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Higher-order 
functions



Higher-order function

A higher-order function (HOF) is a function 
which either:

• takes another function as argument, or

• returns a function.

Many languages offer higher-order functions, but 
not all provide the same power...



HOFs in C

In C, it is possible to pass a function as an 
argument, and to return a function as a result.

However, C functions cannot be nested: they 
must all appear at the top level. This severely 
restricts their usefulness, but greatly simplifies 
their implementation – they can be represented 
as simple code pointers.



HOFs in functional 
languages

In functional languages – Scala, Scheme, OCaml, 
etc. – functions can be nested, and they can 
survive the scope which defined them.

This is very powerful as it permits the definition 
of functions which return “new” functions – e.g. 
function composition.

However, as we will see, it also complicates the 
representation of functions, as simple code 
pointers are no longer sufficient.



HOF example

To illustrate the issues related to the 
representation of functions in a functional 
language, we will use the following example:

(define make-adder
  (lambda (x)
    (lambda (y) (+ x y))))

(define increment (make-adder 1))
(increment 41) ⇒ 42
(define decrement (make-adder -1))
(decrement 42) ⇒ 41



Representing adder 
functions

To represent the functions returned by calls to 
make-adder, we basically have two choices:

• keep the code pointer representation for 
functions – but that implies runtime code 
generation!

• find another representation for functions, 
which does not depend on runtime code 
generation.



Closures



Closures

To adequately represent the function returned by 
make-adder, its code pointer must be 
augmented with the value of x.

Such a combination of a code pointer and an 
environment giving the values of the free 
variables – here x – is called a closure.

The name refers to the fact that the pair (code 
pointer, environment) is self-contained.



Closures

code environment

(make-adder 10)

10(lambda (y)
  (+ x y))

closure

The code of the closure must be evaluated 
in its environment, so that x is “known”.

x



Closure introduction

Using closures instead of function pointers to 
represent functions changes the way they are 
manipulated at run time:

• function abstraction builds and returns a 
closure instead of a simple code pointer,

• function application passes the environment 
as an additional argument when calling the 
code pointer.



Closure representation

During function application, nothing is known 
about the closure being called – it can be any 
closure in the program.

The code pointer must therefore be at a known 
and constant location so that it can be extracted.

The contents of the environment, however, is not 
used during application itself: it will only be 
accessed by the function body. This provides 
some liberty to represent it.



Flat representation

code

10

(make-adder 10)

(lambda (y)
  (+ x y))

flat – or one-
block – closure

In flat closures, the environment is “inlined” in 
the closure itself, instead of being referred from it. 
The closure plays the role of the environment.

x



Recursive functions need access to their own 
closure. For example:

(define f
  (lambda (l) ... (map f l) ...))

How is this implemented?

Recursive closures



Recursive closures

Recursive closures can be implemented in several 
ways:

• the closure – here f – can be treated as a free 
variable, and put in its own environment – 
leading to a cyclic closure,

• the closure can be rebuilt from scratch,

• with flat closures, the environment is the 
closure, and can be reused directly.



Mutually-recursive 
closures

Mutually-recursive functions all need access to 
the closures of all the functions in the definition.

For example:

(letrec ((f (lambda (l) …(compose f g)…))
         (g (lambda (l) …(compose g f)…)))
  …)

Solutions: either use cyclic closures, or a single 
shared one with interior pointers.



Mutually-recursive 
closures

code ptr. f

v1

v2

v3

cyclic closures

code ptr. g

w1

w2

closure for f closure for g

shared closure

code ptr. f

code ptr. g

v1

v2

v3

w1

w2

closure for f

closure for g



Translating closures



Closure conversion

In a compiler, closures can be implemented by a 
simplification phase, called closure conversion.

Closure conversion transforms a program in 
which functions can be nested and have free 
variables into an equivalent one containing only 
top-level – and hence closed – functions.

The output of closure conversion is therefore a 
program in which functions can be represented 
as code pointers!



The two aspects of 
closure conversion

Closure conversion can be split in two phases:

• the closing of functions, through the 
introduction of environments,

• the hoisting of nested, closed functions to the 
top level.

We will examine them later, but we first need to 
define the concept of free variable.



Free variables

The free variables of a function are the variables 
which are used but not defined in that function – 
i.e. they are defined in some enclosing scope.

Notice that this concept is relative: in a correct 
program, all variables are defined somewhere, so 
they are never free in an absolute sense, but only 
with respect to some context.

Global variables are never considered to be free, 
since they are available everywhere.



Free variables example

Our adder example contains two functions, 
corresponding to the two occurrences of the 
lambda keyword:

(define make-adder
  (lambda (x)
    (lambda (y) (+ x y))))

The outer one does not have any free variable – it 
is a closed function, like all top-level functions – 
while the inner one has a single free variable: x.



Closing functions

Functions are closed by adding a parameter 
representing the environment, and using it in the 
function’s body to access free variables.

Function abstraction and application must of 
course be adapted to create and pass that 
environment: abstraction must create and 
initialise the closure and its environment, while 
application must extract the environment and 
pass it as an additional parameter.



Closing example
(define make-adder
  (lambda (x)
    (lambda (y) (+ x y))))

(define make-adder
  (let ((closure0 ($alloc 1)))
    ($set closure0 0
          (lambda (env0 x)
            (let ((closure1 ($alloc 2)))
              ($set closure1 0
                    (lambda (env1 y) (+ ($get env1 1) y)))
              ($set closure1 1 x)
              closure1)))
     closure0))

closure for 
make-adder

closure for 
anonymous adder



Hoisting functions

Once they are closed, nested anonymous 
functions can be easily be hoisted to the top level  
and given an arbitrary name.

The original occurrence of the nested function is 
simply replaced by that name.

