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Abstract :

The  present  report  describes  the  implementations  of  a  copying  garbage  collector  and  the  super 
instructions in our minivm (a virtual  machine for minisc,  a subset of the scheme language).  Both 
subjects are treated separately.  First,  a little description is given.  Then, the implementation and its 
problems are described.

Precise garbage Collector (phase 1) :

This project is composed of two parts. To adapt the code to make it “precise” and to implement a 
garbage collector who use copying technique. To render the code precise, we use the tagging, which 
consists in differentiating pointer from other elements at running time.

GC precise (tagging)

In a first phase, in the Loader, when I parse the code to put it in memory, I test the data in the case of a  
LINT, LOAD, STOR. If I find in the last argument an integer, I will tag it by left shifting it of 1, and if 
it is a label I shift it to left of 1 and add 1.

The tagging choice was done as this (the + 1 for pointers), because it avoids to correct most of the 
operations later. The assumption that the last (most significant bit) of a pointer is always 0 has been 
made.

Now in the interpreter loop, I test at beginning the PC (R[31]) to see if it is not an integer and if it is a 
correct pointer. In different cases of the switch, I test if the values are pointers or integers and returns 
an error in some cases where it should be an integer instead of pointer (or the opposite). I reinforced the 
tests on the pointer with the help of our tagging.

The main macros like TAG, TAG_INT, IS_PTR are defined in vm.h.

The first idea was to do it in scala, but it was not a good way to do it. Since the addresses are defined 
only at the time of the loading, the best way I think was to do it at that moment. The second difficulty 
was to test the code to be sure I had correctly done the tagging.



Copying GC

At first, it seemed simple to code the GC copying, but the management of the pointers when copying 
from “from space” to “to space”, was more complicated than we had anticipated. Therefore, for the 
algorithm, we used the Cheney’s algorithm.

Therefore, I scan from the registers, the pointers who point on the heap. Then I move the corresponding 
blocks to the “to space” and the pointers from the registers are updated to the new blocks. Then all the 
pointers to the heap are tested in each block and then they are updated and the new blocks found are 
moved too.

In case, not enough space is freed then the program exits.

It was hard to test my algorithm with the current mode interactive, so I modified it to have a better view 
of it.

Conclusion

The garbage collector works greatly. In the example of “hello”, we need about 500 bytes of head with it 
and about 1600 bytes without it.  As expected,  the mark and sweep gc requires less heap than the 
copying one.

Super instructions :

The core of a virtual machine can be seen as a c switch statement nested in a for loop :

normal mode, main loop and control flow of a SUB instruction followed by an AdD instruction.

In such machines if the instructions are simple the overhead caused by the jumps of the switch and 
continue statements can dramatically slow down the execution. This overhead can be reduced using 
threaded mode :

threaded mode, main loop and control flow of a SUB instruction followed by an ADD instruction.

for(; ; )
switch(opcode) 1, 4
{
case OP_ADD:

// code for add 5
continue; 6

case OP_SUB:
// code for sub 2
continue; 3

...
}

OP_ADD:
// code for add 3
goto *pc++; 4

OP_SUB:
// code for sub 1
goto *pc++; 2

...



In such mode the opcode is replaced by a pointer to the code of the instruction and the continue 
statement by a jump to the next opcode. Note that the compiler used to compile the vm must be able to 
generate “labels as pointers”.
Now if an instruction (let say OP_SUB) is always followed an other instruction (let say OP_ADD) then the 
native code of both instructions can be coalesced, thus removing the jump between them, and the 
opcode of the  OP_SUB instruction (in fact,  pointer to the  OP_SUB instruction) can be replaced by a 
pointer to the newly created super-instruction OP_SUBADD. This process is known as code inlining :

super instruction, code inlining

The idea is now to identify all basic blocks and replace each of them by a single super-instruction.

Implementation :

the first thing to do is to generate the inlinable code for the instructions. This has been implemented in 
the  init_vm() function of the vm. A label has been inserted at the beginning and the end of each 
instructions :

excerpt of the init_vm() function.

Note that :
1. the same code is also used for the threaded mode and that the goto statement is not part of the 

instruction.
2. The temporary variables a, b and c used to store the operands have been made static, because 

the instructions are called from outside the  init_vm() function and its frame is not active at 
this time.

3. Function calls are made through pointers, because calls are implemented using a relative offset 
on some architecture.

