
Data-flow analysis (II)
Michel Schinz

 (based on material by Michael Schwartzbach and Erik Stenman)
Advanced Compiler Construction / 2006-06-09

Data-flow analyses

We have already seen how to use the data-flow
analysis framework to compute an approximation
of liveness for each program point.

We will now explore other kinds of information
about programs which can be computed using
that framework.

Data-flow analysis
Available expressions

Available expressions

A non-trivial expression in a program is available
at some point if its value has already been
computed earlier.

Data-flow analysis can be used to approximate
the set of expressions available at all program
points. The result from that analysis can then be
used to eliminate common sub-expressions, for
example.

Available expressions
intuitions

We will compute the set of expressions available
after every node of the CFG.

Intuitively, an expression e is available after some
node n if it is available after all predecessors of n,
or if it is defined by n itself, and not killed by n.

A node n kills an expression e if it gives a new
value to a variable used by e. For example, the
assignment x←y kills all expressions which use
x, like x+1.

Available expressions
equations

To approximate available expressions, we attach
to every node n of the CFG a variable vn
containing the set of expressions available after it.

Then we derive constraints from the CFG nodes,
which have the form:

vn = (vp1 ∩ vp2 ∩ … \ kill(n)) ∪ gen(n)

where gen(n) is the set of expressions computed
by n, and kill(n) the set of expressions killed by n.

Available expressions
example

constraints

v1={a<b}
v2={a+b}∪(v1↓x)
v3={d+e}∪(v1↓x)
v4={x+1}∪(v2↓y)
v5={a+b}∪(v3↓y)
v6={a+b}∪(v4∩v5)↓z
v7={x+1}∪v5↓t

CFG

x←a+b

y←x+1 y←a+b

x←d+e

z←a+b

if a<b

t←x+1

1

2 3

4 5

6

7

solution

v1={a<b}
v2={a+b, a<b}
v3={d+e, a<b}
v4={x+1, a+b, a<b}
v5={a+b, d+e, a<b}
v6={a+b, a<b}
v7={x+1, a+b, a<b}

Notation:
S↓x = S \ all expressions using variable x.

vn=set of expressions live after node n.

Data-flow analysis
Very busy expressions

Very busy expressions

An expression is very busy at some program point
if it will definitely be evaluated before its value
changes.

Data-flow analysis can approximate the set of
very busy expressions for all program points. The
result of that analysis can then be used to perform
code hoisting: the computation of a very busy
expression e can be performed at the earliest
point where it is busy.

Very busy expressions
intuitions

We will compute the set of very busy expressions
before every node of the CFG.

Intuitively, an expression e is very busy before
node n if it is evaluated by n, or if it is very busy
in all successors of n, and it is not killed by n.

Very busy expressions
equations

To approximate very busy expressions, we attach
to node n of the CFG a variable vn containing the
set of expressions which are very busy before it.

Then we derive constraints from the CFG nodes,
which have the form:

vn = (vs1 ∩ vs2 ∩ … \ kill(n)) ∪ gen(n)

where gen(n) is the set of expressions computed
by n, and kill(n) the set of expressions killed by n.

Very busy expressions
example

CFG

y←a+b

x←1001

2

3

4

5

x←x-1

if x>0

print y

constraints

v1=v2↓x
v2={a+b}∪v3↓y
v3={x-1}∪v4↓x
v4={x>0}∪(v5∩v2)
v5={}

solution

v1={a+b}
v2={a+b,x-1}
v3={x-1}
v4={x>0}
v5={}

Notation:
S↓x = S \ all expressions using variable x.

vn=set of expressions very busy before node n.

Data-flow analysis
Reaching definitions

Reaching definitions

The reaching definitions for a program point are
the assignments that may have defined the values
of variables at that point.

Data-flow analysis can approximate the set of
reaching definitions for all program points. These
sets can then be used to perform constant
propagation, for example.

Reaching definitions
intuitions

We will compute the set of reaching definitions
after every node of the CFG. That set will be
represented as a set of CFG node identifiers.

Intuitively, the reaching definitions after a node n
are all the reaching definitions of the
predecessors of n, minus those which define a
variable defined by n itself, plus n itself.

Reaching definitions
equations (1)

To approximate reaching definitions, we attach to
node n of the CFG a variable vn containing the
set of definitions (CFG nodes) which can reach n.

For a node n which is not an assignment, the
reaching definitions are simply those of its
predecessors:

vn = (vp1 ∪ vp2 ∪ …)

Reaching definitions
equations (2)

For a node n which is an assignment, the
equation is more complicated:

vn = (vp1 ∪ vp2 ∪ …) \ kill(n) ∪ { n }

where kill(n) are the definitions killed by n, i.e.
those which define the same variable as n itself.

For example, a definition like x←y kills all
expressions of the form x←…

Reaching definitions
example

CFG

z←0

x←1001

2

3

4

5

z←z+3

x←x-1

if x>0

print z6

constraints
v1={1}
v2=v1↓z ∪ {2}
v3=(v2∪v5)↓z ∪ {3}
v4=v3↓x ∪ {4}
v5=v4
v6=v5

solution
v1={1}
v2={1,2}
v3={1,3,4}
v4={3,4}
v5={3,4}
v6={3,4}

Notation:
S↓x = S \ all nodes defining variable x.

vn=set of reaching definitions after node n.

Using the result of
data-flow analyses

Using data-flow analysis

Once a particular data-flow analysis has been
conducted, its result can be used to optimise the
analysed program.

We will quickly examine some transformations
which can be performed using the data-flow
analysis presented before.

Dead-code elimination

Useless assignments can be eliminated using
liveness analysis, as follows:

Whenever a CFG node n is of the form x←e,
and x is not live after n, then the assignment is
useless and node n can be removed.

Common sub-expression
elimination

Common sub-expressions can be eliminated
using availability information, as follows:

Whenever a CFG node n computes an
expression of the form x op y and x op y is
available before n, then the computation within
n can be replaced by a reference to the
previously-computed value.

Constant propagation

Constant propagation can be performed using the
result of reaching definitions analysis, as follows:

When a CFG node n uses a value x and the
only definition of x reaching n has the form
x←c where c is a constant, then the use of x
in n can be replaced by c.

Copy propagation

Copy propagation – very similar to constant
propagation – can be performed using the result
of reaching definitions analysis, as follows:

When a CFG node n uses a value x, and the
only definition of x reaching n has the form
x←y where y is a variable, and y is not
redefined on any path leading to n, then the
use of x in n can be replaced by y.

Register allocation

To assign machine registers to program variables,
liveness analysis is required.

We will explore register allocation in more
details later, but intuitively it should be clear that
a set of variables V={ v1, v2, …, vn } can be
allocated to a single machine register provided
that no two variables in V are live simultaneously.

Summary

Data-flow analysis is a framework that can be
used to approximate various properties about
programs.

We have seen how to use the data-flow analysis
framework to approximate liveness, available
expressions, very busy expressions and reaching
definitions. The result of those analysis can be
used to perform various optimisations like dead-
code elimination, constant propagation, etc.