After hoisting, all functions appearing in the 
program are at the top-level, and are of course 
closed. Therefore, they can be represented by 
simple code pointers, as in C.



Hoisting example
(define make-adder
  (let ((closure0 ($alloc 1)))
    ($set closure0 0
          (lambda (env0 x)
            (let ((closure1 ($alloc 2)))
              ($set closure1 0
                    (lambda (env1 y) (+ ($get env1 1) y)))
              ($set closure1 1 x)
              closure1)))
     closure0))

(define lambda0 (lambda (env0 x)
                  (let ((closure1 ($alloc 2)))
                    ($set closure1 0 lambda1)
                    ($set closure1 1 x)
                    closure1)))
(define lambda1 (lambda (env1 y) (+ ($get env1 1) y)))
(define make-adder (let ((closure0 ($alloc 1)))
                     ($set closure0 0 lambda0)
                     closure0))



Closure conversion for 
minischeme



Closure conversion for 
minischeme

As we have seen, closure conversion can be 
performed by first closing functions, and then 
hoisting nested functions to the top level.

We will look in detail at the closing part for 
minischeme, which we will specify as a function 
C mapping potentially-open terms to closed ones.

For that, we first need to define a function F 
mapping a term to the set of its free variables.



Free variables for 
minischeme

F[(define name value)] = ∅
F[(lambda (v1 ...) body1 ...)] =
  (F[body1] ∪ F[body2] ∪ ...) \ { v1, ... }

F[(let ((v1 e1) ...) body1 ...)] =
  (F[e1] ∪ ... ∪ F[body1] ∪ ...) \ { v1, ... }

F[(if e1 e2 e3)] = F[e1] ∪ F[e2] ∪ F[e3]

F[(e1 e2 ...)] = F[e1] ∪ F[e2] ∪ ...

F[v] = { v } if v is local, and ∅ if v is global.



Closing minischeme 
functions (1)

Closing minischeme constructs which do not deal 
with functions or variables is trivial:

C[(define name value)] =
  (define name C[value])

C[(let ((v1 e1) ...) body1 ...)] =
  (let ((v1 C[e1]) ...) C[body1] ...)

C[(if e1 e2 e3)] = (if C[e1] C[e2] C[e3])



Closing minischeme 
functions (2)

Abstraction and application are more interesting:

C[(lambda (v1 ...) body1 ...)] =
  (let ((closure ($alloc |F[body1 ...]| + 1)))
    ($set closure 0
          (lambda (env v1 ...) C[body1] ...))
    ($set closure 1 F[body1 ...]@1)
    ...
    closure)

C[(e1 e2 ...)] =
  (let ((closure C[e1]))
    (($get closure 0) closure C[e2] ...))



Closing minischeme 
functions (3)

Finally, the translation of variables must distinguish three 
cases:

C[v] = v
  if v is not a free variable,

C[v] = ($get env i)
  if v is a free variable stored at index i in the environment,

C[v] = closure
  if v refers to the closure being defined.



Hoisting for minischeme

Hoisting consists in lifting closed nested functions 
to the top-level, naming them in the process.

Like closing, hoisting can be specified as a 
function, say H, mapping a term which 
potentially contains nested functions, to a new 
version of that term without nested functions – 
plus a list of additional definitions.

The definition of that function is left as an 
exercise.



Closures and objects



Closures and objects

There is a strong similarity between closures and 
objects: closures can be seen as objects with a 
single method – containing the code of the 
closure – and a set of fields – the environment.

In Java, the ability to define nested classes can be 
used to simulate closures, but the syntax is too 
heavyweight to be used often.

In Scala, a special syntax exists for anonymous 
functions, which are translated to nested classes.



Closures in Scala (1)

To see how closures are handled in Scala, we will 
look at how the compiler translates the Scala 
equivalent of the make-adder function:

def makeAdder(x: Int): Int=>Int =
  { y: Int => x+y }
val increment = makeAdder(1)
increment(41)



Closures in Scala (2)

In a first phase, the anonymous function is turned 
into an anonymous class of type Function1 – 
the type of functions with one argument. This 
class is equipped with a single apply method.

def makeAdder(x: Int): Function1[Int,Int]=
  new Function1[Int,Int] {
    def apply(y: Int): Int = x+y
  }
val increment = makeAdder(1)
increment.apply(41)



Closures in Scala (3)

In a second phase, the anonymous class is 
named.

def makeAdder(x: Int):Function1[Int,Int]={
  class Anon extends Object
             with Function1[Int,Int] {
    def apply(y: Int): Int = x+y
  }
  new Anon
}
val increment = makeAdder(1)
increment.apply(41)



Closures in Scala (4)

In a third phase, the Anon class is closed and 
hoisted to the top level.

class Anon(x:Int) extends Object
                   with Function1[Int,Int{
  def apply(y: Int): Int = x+y
}
def makeAdder(x: Int):Function1[Int,Int]={
  new Anon(x)
}
val increment = makeAdder(1)
increment.apply(41)



Closures in Scala (5)

Finally, the constructor of Anon is made explicit.

class Anon extends Object
           with Function1[Int,Int] {
  private var x: Int = _;
  def this(x0: Int) { this.x = x0 }
  def apply(y: Int): Int = x+y
}
def makeAdder(x: Int):Function1[Int,Int]={
  new Anon(x)
}
val increment = makeAdder(1)
increment.apply(41)



Summary

In C, all functions have to be at the top level, and 
can therefore be represented as code pointers.

Functional languages allow functions to be 
nested and to survive the scope which created 
them. They have to be represented by a closure, 
which pairs a code pointer with an environment, 
giving the values of the code’s free variables.

Closures can be implemented by a program 
transformation called closure conversion.


