
Functional languages
Part III – continuations

Michel Schinz
Advanced Compiler Construction / 2006-05-05

Control flow of web
applications

The adder application

The following Scheme program asks for two
numbers, and display their sum – assuming the
obvious definitions for prompt-int and
display-int:

(let ((n1 (prompt-int "n1=")))
 (let ((n2 (prompt-int "n2=")))
 (display-int "n1+n2=" (+ n1 n2))))

Its control flow is completely obvious...

control
flow

The adder Web
application

Let’s assume we want to take our adder
application and turn it into a Web application,
with the requirement that every interaction
happens on a separate page.

That is, we want to use a first Web page to ask for
the first number, a second page to ask for the
second number, and a third one to display their
sum.

The adder Web
application

If we suppose that we have the proper primitives
at our disposal, this should be trivial:

(let ((n1 (web-prompt-int "n1=")))
 (let ((n2 (web-prompt-int "n2=")))
 (web-display-int "n1+n2=" (+ n1 n2))))

What about control flow?

Browser power

When interacting with a Web application, the
user has some very powerful means to alter its
flow of control:

• the back button can be used to revert to a
previous state,

• bookmarks can be used to take a snapshot of
the execution state,

• URL copying can be used to duplicate state.

Control flow comparison

read n1

read n2

print n1+n2

Normal application Web application

read n1

read n2

print n1+n2

read n2

print n1+n2

duplicate

b
ac

k

bookmark

Dealing with complex
control flow

Several solutions have been developed to deal
with the unusual control flow of web programs:

• do nothing and let the programmer deal with
the complexity – e.g. PHP,

• remove the power from the user by disabling
both the back button and cloning – e.g. JWIG,

• use continuations to please the user and the
programmer – e.g. recent Web frameworks.

Continuations

Suspended computations

In our adder application, each time some data
has to be obtained from the user, the execution of
the program is suspended, and resumed as soon
as the user has submitted the data.

The power of the Web version of our application
comes from the fact that those suspended
computations are given a name: the URL
associated with them! The user can therefore
manipulate them at will.

Continuations

A continuation is a data structure representing a
suspended computation.

The main operation which can be performed on a
continuation is resuming – or throwing – it. When
a continuation k is resumed, the current
execution of the program is replaced by the
execution of k’s computation.

A continuation describes how to continue a
suspended computation, hence the name.

Current continuation

At any given point during the execution of a
program, it is possible to talk about the current
continuation. This continuation describes what
still needs to be done in order to complete the
running program.

Current continuation
examples

Imagine that our adder application is used to sum
15 and 17. How can the current continuation be
described at various points of the execution?

ask for two
numbers n1 and
n2, print n1+n2

ask for one
number n2,
print 15+n2

print 32

ask for n1 ask for n2 print sum

n1=15 n2=17

Continuations and Web
applications

In a Web application, execution is suspended
each time a page is presented to the user. When
the user proceeds – by clicking on a link or by
submitting a form – execution is resumed.

In terms of continuations, this means that the
current continuation is saved on the server
whenever a page is displayed, and associated
with a (unique) URL. That saved continuation is
resumed later when the user requests its URL.

A low-level view of
continuations

What information should a continuation contain?

All the information which belongs to an
execution state: the contents of registers –
including the program counter – and the whole
stack.

Exposing continuations

How should continuations be exposed to the
programmer?

In a functional language, it makes sense to
represent continuations as functions. Invoking a
continuation function resumes it.

This is how Scheme exposes continuations.

Continuations in
Scheme

Continuations in Scheme

Scheme provides a primitive called call-with-
current-continuation – often abbreviated
to call/cc – to obtain the current continuation.

This primitive expects a function as argument,
and calls that function with the current
continuation as argument.

Continuation examples

(call/cc (lambda (k) 10))
 ⇒ 10
(call/cc (lambda (k) (k 10)))
 ⇒ 10
(+ 1 (call/cc (lambda (k) (k 10) 20)))
 ⇒ 11
(call/cc (lambda (k) (k (k (k 20)))))
 ⇒ 20
(call/cc (lambda (k) (k (k 3) (k 4) (k 5))))
 ⇒ 3

current continuation

Continuation example
Exiting from a loop

(define contains-negative?
 (lambda (l)
 (call/cc
 (lambda (return)
 (for-each (lambda (e)
 (if (< e 0)
 (return #t)))
 l)
 #f))))

Continuation example
Exceptions

(define average
 (lambda (l throw)
 (if (null? l)
 (throw "empty list")
 (/ (fold + 0 l) (length l)))))

(define averages
 (lambda (ls)
 (let ((res (call/cc
 (lambda (throw)
 (map (lambda (l) (average l throw))
 ls)))))
 (if (string? res)
 (error res)
 res))))

More advanced uses of
continuations

Continuations are probably the most powerful
control operator available in any language.

They can be – and are – used to implement
exceptions and non-local returns as we have
seen, but also threads, coroutines, C#-like
iterators, etc.

Continuation-passing
style

Continuations “by hand”

What can we do if we want to use continuations
but the language we use doesn’t offer them?

