
Functional languages
Part I – functions

Michel Schinz (parts based on slides by Xavier Leroy)
Advanced Compiler Construction / 2006-04-28

Higher-order
functions

Higher-order function

A higher-order function (HOF) is a function
which either:

• takes another function as argument, or

• returns a function.

Many languages offer higher-order functions, but
not all provide the same power...

HOFs in C

In C, it is possible to pass a function as an
argument, and to return a function as a result.

However, C functions cannot be nested: they
must all appear at the top level. This severely
restricts their usefulness, but greatly simplifies
their implementation – they can be represented
as simple code pointers.

HOFs in functional
languages

In functional languages – Scala, Scheme, OCaml,
etc. – functions can be nested, and they can
survive the scope which defined them.

This is very powerful as it permits the definition
of functions which return “new” functions – e.g.
function composition.

However, as we will see, it also complicates the
representation of functions, as simple code
pointers are no longer sufficient.

HOF example

To illustrate the issues related to the
representation of functions in a functional
language, we will use the following example:

(define make-adder
 (lambda (x)
 (lambda (y) (+ x y))))

(define increment (make-adder 1))
(increment 41) ⇒ 42
(define decrement (make-adder -1))
(decrement 42) ⇒ 41

Representing adder
functions

To represent the functions returned by calls to
make-adder, we basically have two choices:

• keep the code pointer representation for
functions – but that implies runtime code
generation!

• find another representation for functions,
which does not depend on runtime code
generation.

Closures

Closures

To adequately represent the function returned by
make-adder, its code pointer must be
augmented with the value of x.

Such a combination of a code pointer and an
environment giving the values of the free
variables – here x – is called a closure.

The name refers to the fact that the pair (code
pointer, environment) is self-contained.

Closures

code environment

(make-adder 10)

10(lambda (y)
 (+ x y))

closure

The code of the closure must be evaluated
in its environment, so that x is “known”.

x

Closure introduction

Using closures instead of function pointers to
represent functions changes the way they are
manipulated at run time:

• function abstraction builds and returns a
closure instead of a simple code pointer,

• function application passes the environment
as an additional argument when calling the
code pointer.

Closure representation

During function application, nothing is known
about the closure being called – it can be any
closure in the program.

The code pointer must therefore be at a known
and constant location so that it can be extracted.

The contents of the environment, however, is not
used during application itself: it will only be
accessed by the function body. This provides
some liberty to represent it.

Flat representation

code

10

(make-adder 10)

(lambda (y)
 (+ x y))

flat – or one-
block – closure

In flat closures, the environment is “inlined” in
the closure itself, instead of being referred from it.
The closure plays the role of the environment.

x

Recursive functions need access to their own
closure. For example:

(define f
 (lambda (l) ... (map f l) ...))

How is this implemented?

Recursive closures

Recursive closures

Recursive closures can be implemented in several
ways:

• the closure – here f – can be treated as a free
variable, and put in its own environment –
leading to a cyclic closure,

• the closure can be rebuilt from scratch,

• with flat closures, the environment is the
closure, and can be reused directly.

Mutually-recursive
closures

Mutually-recursive functions all need access to
the closures of all the functions in the definition.

For example:

(letrec ((f (lambda (l) …(compose f g)…))
 (g (lambda (l) …(compose g f)…)))
 …)

Solutions: either use cyclic closures, or a single
shared one with interior pointers.

Mutually-recursive
closures

code ptr. f

v1

v2

v3

cyclic closures

code ptr. g

w1

w2

closure for f closure for g

shared closure

code ptr. f

code ptr. g

v1

v2

v3

w1

w2

closure for f

closure for g

Translating closures

Closure conversion

In a compiler, closures can be implemented by a
simplification phase, called closure conversion.

Closure conversion transforms a program in
which functions can be nested and have free
variables into an equivalent one containing only
top-level – and hence closed – functions.

The output of closure conversion is therefore a
program in which functions can be represented
as code pointers!

The two aspects of
closure conversion

Closure conversion can be split in two phases:

• the closing of functions, through the
introduction of environments,

• the hoisting of nested, closed functions to the
top level.

We will examine them later, but we first need to
define the concept of free variable.

Free variables

The free variables of a function are the variables
which are used but not defined in that function –
i.e. they are defined in some enclosing scope.

Notice that this concept is relative: in a correct
program, all variables are defined somewhere, so
they are never free in an absolute sense, but only
with respect to some context.

Global variables are never considered to be free,
since they are available everywhere.

Free variables example

Our adder example contains two functions,
corresponding to the two occurrences of the
lambda keyword:

(define make-adder
 (lambda (x)
 (lambda (y) (+ x y))))

The outer one does not have any free variable – it
is a closed function, like all top-level functions –
while the inner one has a single free variable: x.

Closing functions

Functions are closed by adding a parameter
representing the environment, and using it in the
function’s body to access free variables.

Function abstraction and application must of
course be adapted to create and pass that
environment: abstraction must create and
initialise the closure and its environment, while
application must extract the environment and
pass it as an additional parameter.

Closing example
(define make-adder
 (lambda (x)
 (lambda (y) (+ x y))))

(define make-adder
 (let ((closure0 ($alloc 1)))
 ($set closure0 0
 (lambda (env0 x)
 (let ((closure1 ($alloc 2)))
 ($set closure1 0
 (lambda (env1 y) (+ ($get env1 1) y)))
 ($set closure1 1 x)
 closure1)))
 closure0))

closure for
make-adder

closure for
anonymous adder

Hoisting functions

Once they are closed, nested anonymous
functions can be easily be hoisted to the top level
and given an arbitrary name.

