
1 COPYING GC 1.2 Memory initialization

Advanced Project

Advanced Compiler Construction

Martin Eker̊a
martin.ekera@epfl.ch

076-200 11 83

Magnus Sköld
magnus.skold@epfl.ch

078-748 56 49

June 26, 2006

1 Copying GC

In order to improve the speed of memory allocation
and garbage collection, we implemented a precise
copying GC to replace the mark and sweep GC. In
our implementation, we have used Cheney’s algo-
rithm which is non-recursive.

1.1 Pointer tagging

Since the copying GC is precise, it needs to be able
to distingush between pointers and non-pointers.
To accomplish this, it is necessary to modify both
the VM and the compiler.

Since pointers are always multiples of 4, and thus
never odd, we implement a simple tagging scheme
in the compiler such that the integer literal n is
written as 2n + 1 = T (n), ensuring that its repre-
sentation is always odd and we use the last bit to
distinguish between pointers and integer literals.

T (n) = (n << 1) + 1 T−1(n) = (n >> 1)

Furthermore, in the VM, the tagging scheme
must be respected whenever aritmetric operations
or input/output operations are performed; thus, al-
most all primitve operations need be modified and
the VM will no longer be compatible with previous
code output by older versions of the compiler.

For some of these operations, it is simple to main-
tain the tagging scheme, e.g. for the addition oper-
ations which becomes x + y → x + y− 1. For more
advanced operations, such as the modulus opera-
tion, we will have to shift n to the right, perform the
operation and then re-tag the result value, which
incurs a non-negligible overhead on the VM.

1.2 Memory initialization

The heap was divided into two spaces; FROM space
and TO space. We adopted the convention that
FROM space is the half of memory to which the
next free pointer points, thus eliminating the
need of introducing more variables.

1.3 Memory allocation

If the next free pointer points to the first half of
the heap, then we allocate blocks in the heap until
we reach the middle. Otherwise, we allocate blocks
until we reach the end of the heap. To allocate a
block of size n > 0 bytes, we allocate L(n) bytes,
where

L(n) =
{

4 + n if n mod 4 = 0
8 + n− (n mod 4) otherwise

and use the first 4 bytes to store the length of the
block in tagged format, i.e. if the length in bytes is
l we store T (l) in the first block.

If the current layout of the FROM space does not
permit an allocation of L(n) bytes, garbage collec-
tion is initialized, see section 1.4, and the allocation
reattempted. Should the allocation still fail, an er-
ror message is printed and the VM is terminated.

1.4 Garbage collection

Using the method described earlier, see 1.2, we first
determine which part of the heap is FROM space and
which part is TO space. We initialize the nf and
scan pointers to point to the first block in TO space.

Next, we iterate over all registers except
(R0 which is identically 0, R28 also known as

June 26, 2006 Lausanne, Switzerland | 1

2 JIT COMPILATION

the LK register and R31 which contains the code
pointer). If a register does not contain a pointer, it
is ignored.

Otherwise, we subtract the pointer by 4 and fol-
low the pointer to the length field of the allocated
block. Next, we check if the value in the length
field is even or odd.

If it is even, then the block has already been
copied and the length field contains its new address
in TO space. We then update the value of the reg-
ister and proceed with the next register.

Otherwise, we move the block to the position de-
noted by nf in TO, the value of the length field of
the block in TO space is set to nf, and then nf is
advanced by the size of the block. We update the
value of the register to hold the address to the block
in TO space.

After having examined a register, we let the scan
pointer sweep from its current position up to nf.
For each 4 byte block examined that is a pointer
we repeat the process described previously, i.e. if
the block referred to has not already been copied,
it is copied. Then, we update the pointer exam-
ined so that it points to the block’s new address in
TO space.

Finally, when all register have been processed,
we let next free = nf and return.

1.5 Problems

In general, we experienced few problems with the
implementation of the algorithm, but the potential
of a small errors raging havoc is quite large, con-
sidering that even a small error that manages to
sneak into the code has the potential of generating
completely unexpected behaviour.

