
Data-flow analysis

Michel Schinz
 (based on material by Michael Schwartzbach and Erik Stenman)

Advanced Compiler Construction / 2006-06-02

1

Introduction to
 data-flow analysis

2

Data-flow analysis

Data-flow analysis is a global analysis framework
which can be used to compute – or, more
precisely, approximate – various properties of
programs.

The results of those analysis can be used to
perform several optimisations like common sub-
expression elimination, dead-code elimination,
constant propagation, register allocation, etc.

3

Example of data-flow
analysis: liveness

A variable is said to be live at a given point if its
value will be read later. While liveness is clearly
undecidable, a conservative approximation can
be computed using data-flow analysis.

This approximation can then be used, for
example, to allocate registers: a set of variables
which are never live at the same time can share a
single register.

4

Requirements of data-flow
analysis

Data-flow analysis requires the program to be
represented as a control flow graph (CFG).

To compute properties about the program, it
assigns values to the nodes of the CFG. Those
values must be related to each other by a special
kind of partial order called a lattice.

We therefore start by introducing control flow
graphs and lattice theory.

5

Control flow graphs

6

Control flow graph

A control flow graph (CFG) is a graphical
representation of a program.

The nodes of the CFG are the statements of that
program.

The edges of the CFG represent the flow of
control: there is an edge from n1 to n2 if and only
if control can flow immediately from n1 to n2.
That is, if the statements of n1 and n2 can be
executed in direct succession.

7

CFG example

x!12

y!5

if x<y

x!y x!2*y

z!x/y

8

Predecessors and
successors

In the CFG, the set of the immediate predecessors
of a node n is written pred(n).

Similarly, the set of the immediate successors of a
node n is written succ(n).

9

Basic block

A basic block is a maximal sequence of
statements for which control flow is purely linear.

That is, control always enters a basic block from
the top – its first instruction – and leaves from the
bottom – its last instruction.

Basic blocks are often used as the nodes of a
CFG, in order to reduce its size.

10

CFG example
(nodes are basic blocks)

x!12

y!5

if x<y

x!y x!2*y

z!x/y

11

Lattice theory

12

Partial order

A partial order is a mathematical structure (S,!)
composed of a set S and a binary relation ! on S,
satisfying the following conditions:

• reflexivity: ∀x ∈ S, x ! x

• transitivity: ∀x,y,z ∈ S, x ! y " y ! z ⇒ x ! z

• anti-symmetry: ∀x,y ∈ S, x ! y " y ! x ⇒ x = y

13

Partial order example

In Java, the set of types along with the sub-typing
relation form a partial order.

According to that order, the type String is
smaller (i.e. a sub-type) of the type Object.

The type String and Integer are not
comparable: none of them is a sub-type of the
other.

14

Upper bound

Given a partial order (S,!) and a set X ⊆ S, y ∈ S

is an upper bound for X, written X ! y, if

∀x ∈ X, x ! y.

A least upper bound (l.u.b.) for X, written #X, is
defined by:

X ! #X " ∀y ∈ S, X ! y ⇒ #X ! y

Notice that a least upper bound does not always
exist.

15

Lower bound

Given a partial order (S, !) and a set X ⊆ S, y ∈ S

is an lower bound for X, written y ! X, if

∀x ∈ X, y ! x.

A greatest lower bound for X, written $X, is
defined by:

$X ! X " ∀y ∈ S, y ! X ⇒ y ! $X

Notice that a greatest lower bound does not
always exist.

16

Lattice

A lattice is a partial order L = (S,!) for which #X
and $X exist for all X ⊆ S.

A lattice has a unique greatest element, written
! and pronounced “top”, defined as != #S.

It also has a unique smallest element, written ⊥

and pronounced “bottom”, defined as ⊥ = $S.

The height of a lattice is the length of the longest
path from ⊥ to !.

17

Finite partial orders and
lattices

A partial order (S,!) is finite if the set S contains a
finite number of elements.