The original occurrence of the nested function is
simply replaced by that name.

After hoisting, all functions appearing in the
program are at the top-level, and are of course
closed. Therefore, they can be represented by
simple code pointers, as in C.

Hoisting example
(define make-adder
 (let ((closure0 ($alloc 1)))
 ($set closure0 0
 (lambda (env0 x)
 (let ((closure1 ($alloc 2)))
 ($set closure1 0
 (lambda (env1 y) (+ ($get env1 1) y)))
 ($set closure1 1 x)
 closure1)))
 closure0))

(define lambda0 (lambda (env0 x)
 (let ((closure1 ($alloc 2)))
 ($set closure1 0 lambda1)
 ($set closure1 1 x)
 closure1)))
(define lambda1 (lambda (env1 y) (+ ($get env1 1) y)))
(define make-adder (let ((closure0 ($alloc 1)))
 ($set closure0 0 lambda0)
 closure0))

Closure conversion for
minischeme

Closure conversion for
minischeme

As we have seen, closure conversion can be
performed by first closing functions, and then
hoisting nested functions to the top level.

We will look in detail at the closing part for
minischeme, which we will specify as a function
C mapping potentially-open terms to closed ones.

For that, we first need to define a function F
mapping a term to the set of its free variables.

Free variables for
minischeme

F[(define name value)] = ∅
F[(lambda (v1 ...) body1 ...)] =
 (F[body1] ∪ F[body2] ∪ ...) \ { v1, ... }

F[(let ((v1 e1) ...) body1 ...)] =
 (F[e1] ∪ ... ∪ F[body1] ∪ ...) \ { v1, ... }

F[(if e1 e2 e3)] = F[e1] ∪ F[e2] ∪ F[e3]

F[(e1 e2 ...)] = F[e1] ∪ F[e2] ∪ ...

F[v] = { v } if v is local, and ∅ if v is global.

Closing minischeme
functions (1)

Closing minischeme constructs which do not deal
with functions or variables is trivial:

C[(define name value)] =
 (define name C[value])

C[(let ((v1 e1) ...) body1 ...)] =
 (let ((v1 C[e1]) ...) C[body1] ...)

C[(if e1 e2 e3)] = (if C[e1] C[e2] C[e3])

Closing minischeme
functions (2)

Abstraction and application are more interesting:

C[(lambda (v1 ...) body1 ...)] =
 (let ((closure ($alloc |F[body1 ...]| + 1)))
 ($set closure 0
 (lambda (env v1 ...) C[body1] ...))
 ($set closure 1 F[body1 ...]@1)
 ...
 closure)

C[(e1 e2 ...)] =
 (let ((closure C[e1]))
 (($get closure 0) closure C[e2] ...))

Closing minischeme
functions (3)

Finally, the translation of variables must distinguish three
cases:

C[v] = v
 if v is not a free variable,

C[v] = ($get env i)
 if v is a free variable stored at index i in the environment,

C[v] = closure
 if v refers to the closure being defined.

Hoisting for minischeme

Hoisting consists in lifting closed nested functions
to the top-level, naming them in the process.

Like closing, hoisting can be specified as a
function, say H, mapping a term which
potentially contains nested functions, to a new
version of that term without nested functions –
plus a list of additional definitions.

The definition of that function is left as an
exercise.

Closures and objects

Closures and objects

There is a strong similarity between closures and
objects: closures can be seen as objects with a
single method – containing the code of the
closure – and a set of fields – the environment.

In Java, the ability to define nested classes can be
used to simulate closures, but the syntax is too
heavyweight to be used often.

In Scala, a special syntax exists for anonymous
functions, which are translated to nested classes.

Closures in Scala (1)

To see how closures are handled in Scala, we will
look at how the compiler translates the Scala
equivalent of the make-adder function:

def makeAdder(x: Int): Int=>Int =
 { y: Int => x+y }
val increment = makeAdder(1)
increment(41)

Closures in Scala (2)

In a first phase, the anonymous function is turned
into an anonymous class of type Function1 –
the type of functions with one argument. This
class is equipped with a single apply method.

def makeAdder(x: Int): Function1[Int,Int]=
 new Function1[Int,Int] {
 def apply(y: Int): Int = x+y
 }
val increment = makeAdder(1)
increment.apply(41)

Closures in Scala (3)

In a second phase, the anonymous class is
named.

def makeAdder(x: Int):Function1[Int,Int]={
 class Anon extends Object
 with Function1[Int,Int] {
 def apply(y: Int): Int = x+y
 }
 new Anon
}
val increment = makeAdder(1)
increment.apply(41)

Closures in Scala (4)

In a third phase, the Anon class is closed and
hoisted to the top level.

class Anon(x:Int) extends Object
 with Function1[Int,Int{
 def apply(y: Int): Int = x+y
}
def makeAdder(x: Int):Function1[Int,Int]={
 new Anon(x)
}
val increment = makeAdder(1)
increment.apply(41)

Closures in Scala (5)

Finally, the constructor of Anon is made explicit.

class Anon extends Object
 with Function1[Int,Int] {
 private var x: Int = _;
 def this(x0: Int) { this.x = x0 }
 def apply(y: Int): Int = x+y
}
def makeAdder(x: Int):Function1[Int,Int]={
 new Anon(x)
}
val increment = makeAdder(1)
increment.apply(41)

Summary

In C, all functions have to be at the top level, and
can therefore be represented as code pointers.

Functional languages allow functions to be
nested and to survive the scope which created
them. They have to be represented by a closure,
which pairs a code pointer with an environment,
giving the values of the code’s free variables.

Closures can be implemented by a program
transformation called closure conversion.