OP_ADDSUB:
// code for sub
// code for add
goto *pc++

INS_UNKN:
pprintf("ins_unkn : pc=%i", R[31]);
pexit_vm();

INS_UNKN_END:
INS_LINT:

pdecode_args(R[31], OP_LINT, &a, &b, &c);
R[31]+=4;
R[a]=*(unsigned int *)R[31];
R[31]+=4;

INS_LINT_END:
goto **((void**)R[31])++;

INS_ADD:
pdecode_args(R[31], OP_ADD, &a, &b, &c);
R[31]+=4;

    R[a] = R[b] + R[c];
INS_ADD_END:

goto **((void**)R[31])++;



Labels must then be stored in a table :

creation of the table of labels

Instructions can now be copied using a memcpy(), the length being the difference between the end and 
the beginning of the instruction :

memcpy(buffer, labels_[opcode], labels_end[opcode]-labels_[opcode]);

The next step is to inline basic blocks. But first we need to identify them. This can be easily done as 
split points are located at labels and jumps and of course, at the beginning and the end of the program. 
Note that a basic block needs at least one instruction. Therefore, no basic block is created between two 
labels if there is no instruction between them.

Identification of the basic blocks

in our vm jumps are implemented using the conditional move CMOV instruction modifying the register 
R31 (in fact any instructions using R31 as destination operand can be seen as a jump, but the minisc 
compiler does not use this feature).

Now, two dependent steps must be done : generating the code executed by the vm and the one executed 
by the computer. The  parser/align_loader have been modified for that. The idea is to write the 
address of the block allocated for super-instruction followed by the opcodes of all instructions in the 
basic block as code for the vm, and to copy the native code of each instruction in the block of the 
super-instruction. Of course, a jump to the next instruction of the vm must be appended at the end of 
each super-instruction.

/* creates the table for threaded mode. */
labels_[0]=&&INS_UNKN;
labels_[OP_LINT]=&&INS_LINT;
labels_[OP_ADD]=&&INS_ADD;
...

/* creates the table for super instructions. */
labels_end[0]=&&INS_UNKN_END;
labels_end[OP_LINT]=&&INS_LINT_END;
labels_end[OP_ADD]=&&INS_ADD_END;
...
jump=&&INS_JUMP;
jump_end=&&INS_JUMP_END;

split point, beginning of a basic block
// initialization code.

split point, end of a basic block.
Loop:

split point, beginning of a basic block.
...
// conditional jump to end.

split point, end of a basic block.
split point, beginning of a basic block.

// jump to loop.
split point, end of a basic block.

End:
split point, beginning of a basic block.

// termination code.
split point, end of a basic block.



However, this technique does not work and is not practical for some reasons :
1. the size of a basic block is not known as we parse the input file from top to bottom. Therefore, 

writing  directly  the  address  of  the  block  as  opcode  is  not  a  good  idea  because  a  call  to 
realloc() can move the block.

2. Blocks allocated by malloc()/realloc() are not executable.
3. Allocation of a single block using mmap() works fine, but more causes the vm to crash.

Therefore another technique has been used.
1. A single block is allocated for all the super instructions : it is dynamically reallocated whenever 

it becomes too small. The opcode is now the offset in this block (the block can move but the 
offset will always be the same) and the address of all opcodes are stored in a table in order to be 
patched.

2. Once the program has been parsed a single call to  mmap() to allocate an executable block is 
issued and the content of the block is copied.

3. All the opcode are patched : the address of the block returned by mmap() is simply added.

This concludes our implementation.

Discussion

● The  implementation  has  been  tested  with  some  programs  and  seems  to  work  fine  on 
ICBC07PCxx (it has not crashed). More tests should be done in order to be sure it is really 
stable. The program crashed on IN3SUNxx. It seems that the block returned by the  mmap() 
function is not executable. A newer version has been tested but it does not compile anymore 
because some variables are defined somewhere else in the libraries. We did not have time to 
investigate more.

● No benchmark has been run to check the execution speed. However minisc issues a lot of ALOC 
instructions to create the activation frame for the functions. In our opinion, if the heap becomes 
depleted the gain of speed is  overwhelmed by the time spent in the garbage collector. The 
compiler  should  be  rewritten  in  order  to  use  a  stack  to  store  the  activation  frames  of  the 
functions.