One problem is that if the user performs pointer
arithmetrics (which is possible using the addition
or subtraction, for example) so that the pointer no
longer points to the beginning of a block but still
remains inside it, then the GC could cause unex-
pected behaviour and/or crash the program.

Our implementation of the mark and sweep
garbage collector does support such pointers - at
least to a limited extent - but we have decided not
to support this kind of pointers for the copying GC
due to extra overhead that such support would in-
troduce.

2 JIT compilation

In order to make the JIT compiler compatible with
the copying GC, we decided to let it operate on as-
sembler code with tagged integer literals. The JIT
compilation was implemented by leveraging func-
tionality from the GNU Lightning library.

To activate JIT compilation, the flag -b must
be specified on the command line when executing
minivm. This flag is incompatible with the flags -t
indicating threaded mode, for obvious reasons, and
-i since we do not support disassembling in JIT
mode.

When JIT compilation has been activated, ini-
tialization of the VM proceeds as normal, with the
exception of label conversion, see 2.1 and entry into
the main execution loop, see section 2.2.

2.1 Labels

To support CMOV-style jump instructions, we intro-
duced two new opcodes: LLAB for loading labels
and ANCH for anchoring labels. Next, we modified
alignloader.c and parser.c amongst other files
to load the miniscm assembler into memory whilst
effecuating the following transformation on-the-fly

LINT R1 label LLAB R1 label
LINT R2 20 LINT R2 20
CMOV R31 R1 R0 CMOV R31 R1 R0
HALT → HALT

label: ANCH label
PINT R2 LINT R1 label
CMOV R31 R2 R0 CMOV R31 R2 R0

after which the label label is translated to an
ASM code PC, in this case 24.

2.2 Initialization

Instead of calling exec() or t exec() when the
initialization of the VM is complete, the function
init JIT() is called. It initializes a code buffer
of size sizeof(jit insn) * code size bytes that
will hold the JIT-compiled representation of the
program. Futhermore, it defines a new function
prog() that will represent the entire program, once
JIT compilation is complete.

The user of the VM must define a large enough
code size using command line arguments. It is quite

2 Advanced Compiler Construction,, JUNE 26, 2006

2 JIT COMPILATION 2.6 Label patching

difficult to calculate how large a code size will be
required; a single ASM instruction often require
a number of JIT instructions to be emitted. A
conservative approximation could be made, or one
could set out with a small code size and expand it
progressively; however, we have not implemented
such functionality.

Instead, before processing an instruction, we ver-
ify that there is enough room for at least 25 primi-
tive function to be output. According to the GNU
Lightning manual, 4096 bytes sufficient for between
100 and 400 instructions. Therefore we require that
1024 bytes of space is available before processing
the next instruction. If there is less space avail-
able, we print an error message and exit the VM
gracefully.

2.3 Conversion ASM → JIT

Next, we let R[31] iterate over the entire program,
translating each opcode into corresponding GNU
lightning JIT instructions. Almost all functions
need deal with integer literals, which are tagged,
and thus must maintain the tagging scheme. This
introduces some overhead in the program, as many
shift instructions are emitted to handle tagging.

The code conversion is straightforward, with the
exception of the LLAB, ANCH and CMOV instructions,
and instructions which need call other methods
such as ALOC or PINT.

2.4 The LLAB instruction

When an LLAB instruction is read, we check if the
label referred to has been used previously by look-
ing up the label PC in a special hashtable. If it
was not previously used, we add a record in the
hashtable for the label, storing its ASM PC in the
hashtable.

Next, we emit a MOVI JIT instruction, moving
the current code PC as given by jit forward()
into register R1, and we store a pointer to this JIT
instruction in the label’s record in the hashtable.

2.5 The ANCH instruction

When an LLAB instruction is read, we check if the
label used has been used previously by looking up
the label PC in a special hashtable. If it was not
previously used, we add a record in the hashtable

for the label, storing its PC in the JIT code, as
given by (jit.x.pc).

