
Advanced Compiler Construction:
Advanced Project

Cédric Luthi
cedric.luthi@epfl.ch

Benôıt Perroud
benoit.perroud@epfl.ch

June 26, 2006

Abstract

This report describes our work on the minischeme virtual machine and com-
piler. We have chosen to achieve JIT compilation and precise garbage col-
lection for the advanced part of the project.

Contents

1 JIT compilation 2
1.1 Translating opcodes to native code 2
1.2 Handling labels . 3

1.2.1 Jumps and the references table 3
1.3 Optimizations . 4

1.3.1 R0 optimization . 4
1.3.2 R29 optimization . 4

1.4 Difficulties . 5
1.4.1 Mac OS X ABI . 6
1.4.2 SPARC . 6

1.5 JIT compilation performances 7

2 Precise copying garbage collection 8
2.1 Differenciating integers from pointers 8

2.1.1 Changes in the compiler 9
2.1.2 Changes in the virtual machines 11

2.2 Copying grabage collector . 11
2.2.1 Allocation . 12
2.2.2 Copying phase . 12

2.3 Performance and others results 13
2.4 Drawback and further work 13

3 Previous parts 14

1

Chapter 1

JIT compilation

Just-in-time compilation (JIT compilation) is a technique used to improve
the performance of bytecode-compiled programming systems, by translating
bytecode into native machine code at run-time. In this project, JIT compi-
lation has been performed on a whole program, i.e. a program is loaded into
memory, then entirely translated to machine code and finally executed.

Here are the conventions used in this report:

• vm means virtual machine

• native code refers to code that has been dynamically generated for the
underlying architecture

• bytecode refers to the minivm bytecode

• opcode refers to the minivm opcode scheme

GNU lightning1, a multi-architecure library for dynamic code generation
has been used as jit compiler.

1.1 Translating opcodes to native code

Translating most opcodes using GNU lightning was straightforward. For
example the ADD opcode is easily translated as shown by this code:

1http://www.gnu.org/software/lightning/

2

http://www.gnu.org/software/lightning/

case OP ADD:
// R[a] = R[b] + R[c] ;
j i t l o a d (JIT R0 , b)
j i t l o a d (JIT R1 , c)
j i t a d d r i (JIT R2 , JIT R0 , JIT R1) ;
j i t s t o r e (a , JIT R2)
break ;

Some opcodes like ALOC and DIV for example required some more lines
in order to call a function. GNU lightning provides an easy way to handle
function calls, so implementing these opcodes was relatively easy too.

1.2 Handling labels

Special care is needed in handling labels. Labels are loaded as integers
with the LINT opcode but unlike to integers, they represent a location in
memory (a pointer). It is mandatory to distinguish between an integer and
a pointer in order to adapt the LINT of labels. As we need this distinction
for the precise garbage collection also, we have have implemented a tagging
method, as explained in paragraph 2.1.

1.2.1 Jumps and the references table

As explained just above, labels represent an address in memory. Theses ad-
dresses are used to jump to different parts of the code. The problem to solve
is to convert the addresses from bytecode address space to native code address
space. The mapping between bytecode address space and native code address
space is resolved during the jit compilation process. The reference t struct
is used to handle this mapping.

The last part of the problem is to patch the loading of an address. Obvi-
ously, the mapping can be resolved after an immediate move instruction has
been compiled. GNU lightning offers the handy jit patch movi macro that
changes the value of an immediate move after it has been compiled. So, each
time we encounter a label address in a LINT opcode, we store a reference to
it so that it can be patched at the end of jit compilation, when all mappings
are resolved.

3

Once all references to labels have been patched, i.e. their value corresponds
to native code address space, the CMOV instructions becomes trivial to imple-
ment: we just have to take care of compiling a jump instruction when CMOV

destination register is R31.

1.3 Optimizations

Some small optimizations are possible to generate better native code. Two
are described in this section.