For such partial orders, the lattice requirements
reduce to the following:

• ! and ⊥ exist,

• every pair of elements x,y in S has a least
upper bound – written x # y – as well as a
greatest lower bound – written x $ y.

18

Cover relation

In a partial order (S,!), we say that an element y
covers another element x if:

(x % y) ∧ (∀z ∈ S, x ! z % y ⇒ x = z)

where x % y ⇔ x ! y ∧ x ! y.

Intuitively, y covers x if y is the smallest element
greater than x.

19

Hasse diagrams

A partial order can be represented graphically by
a Hasse diagram.

In such a diagram, the elements of the set are
represented by dots.

If an element y covers an element x, then the dot
of y is placed above the dot of x, and a line is
drawn to connect the two dots.

20

Hasse diagram example

Hasse diagram for partial order (S,!) where
S = { 0, 1, …, 7 } and x ! y ⇔ (x & y) = x

7 (111)

0 (000)

1 (001) 4 (100)
2 (010)

3 (011) 6 (110)
5 (101)

bit-wise and

21

Partial order examples

Which of the following partial orders are lattices?

1 2 3

4 5 6

22

Fixed points

23

Monotone function

A function f : L " L is monotone if and only if:

∀x,y ∈ S, x ! y ⇒ f(x) ! f(y)

This does not imply that f is increasing, as
constant functions are also monotone.

Viewed as functions, $ and # are monotone in
both arguments.

24

Fixed point theorem

Definition: a value v is a fixed point of a function
f if and only if f(v) = v.

Fixed point theorem: In a lattice L with finite
height, every monotone function f has a unique
least fixed point fix(f), and it is given by:

fix(f) = ⊥ # f(⊥) # f2(⊥) # f3(⊥) # …

25

Fixed points and
equations

Fixed points are interesting as they enable us to
solve systems of equations of the following form:

x1 = F1(x1, …, xn)
x2 = F2(x1, …, xn)
…
xn = Fn(x1, …, xn)

where xi are variables, and Fi : Ln " L are
monotone functions.

26

Solving equation systems

An equation system like the one just presented
has a unique least solution which is the least
fixed point of the composite function F : Ln " Ln

defined as:

F(x1, …, xn) = (F1(x1, …, xn), …, Fn(x1, …, xn))

27

Solving inequation
systems

Systems of inequations of the following form:

x1 ! F1(x1, …, xn)
x2 ! F2(x1, …, xn)
…
xn ! Fn(x1, …, xn)

can be solved similarly by observing that
x ! y ⇔ x = x $ y and rewriting the inequations.

28

Data-flow analysis

29

Data-flow analysis
overview

Data-flow analysis works on a control-flow graph
and a lattice L. The lattice can either be fixed for
all programs, or depend on the analysed one.

A variable vn ranging over the values of L is
attached to every node n of the CFG.

A set of (in)equations for these variables are then
extracted from the CFG – according to the
analysis being performed – and solved using the
fixed point technique.

30

Data-flow analysis
example: liveness

As we have seen, liveness is a property which can
be approximated using data-flow analysis.

The lattice to use in that case is L = { P(V), }
where V is the set of variables appearing in the
analysed program, and P is the power set
operator (set of all subsets).

⊆

31

Data-flow analysis
example: liveness

For a program containing three variables x, y and
z, the lattice for liveness is the following:

{}

{x} {y} {z}

{x,y} {x,z} {y,z}

{x,y,z}

32

Data-flow analysis
example: liveness

To every node n in the CFG, we attach a variable
vn giving the set of variables live before that node.

The value of that variable is given by:

vn = (vs1 & vs2 & … \ written(n)) & read(n)

where s1, s2, … are the successors of n, read(n) is
the set of program variables read by n, and
written(n) is the set of variables written by n.

