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Control flow of web 
applications



The adder application

The following Scheme program asks for two 
numbers, and display their sum – assuming the 
obvious definitions for prompt-int and 
display-int:

(let ((n1 (prompt-int "n1=")))
  (let ((n2 (prompt-int "n2=")))
    (display-int "n1+n2=" (+ n1 n2))))

Its control flow is completely obvious...

control 
flow



The adder Web 
application

Let’s assume we want to take our adder 
application and turn it into a Web application, 
with the requirement that every interaction 
happens on a separate page.

That is, we want to use a first Web page to ask for 
the first number, a second page to ask for the 
second number, and a third one to display their 
sum.



The adder Web 
application

If we suppose that we have the proper primitives 
at our disposal, this should be trivial:

(let ((n1 (web-prompt-int "n1=")))
  (let ((n2 (web-prompt-int "n2=")))
    (web-display-int "n1+n2=" (+ n1 n2))))

What about control flow?



Browser power

When interacting with a Web application, the 
user has some very powerful means to alter its 
flow of control:

• the back button can be used to revert to a 
previous state,

• bookmarks can be used to take a snapshot of 
the execution state,

• URL copying can be used to duplicate state.



Control flow comparison
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Dealing with complex 
control flow

Several solutions have been developed to deal 
with the unusual control flow of web programs:

• do nothing and let the programmer deal with 
the complexity – e.g. PHP,

• remove the power from the user by disabling 
both the back button and cloning – e.g. JWIG,

• use continuations to please the user and the 
programmer – e.g. recent Web frameworks.



Continuations



Suspended computations

In our adder application, each time some data 
has to be obtained from the user, the execution of 
the program is suspended, and resumed as soon 
as the user has submitted the data.

The power of the Web version of our application 
comes from the fact that those suspended 
computations are given a name: the URL 
associated with them! The user can therefore 
manipulate them at will.



Continuations

A continuation is a data structure representing a 
suspended computation.

The main operation which can be performed on a 
continuation is resuming – or throwing – it. When 
a continuation k is resumed, the current 
execution of the program is replaced by the 
execution of k’s computation.

A continuation describes how to continue a 
suspended computation, hence the name.



Current continuation

At any given point during the execution of a 
program, it is possible to talk about the current 
continuation. This continuation describes what 
still needs to be done in order to complete the 
running program.



Current continuation 
examples

Imagine that our adder application is used to sum 
15 and 17. How can the current continuation be 
described at various points of the execution?

ask for two 
numbers n1 and 
n2, print n1+n2

ask for one 
number n2, 
print 15+n2

print 32

ask for n1 ask for n2 print sum

n1=15 n2=17



Continuations and Web 
applications

In a Web application, execution is suspended 
each time a page is presented to the user. When 
the user proceeds – by clicking on a link or by 
submitting a form – execution is resumed.

In terms of continuations, this means that the 
current continuation is saved on the server 
whenever a page is displayed, and associated 
with a (unique) URL. That saved continuation is 
resumed later when the user requests its URL.



A low-level view of 
continuations

What information should a continuation contain?

All the information which belongs to an 
execution state: the contents of registers – 
including the program counter – and the whole 
stack.



Exposing continuations

How should continuations be exposed to the 
programmer?

In a functional language, it makes sense to 
represent continuations as functions. Invoking a 
continuation function resumes it.

This is how Scheme exposes continuations.



Continuations in 
Scheme



Continuations in Scheme

Scheme provides a primitive called call-with-
current-continuation – often abbreviated 
to call/cc – to obtain the current continuation.

This primitive expects a function as argument, 
and calls that function with the current 
continuation as argument.



Continuation examples

(call/cc (lambda (k) 10))
  ⇒ 10
(call/cc (lambda (k) (k 10)))
  ⇒ 10
(+ 1 (call/cc (lambda (k) (k 10) 20)))
  ⇒ 11
(call/cc (lambda (k) (k (k (k 20)))))
  ⇒ 20
(call/cc (lambda (k) (k (k 3) (k 4) (k 5))))
  ⇒ 3

current continuation



Continuation example
Exiting from a loop

(define contains-negative?
  (lambda (l)
    (call/cc
     (lambda (return)
       (for-each (lambda (e)
                   (if (< e 0)
                     (return #t)))
                 l)
       #f))))



Continuation example
Exceptions

(define average                                                                 
  (lambda (l throw)                                                             
    (if (null? l)                                                               
        (throw "empty list")                                                    
        (/ (fold + 0 l) (length l)))))
                                     
(define averages                                                                
  (lambda (ls)                                                                  
    (let ((res (call/cc                                                         
                (lambda (throw)                                                 
                  (map (lambda (l) (average l throw))
                       ls)))))                   
      (if (string? res)                                                         
          (error res)                                                           
          res))))



More advanced uses of 
continuations

Continuations are probably the most powerful 
control operator available in any language.

They can be – and are – used to implement 
exceptions and non-local returns as we have 
seen, but also threads, coroutines, C#-like 
iterators, etc. 



Continuation-passing 
style



Continuations “by hand”

What can we do if we want to use continuations 
but the language we use doesn’t offer them?

