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Inlining
Implementation

Inlining has been implemented as an additional (early) step of the 
compiler. Inlining takes place just after the name analysis, and thus 
before closure conversion for example. Inlining has been implemented 
as a visitor in the Inliner object. The Inliner take the current tree and 
produces an inlined version of it. 

Analysis

Here, the analysis must only identify the function that should be inlined 
and keep their respective body. We decide to inline all top level 
functions, except the recursive ones. The analysis is thus very simple: 
parse the tree and at each function definition test if its body contains a 
recursive call; if not, add its body to the inlineableFunctions  HashMap. 
This HashMap is indexed by the symbol of the function name.

Modification of the tree

The inline per se is relatively simple. Whenever a function call is encoun‐
tered and this function is in inlineableFunctions, then beta-reduce the 
function using the arguments. The beta-reduction must also be done 
when a lambda  is immediately called. This is done by the two inline 
methods

The beta reduction is done in two phases. The two beta-reduce methods 
act as a frontend, handling general beta-reduction calls. Then, the 
do_beta_reduction  actually perform the tree modification as long as the 
necessary alpha-renaming.

The beta-reduce methods handle the treatment of the function parame‐
ters: if the parameter is a simple identifier or number, it can simply be 
replaced in the body; if the parameter is an expression, it must be de‐
fined in a let which will enclose the body of the inlined function.

The do_beta_reduction methods have two goals: replace the parameters 
by their values and alpha-rename the symbols created in the body of the 
function being inlined. The values of the parameters are passed as 
arguments. Whenever a let or a lambda is encountered, new symbols 
must be created firstly to avoid conflicts and secondly to ensure symbol 



unicity when inlining several times a function. Then, the only remaining 
thing to do is to replace an identifier by its value if it's a parameter or by a 
new symbol if needed.

Problems encountered

We encountered three main problems while implementing inlining. First, 
we hadn't created new symbols for lambda  parameters in do_beta_re‐
duction before figuring out that this created duplicated symbols on some 
cases. This occurs when a function defining a lambda is inlined several 
times. Then, we lost some time due to the inversion of the parameters 
identifiers while creating the new symbols which obviously leaded to 
wrong results at run time.

We then have a problem with the values of the parameters passed to the 
body of the function to be inline. If a let is necessary when the body has 
several statements, some expressions simply crashed when directly 
inlined in the function body. This was particulary the case when inlining 
cons  in the %scale-bignum  method of bignums. To address this, we 
decided to define each expression passed as parameter in an enclosing 
let. This is done in the beta-reduce method.

When checking the validity of the inlining, we discovered that immediate 
lambda calls where not handle correctly when inlining was turned off. So 
we have to change the way the environment was passed in the closure 
converter to address this specific case.

Precise copying garbage collector 
Tagging scheme

In the compiler

In order to make the pointer distinguishable from integers, we have 
decided to use the tagging scheme 2n+1 for every integer present in 
memory. The changes to the compiler have all been done in the file 
Generator.scala. This solution prevents further optimizations as it directly 
produces the compiled code.

This implies:
- All integers n loaded with LINT are in the form 2n+1.
- All arithmetic and logical primitives have been updated to take into 
account the modification of their operands.
- The space allocation parts (global variable space, stack frame and local 
variables space of functions) also use the tagging scheme.



Modifications performed to the primitives:
case "$+": 2(n+m) + 1 = (2n+1 + 2m+1) - 1
case "$-": 2(n-m) + 1 = (2n+1 - 2m+1) + 1
case "$*": 2(n*m) + 1 = (2n * 2m)/2 + 1
case "$/": 2(n/m) + 1 = 2(2n / 2m) + 1
case "$%": as x%y = x - x*(x/y) 

we have: 2x % 2y = 2x - 2x*(2x/2y) = 2(x - x*(x/y)) = 2(x%y)
As the logical primitives work with 0 and 1, which are 
integers, the result of the comparison has to be tagged:

case "$=": result is stored as 2(x=y) + 1
case "$<": result is stored as 2(x<y) + 1
case "$<=": result is stored as 2(x<=y) + 1

In the virtual machine

- All I/O instructions have been modified so that they add the tagging 
scheme to incoming integers and characters and remove the tagging 
before the output.
- The ALOC instruction now has to remove the tagging scheme before 
performing the memory allocation.

We have define two macro in memory.h in order to factories the tagging 
modifications in the vm:
#define REMOVE_INT_TAGGING(num)      \

((num)-1)/2
#define PUT_INT_TAGGING(num) \

((num)*2)+1

The macro IS_HEAP_POINTER of the Mark & Sweep GC has been 
adapted to take advantage of the tagging scheme. By doing so we allow 
the Mark & Sweep GC to perform better with the tagged "binaries".
#define IS_HEAP_POINTER(addr, mem_start, mem_end) \
(((addr) << 31 == 0) && ((mem_start) <= (char*)(addr)) && 
((char*)(addr) < (mem_end)))

Copying Garbage Collector Implementation

When an allocation request comes, we allocate memory only if there is 
enough place to hold the new free header in the resulting heap space. 
This removes the need of a special case for the allocation of the last 
block of the heap memory.

We have implemented the Cheney's copying GC algorithm. First of all we 
copy the blocks referenced by pointers in registers. Then we scan the 
blocks moved to the to-space in order to find pointers to block that have 
to be copied to the to-space. This ends when all blocks have been 
scanned i.e. the scan pointer reaches the free pointer.



In order to store the forwarding pointer we used an additional field in the 
block header named moved_to. This field exist in all block in the heap, 
even in the free one.

As the scanning of the memory is not aware of the headers, the size field 
should not be identified as a pointer. This is avoided by the use of the 
tagging scheme.

When the garbage collecting is executed before a block has been fully 
filled by the program, we will scan old memory elements which potential‐
ly contain no more valid pointers. To address this problem, we clear the 
old memory space at the end of the garbage collecting.

Performances

We have run some tests to measure the improvement of the copying GC 
over the mark & sweep GC.

The tests have been run on a PowerBook G4 1.67Ghz 1Go Ram. All tests 
were made using the minimum amount of heap necessary to end and the 
log level set to 2.

Bignums for 100:
Copying: 0.325s with a heap of 17000
M&S: 0.636s with a heap of 27000

Bignums for 200:
Copying: 0.813s with a heap of 32000
M&S: 3.653s with a heap of 55000

Bignums for 300:
Copying: 1.707s with a heap of 46000
M&S: 15.829s with a heap of 85000