2.6 Label patching

Once the entire program has been processed,
we iterate over all labels contained in the label
hashtable. For each label, we iterate over the list of
MOVI instructions having it as target. All of these
JIT MOVI instructions are then patched, making
them move the JIT code PC to which to jump into
the register instead of the their own PC (as they
were originally setup to do).

2.7 The CMOV instruction

Moving a value from some register into register
R31 is the standard method of performing jumps
in the ASM code. We need to handle this case
separately, and translate it into a jit jmpr() in-
struction. Given the instruction

CMOV R[a] R[b] R[c]

then if R[c] = 0 and if a = 31, we simply jump
to the value of R[a]. This register will contain the
JIT PC of the jump’s target instruction (grâce à
label patching, see 2.6). The translation to JIT
code when a 6= 31 is obvious.

N.B. We have decided not to update R31 when a
jump operation takes place, since the R31 register
no longer corresponds to the ASM PC. We could
update it after the evaluation, so that it always
corresponds to the JIT PC, but this would incurr
performance penalties. Instead, R31 is a register
like any other, execept that one can not perform a
”traditional” CMOV operation with R31 as target.

This restriction should not pose any problems, as
R31 is only used for CMOV-style jumps at present.

2.8 DIV, MOD and division by zero

The instructions DIV and MOD test if the denomi-
nator is zero and if so prints an error message and
exits the VM gracefully.

2.9 Instructions that call functions

Instructions such as ALOC, PINT, etc. which
call other function are implemented using the

June 26, 2006 Lausanne, Switzerland | 3

2 JIT COMPILATION 2.13 PPC G4

jit prepare(), jit pusharg() and jit finish()
instructions provided by GNU Lightning.

2.10 Executing the JIT code

Once the entire program has been JIT compiled,
we perform label patching as described in 2.6, flush
the code buffer, call prog() and cross our fingers.

2.11 Problems

The implementation of the JIT compiler resulted
in a considerable increase in our caffeine consump-
tion, as minute code errors were given gigantesque
proportions and often ended up crashing the VM.
Furthermore, the GNU Lightning library is slightly
unstable, and its documentation could well do with
some revisions. Nevertheless, we had fun writing
the JIT and taking on the challenges that it laid
out for us.

2.12 Possible Improvements

We currently exclusively use registers in the R vec-
tor. Performance could be improved by moving a
few frequently used registers such as R0 and R28
into JIT registers. We have not had the time to im-
plement this feature, although it should be rather
easy.

Currently, we do not support logging in the VM,
but this could be done easily; if the log level is set
to debug, we would simply call the write log()
function with the appropriate arguments after the
execution of each instruction.

Furthermore, the disassembler does not function
in conjunction with the JIT compiler. It is pos-
sible to write a disassembler ”hook” for the JIT
compiler, but we have not had time to support dis-
assembling.

The instructions LOAD and STOR do not check if
the address is a code pointer or a heap pointer. We
have not had the time to implement this feature,
although it should be rather easy. It should be
pointed out however, that such a check would incur
a penalty on the VM’s performance.

As was mentioned above, register R31 is not up-
dated after the evaluation of each instruction to re-
flect the ASM or JIT PCs. We have decided against
this because of the overhead it incurs, see section
2.7.

Another strange problem that we experienced
was that the VM crashed in JIT mode every time
it called an external function that printed a charac-
ter string followed by a single line break character
"\n" (ASCII code 10).

We tried a number of different approaches in our
attempts to correct the error. It is possible that
the flush operation that is performed when "\n" is
written to the output stream is responsible for the
VM crashing, but if so we did not manage to find
out exactly why.

Finally, we resorted to printing "\n \b", i.e. we
terminated the string with a space and a backspace
character, which is ugly but the VM behaves reli-
ably.

2.13 PPC G4

We developed the JIT compiler on a PowerBook G4
and have not had time to test the compiler under
Intel or SPARC processors.

4 Advanced Compiler Construction,, JUNE 26, 2006