One idea is to transform the program to explicitly 
represent continuations using functions.

A program transformed so that continuations are 
represented as functions is said to be in 
continuation-passing style.



Continuation-passing 
style

More precisely, a program is said to be in 
continuation-passing style (CPS) if:

• all functions receive a continuation as an 
additional argument, and

• they invoke that continuation with their result 
instead of returning that result to the caller – 
i.e. no function ever returns.



CPS example

To illustrate CPS, we will use the following 
simplified variant of our adder program:

(print-int (+ (read-int) (read-int)))

To transform this program to CPS, we need to use 
functions to represent the current continuation at 
all possible points of its execution: just after 
reading the first integer, after reading the second, 
etc.



CPS example

(print-int (+ (read-int) (read-int)))

(read-int/cps
 (lambda (n1)
   (read-int/cps
    (lambda (n2)
      (+/cps n1 n2
             (lambda (sum)
               (print-int sum)))))))

C
PSCPS version of 

read-int

CPS 
version of +



Primordial continuation

In the CPS version of our example, we cheated by 
using the normal version of print-int. 
Rigourously, we should have used the CPS 
version. But what continuation should it get?

More generally, what is the primordial 
continuation, i.e. the continuation of a complete 
program? A function halting execution is a good 
choice – we assume a $halt primitive:

(lambda (res) ($halt))



Defining call/cc

Once the program is in CPS, one important 
question remains: how can call/cc be defined?

The goal of call/cc is to reify the current 
continuation by making it available as a standard 
(CPS) function. That function, when applied to an 
argument x, should invoke the continuation 
which was current at the time when call/cc 
was invoked – passing it x – and ignoring the 
current continuation.



Defining call/cc

The definition of call/cc is:

(define call/cc
  (lambda (f k)
    (f (lambda (res ignored-k) (k res))
       k)))

Notice how the reified continuation ignores the 
current continuation (ignored-k) and uses the 
captured one (k) instead.

reified 
continuation



CPS and tail calls

One important property of CPS is that all calls are 
tail calls.

Consequently, if tail calls are “optimised” by the 
compiler, then a program in CPS uses no stack!

There is no miracle, though: instead of existing as 
a data-structure managed by the run time system, 
the stack is represented by the heap-allocated 
closure(s) forming the current continuation.



CPS conversion for 
minischeme



CPS conversion

As we have seen, we can obtain continuations by 
transforming the program to CPS, and providing 
an implementation of call/cc.

Doing this transformation by hand is tiresome 
and error-prone, the compiler should do it for us!

This is the idea of CPS conversion, which will be 
presented here as a function K mapping 
minischeme terms to equivalent terms in CPS.



Simplified minischeme

To simplify the presentation, we will define CPS 
conversion for a restricted version of minischeme:

• the bodies of let and lambda expressions 
are composed of a single expression,

• functions always take exactly one argument, 
and let binds exactly one value.

Removing those restrictions is relatively easy, and 
left as an exercise.



Conversion outline

The basic idea of CPS conversion is to translate 
terms to functions which expect a continuation 
and invoke that continuation with the value of 
the term.

Therefore, all terms are translated to an 
expression with the following structure:

  (λ (k) some expression using k)

lambda



CPS for minischeme

K[v] =
  (λ (k) (k v))

K[(if c t e)] =
  (λ (k) (K[c] (λ (cv) (if cv (K[t] k) (K[e] k)))))

K[(λ (x) b)] =
  (λ (k) (k (λ (x k2) (K[b] k2))))

K[(f x)] =
  (λ (k)
    (K[f] (λ (fv) (K[x] (λ (xv) (fv xv k))))))



CPS for minischeme

K[(let ((v e)) b)] =
  K[((λ (v) b) e)]

K[($+ x y)] =
  (λ (k)
    (K[x] (λ (xv) (K[y] (λ (yv) ($+ xv yv))))))

Other primitives are translated like $+

let is simply 
“desugared”



Example translation

(lambda (k1)
   ((lambda (k2) (k2 print-int/cps))
    (lambda (fv1)
      ((lambda (k3)
         ((lambda (k4)
            ((lambda (k5)
               (k5 read-int/cps))
             (lambda (fv2) (fv2 k4))))
          (lambda (xv1)
           ((lambda (k6)
              ((lambda (k7) (k7 read-int/cps))
               (lambda (fv3) (fv3 k6))))
            (lambda (yv) (k3 ($+ xv1 yv)))))))
       (lambda (xv2) (fv1 xv2 k1))))))

(print-int ($+ (read-int) (read-int)))

K

much more 
complicated but 

equivalent to what 
we would obtain 

by hand



Improving the translation

The previous examples make it clear that the 
translation we defined generates much more 
complex code than the one we obtained by hand 
earlier.

Other, more complicated translations to CPS can 
be defined in order to produce simpler code. We 
will not explore them here, however.



Summary

Continuations are the “ultimate” control operator. 
They can be used to implement many powerful 
concepts like threads, exceptions, etc.

Continuations can either be implemented in the 
virtual machine – basically by copying the stack – 
or by a transformation of the program to 
continuation-passing style, done by the compiler.

One important characteristic of CPS is that all 
calls are tail calls.


