, we considered that the CFG nodes 
were single instructions. In practice, basic blocks 
tend to be used as nodes, to reduce the size of 
the CFG.

When data-flow analysis is performed on a CFG 
composed of basic blocks, a variable is attached 
to every block, and not to every instruction. 
Computing the result of the analysis for 
individual instructions is however trivial.
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CFG constraints solution

Working with basic 
blocks: liveness example

x!read-int

y!read-int

if (x < y)

z!x z!y

print-int z

1

2 3

4

v1 = v2 ∪ v3 \ { x, y }

v2 = v4 ∪ { x } \ { z }

v3 = v4 ∪ { y } \ { z }

v4 = { z }

v1 = { }
v2 = { x }
v3 = { y }
v4 = { z }
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Summary

Data-flow analysis is a framework which can be 
used to compute approximations of various 
properties about programs. This is done by 
solving a set of equations with monotonous right-
hand sides, using the fixed point algorithm.

As a first example, we have examined the 
computation of an approximation of liveness. 
More examples will follow.
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