
Advanced compilation course

Michael Desboeufs
Samuel Mercier

Abstract :

The present report describes the implementations of a copying garbage collector and the super
instructions in our minivm (a virtual machine for minisc, a subset of the scheme language). Both
subjects are treated separately. First, a little description is given. Then, the implementation and its
problems are described.

Precise garbage Collector (phase 1) :

This project is composed of two parts. To adapt the code to make it “precise” and to implement a
garbage collector who use copying technique. To render the code precise, we use the tagging, which
consists in differentiating pointer from other elements at running time.

GC precise (tagging)

In a first phase, in the Loader, when I parse the code to put it in memory, I test the data in the case of a
LINT, LOAD, STOR. If I find in the last argument an integer, I will tag it by left shifting it of 1, and if
it is a label I shift it to left of 1 and add 1.

The tagging choice was done as this (the + 1 for pointers), because it avoids to correct most of the
operations later. The assumption that the last (most significant bit) of a pointer is always 0 has been
made.

Now in the interpreter loop, I test at beginning the PC (R[31]) to see if it is not an integer and if it is a
correct pointer. In different cases of the switch, I test if the values are pointers or integers and returns
an error in some cases where it should be an integer instead of pointer (or the opposite). I reinforced the
tests on the pointer with the help of our tagging.

The main macros like TAG, TAG_INT, IS_PTR are defined in vm.h.

The first idea was to do it in scala, but it was not a good way to do it. Since the addresses are defined
only at the time of the loading, the best way I think was to do it at that moment. The second difficulty
was to test the code to be sure I had correctly done the tagging.

Copying GC

At first, it seemed simple to code the GC copying, but the management of the pointers when copying
from “from space” to “to space”, was more complicated than we had anticipated. Therefore, for the
algorithm, we used the Cheney’s algorithm.

Therefore, I scan from the registers, the pointers who point on the heap. Then I move the corresponding
blocks to the “to space” and the pointers from the registers are updated to the new blocks. Then all the
pointers to the heap are tested in each block and then they are updated and the new blocks found are
moved too.

In case, not enough space is freed then the program exits.

It was hard to test my algorithm with the current mode interactive, so I modified it to have a better view
of it.

Conclusion

The garbage collector works greatly. In the example of “hello”, we need about 500 bytes of head with it
and about 1600 bytes without it. As expected, the mark and sweep gc requires less heap than the
copying one.

Super instructions :

The core of a virtual machine can be seen as a c switch statement nested in a for loop :

normal mode, main loop and control flow of a SUB instruction followed by an AdD instruction.

In such machines if the instructions are simple the overhead caused by the jumps of the switch and
continue statements can dramatically slow down the execution. This overhead can be reduced using
threaded mode :

threaded mode, main loop and control flow of a SUB instruction followed by an ADD instruction.

for(; ;)
switch(opcode) 1, 4
{
case OP_ADD:

// code for add 5
continue; 6

case OP_SUB:
// code for sub 2
continue; 3

...
}

OP_ADD:
// code for add 3
goto *pc++; 4

OP_SUB:
// code for sub 1
goto *pc++; 2

...

In such mode the opcode is replaced by a pointer to the code of the instruction and the continue
statement by a jump to the next opcode. Note that the compiler used to compile the vm must be able to
generate “labels as pointers”.
Now if an instruction (let say OP_SUB) is always followed an other instruction (let say OP_ADD) then the
native code of both instructions can be coalesced, thus removing the jump between them, and the
opcode of the OP_SUB instruction (in fact, pointer to the OP_SUB instruction) can be replaced by a
pointer to the newly created super-instruction OP_SUBADD. This process is known as code inlining :

super instruction, code inlining

The idea is now to identify all basic blocks and replace each of them by a single super-instruction.

Implementation :

the first thing to do is to generate the inlinable code for the instructions. This has been implemented in
the init_vm() function of the vm. A label has been inserted at the beginning and the end of each
instructions :

excerpt of the init_vm() function.

Note that :
1. the same code is also used for the threaded mode and that the goto statement is not part of the

instruction.
2. The temporary variables a, b and c used to store the operands have been made static, because

the instructions are called from outside the init_vm() function and its frame is not active at
this time.