33

CFG constraints solution

Data-flow analysis
example: liveness

x!read-int

y!read-int

if (x < y)

z!x z!y

print-int z

1

2

3

4 5

6

v1 = v2 \ { x }
v2 = v3 \ { y }
v3 = v4 ∪ v5 ∪ { x, y }

v4 = v6 ∪ { x } \ { z }

v5 = v6 ∪ { y } \ { z }

v6 = { z }

v1 = { }
v2 = { x }
v3 = { x, y }
v4 = { x }
v5 = { y }
v6 = { z }

34

Fixed point algorithm

Iteration x1 x2 x3 x4 x5 x6

0 {"} {"} {"} {"} {"} {"}

1 { } { } { x, y } { x } { y } { z }

2 { } { x"} { x, y } { x } { y } { z }

3 { } { x"} { x, y } { x } { y } { z }

To solve the data-flow constraints, we construct
the composite function F and compute its least
fixed point by iteration.

F(x1, x2, x3, x4, x5, x6) =
 (x2\{x}, x3\{y}, x4&x5&{x,y}, x6&{x}\{z}, x6&{y}\{z}, {z})

35

Work-list algorithm

Computing the fixed point by simple iteration as
we did works, but is wasteful as the information
for all nodes is re-computed at every iteration.

It is possible to do better by remembering, for
every variable v, the set dep(v) of the variables
whose value depends on the value of v itself.

Then, whenever the value of some variable v
changes, we only re-compute the value of the
variables which are in dep(v).

36

Work-list algorithm

x1 = x2 = … = xn = ⊥
q = [v1, …, vn]
while (q ! [])

assume q = [vi, …]
y = Fi (x1, …, xn)
q = q.tail
if (y ! xi)

for (v ∈ dep(vi))
if (v ∉ q) q.append(v)

xi = y

37

Work-list algorithm
liveness example

q x1 x2 x3 x4 x5 x6

[v1,v2,v3,v4,v5,v6] {} {} {} {} {} {}

[v2,v3,v4,v5,v6] {} {} {} {} {} {}

[v3,v4,v5,v6] {} {} {} {} {} {}

[v4,v5,v6,v2] {} {} {x,y} {} {} {}

[v5,v6,v2,v3] {} {} {x,y} {x} {} {}

[v6,v2,v3,v3] {} {} {x,y} {x} {y} {}

[v2,v3,v4,v5] {} {} {x,y} {x} {y} {z}

[v3,v4,v5,v1] {} {x} {x,y} {x} {y} {z}

[v4,v5,v1] {} {x} {x,y} {x} {y} {z}

[v5,v1] {} {x} {x,y} {x} {y} {z}

[v1] {} {x} {x,y} {x} {y} {z}

[] {} {x} {x,y} {x} {y} {z}

38

Work-list algorithm
improvements

In our liveness example, the work-list algorithm
would have terminated in only six iterations if the
initial queue had been reversed!

This is due to the fact that liveness analysis is a
backward analysis: the value of variable vn
depends on the successors of n. For such
analysis, it is better to organise the queue with
the latest nodes first.

39

Working with basic
blocks

Until now, we considered that the CFG nodes
were single instructions. In practice, basic blocks
tend to be used as nodes, to reduce the size of
the CFG.

When data-flow analysis is performed on a CFG
composed of basic blocks, a variable is attached
to every block, and not to every instruction.
Computing the result of the analysis for
individual instructions is however trivial.

40

CFG constraints solution

Working with basic
blocks: liveness example

x!read-int

y!read-int

if (x < y)

z!x z!y

print-int z

1

2 3

4

v1 = v2 ∪ v3 \ { x, y }

v2 = v4 ∪ { x } \ { z }

v3 = v4 ∪ { y } \ { z }

v4 = { z }

v1 = { }
v2 = { x }
v3 = { y }
v4 = { z }

41

Summary

Data-flow analysis is a framework which can be
used to compute approximations of various
properties about programs. This is done by
solving a set of equations with monotonous right-
hand sides, using the fixed point algorithm.

As a first example, we have examined the
computation of an approximation of liveness.
More examples will follow.

42