One idea is to transform the program to explicitly
represent continuations using functions.

A program transformed so that continuations are
represented as functions is said to be in
continuation-passing style.

Continuation-passing
style

More precisely, a program is said to be in
continuation-passing style (CPS) if:

• all functions receive a continuation as an
additional argument, and

• they invoke that continuation with their result
instead of returning that result to the caller –
i.e. no function ever returns.

CPS example

To illustrate CPS, we will use the following
simplified variant of our adder program:

(print-int (+ (read-int) (read-int)))

To transform this program to CPS, we need to use
functions to represent the current continuation at
all possible points of its execution: just after
reading the first integer, after reading the second,
etc.

CPS example

(print-int (+ (read-int) (read-int)))

(read-int/cps
 (lambda (n1)
 (read-int/cps
 (lambda (n2)
 (+/cps n1 n2
 (lambda (sum)
 (print-int sum)))))))

C
PSCPS version of

read-int

CPS
version of +

Primordial continuation

In the CPS version of our example, we cheated by
using the normal version of print-int.
Rigourously, we should have used the CPS
version. But what continuation should it get?

More generally, what is the primordial
continuation, i.e. the continuation of a complete
program? A function halting execution is a good
choice – we assume a $halt primitive:

(lambda (res) ($halt))

Defining call/cc

Once the program is in CPS, one important
question remains: how can call/cc be defined?

The goal of call/cc is to reify the current
continuation by making it available as a standard
(CPS) function. That function, when applied to an
argument x, should invoke the continuation
which was current at the time when call/cc
was invoked – passing it x – and ignoring the
current continuation.

Defining call/cc

The definition of call/cc is:

(define call/cc
 (lambda (f k)
 (f (lambda (res ignored-k) (k res))
 k)))

Notice how the reified continuation ignores the
current continuation (ignored-k) and uses the
captured one (k) instead.

reified
continuation

CPS and tail calls

One important property of CPS is that all calls are
tail calls.

Consequently, if tail calls are “optimised” by the
compiler, then a program in CPS uses no stack!

There is no miracle, though: instead of existing as
a data-structure managed by the run time system,
the stack is represented by the heap-allocated
closure(s) forming the current continuation.

CPS conversion for
minischeme

CPS conversion

As we have seen, we can obtain continuations by
transforming the program to CPS, and providing
an implementation of call/cc.

Doing this transformation by hand is tiresome
and error-prone, the compiler should do it for us!

This is the idea of CPS conversion, which will be
presented here as a function K mapping
minischeme terms to equivalent terms in CPS.

Simplified minischeme

To simplify the presentation, we will define CPS
conversion for a restricted version of minischeme:

• the bodies of let and lambda expressions
are composed of a single expression,

• functions always take exactly one argument,
and let binds exactly one value.

Removing those restrictions is relatively easy, and
left as an exercise.

Conversion outline

The basic idea of CPS conversion is to translate
terms to functions which expect a continuation
and invoke that continuation with the value of
the term.

Therefore, all terms are translated to an
expression with the following structure:

 (λ (k) some expression using k)

lambda

CPS for minischeme

K[v] =
 (λ (k) (k v))

K[(if c t e)] =
 (λ (k) (K[c] (λ (cv) (if cv (K[t] k) (K[e] k)))))

K[(λ (x) b)] =
 (λ (k) (k (λ (x k2) (K[b] k2))))

K[(f x)] =
 (λ (k)
 (K[f] (λ (fv) (K[x] (λ (xv) (fv xv k))))))

CPS for minischeme

K[(let ((v e)) b)] =
 K[((λ (v) b) e)]

K[($+ x y)] =
 (λ (k)
 (K[x] (λ (xv) (K[y] (λ (yv) ($+ xv yv))))))

Other primitives are translated like $+

let is simply
“desugared”

Example translation

(lambda (k1)
 ((lambda (k2) (k2 print-int/cps))
 (lambda (fv1)
 ((lambda (k3)
 ((lambda (k4)
 ((lambda (k5)
 (k5 read-int/cps))
 (lambda (fv2) (fv2 k4))))
 (lambda (xv1)
 ((lambda (k6)
 ((lambda (k7) (k7 read-int/cps))
 (lambda (fv3) (fv3 k6))))
 (lambda (yv) (k3 ($+ xv1 yv)))))))
 (lambda (xv2) (fv1 xv2 k1))))))

(print-int ($+ (read-int) (read-int)))

K

much more
complicated but

equivalent to what
we would obtain

by hand

Improving the translation

The previous examples make it clear that the
translation we defined generates much more
complex code than the one we obtained by hand
earlier.

Other, more complicated translations to CPS can
be defined in order to produce simpler code. We
will not explore them here, however.

Summary

Continuations are the “ultimate” control operator.
They can be used to implement many powerful
concepts like threads, exceptions, etc.

Continuations can either be implemented in the
virtual machine – basically by copying the stack –
or by a transformation of the program to
continuation-passing style, done by the compiler.

One important characteristic of CPS is that all
calls are tail calls.