3. Function calls are made through pointers, because calls are implemented using a relative offset
on some architecture.

OP_ADDSUB:
// code for sub
// code for add
goto *pc++

INS_UNKN:
pprintf("ins_unkn : pc=%i", R[31]);
pexit_vm();

INS_UNKN_END:
INS_LINT:

pdecode_args(R[31], OP_LINT, &a, &b, &c);
R[31]+=4;
R[a]=*(unsigned int *)R[31];
R[31]+=4;

INS_LINT_END:
goto **((void**)R[31])++;

INS_ADD:
pdecode_args(R[31], OP_ADD, &a, &b, &c);
R[31]+=4;

 R[a] = R[b] + R[c];
INS_ADD_END:

goto **((void**)R[31])++;

Labels must then be stored in a table :

creation of the table of labels

Instructions can now be copied using a memcpy(), the length being the difference between the end and
the beginning of the instruction :

memcpy(buffer, labels_[opcode], labels_end[opcode]-labels_[opcode]);

The next step is to inline basic blocks. But first we need to identify them. This can be easily done as
split points are located at labels and jumps and of course, at the beginning and the end of the program.
Note that a basic block needs at least one instruction. Therefore, no basic block is created between two
labels if there is no instruction between them.

Identification of the basic blocks

in our vm jumps are implemented using the conditional move CMOV instruction modifying the register
R31 (in fact any instructions using R31 as destination operand can be seen as a jump, but the minisc
compiler does not use this feature).

Now, two dependent steps must be done : generating the code executed by the vm and the one executed
by the computer. The parser/align_loader have been modified for that. The idea is to write the
address of the block allocated for super-instruction followed by the opcodes of all instructions in the
basic block as code for the vm, and to copy the native code of each instruction in the block of the
super-instruction. Of course, a jump to the next instruction of the vm must be appended at the end of
each super-instruction.

/* creates the table for threaded mode. */
labels_[0]=&&INS_UNKN;
labels_[OP_LINT]=&&INS_LINT;
labels_[OP_ADD]=&&INS_ADD;
...

/* creates the table for super instructions. */
labels_end[0]=&&INS_UNKN_END;
labels_end[OP_LINT]=&&INS_LINT_END;
labels_end[OP_ADD]=&&INS_ADD_END;
...
jump=&&INS_JUMP;
jump_end=&&INS_JUMP_END;

split point, beginning of a basic block
// initialization code.

split point, end of a basic block.
Loop:

split point, beginning of a basic block.
...
// conditional jump to end.

split point, end of a basic block.
split point, beginning of a basic block.

// jump to loop.
split point, end of a basic block.

End:
split point, beginning of a basic block.

// termination code.
split point, end of a basic block.

However, this technique does not work and is not practical for some reasons :
1. the size of a basic block is not known as we parse the input file from top to bottom. Therefore,

writing directly the address of the block as opcode is not a good idea because a call to
realloc() can move the block.

2. Blocks allocated by malloc()/realloc() are not executable.
3. Allocation of a single block using mmap() works fine, but more causes the vm to crash.

Therefore another technique has been used.
1. A single block is allocated for all the super instructions : it is dynamically reallocated whenever

it becomes too small. The opcode is now the offset in this block (the block can move but the
offset will always be the same) and the address of all opcodes are stored in a table in order to be
patched.

2. Once the program has been parsed a single call to mmap() to allocate an executable block is
issued and the content of the block is copied.

3. All the opcode are patched : the address of the block returned by mmap() is simply added.

This concludes our implementation.

Discussion

● The implementation has been tested with some programs and seems to work fine on
ICBC07PCxx (it has not crashed). More tests should be done in order to be sure it is really
stable. The program crashed on IN3SUNxx. It seems that the block returned by the mmap()
function is not executable. A newer version has been tested but it does not compile anymore
because some variables are defined somewhere else in the libraries. We did not have time to
investigate more.

● No benchmark has been run to check the execution speed. However minisc issues a lot of ALOC
instructions to create the activation frame for the functions. In our opinion, if the heap becomes
depleted the gain of speed is overwhelmed by the time spent in the garbage collector. The
compiler should be rewritten in order to use a stack to store the activation frames of the
functions.