1.3.1 R0 optimization

As the register R0 always contains the 0 value, it’s useless to load the value
from the R0 register. Instead, we generate an immediate move instruction
with the value 0. For this purpose, the macro jit load R0 opt has been
introduced

#define j i t l o a d s t d (r ds t , r s r c)
j i t l d i i ((r d s t) , &R[(r s r c)]) ;

#define j i t l o a d R0 op t (r ds t , r s r c) \
i f ((r s r c) == 0) { \

j i t m o v i i ((r d s t) , 0) ; \
} else { \

j i t l o a d s t d ((r d s t) , (r s r c)) \
}

Now, each time R0 is used, the generated instruction is

xo r l %eax ,%eax

that zeroes the %eax register. This is faster than the

movl 0x1000 ,%eax

instruction who accesses memory at R[0] (assuming &R[0] = 0x1000).

1.3.2 R29 optimization

As suggested, it would be beneficial to map some vm registers to native
registers. This is the case already for the program counter which is now
the real PC of the machine. Mapping the frame pointer (R29) to a real
register would be beneficial for performance as this register is used a lot.
GNU lightning exposes three registers that are preserved across function

4

call. JIT V2 is one of those and has been chosen to be the FP. The same idea
as for the R0 optimization has been implemented:

#define j i t s t o r e o p t (r ds t , r s r c) \
i f ((r d s t) == 29) { \

j i t mo v r i (JIT V2 , (r s r c)) ; \
} else { \

j i t s t o r e s t d ((r d s t) , (r s r c)) \
}

#define j i t l o a d o p t (r ds t , r s r c) \
i f ((r s r c) == 29) { \

j i t mo v r i ((r d s t) , JIT V2) ; \
} else { \

j i t l o ad R0 op t ((r d s t) , (r s r c)) \
}

While this technique worked in simple programs, it has failed with a
Memory access outside of heap segment error on a more complex program
that computes large factorials (bignums.asm). Unfortunately we have not
been able to track where the error came from, thus these two optimized
macros are defined but not used. The reasons are explained in detail in
paragraph 1.4.

1.4 Difficulties

Achieving the JIT compilation was not an easy task. The main reason is
that the generated jit code is hard to debug. GNU lightning jit macros are
so obscure that it is impossible to guess what code is going to be generated.
On small programs, it is possible to identify what native code corresponds
to bytecode while on bigger programs, it becomes almost impossible.

The R29 optimization problem perfectly illustrates the inability to debug
dynamically compiled code. To determine where the problem happened, we
added some code to increment a counter after each execution of an opcode.
It turned out that the problem occurred after the execution of more than
80’000 opcodes! Given the lack of function concept in the vm, there was no
backtrace in the debugger, which resulted in a so hard and time consuming
task that we preferred to give up on this optimization.

5

1.4.1 Mac OS X ABI

Another difficulty was to fix crashes that seemed rather random under
Mac OS X running on an Intel chip. When calling functions, for exam-
ple exit vm from dynamically compiled code, the vm would crash with an
EXC BAD INSTRUCTION exception on a movdqa %xmm0,32(%esp) instruction.

It turned out that the Mac OS X ABI Function Call Guide2 for IA-32
specifies that the stack must be 16-byte aligned at the point of func-
tion calls, a convention that GNU lightning was not aware of. This has
been corrected in GNU lightning i386 part and a patch has been submit-
ted to Paolo Bonzini, author of GNU lightning. Another solution discovered
later is simply to use the -mstackrealign switch of gcc that takes care of
realigning the runtime stack. The former solution has been finally chosen as
the latter solution is less efficient.

1.4.2 SPARC

While our virtual machine has been thoroughly tested on different x86
machines and on PowerPC, testing on SPARC has been reduced to the min-
imum. Launching a simple Hello, world! did not work on SPARC: it exited
with a Memory access outside of heap segment error. Lacking of time and of
SPARC assembly knowledge, we have not investigated this problem further
and have decided to simply drop support for SPARC.

2http://developer.apple.com/documentation/DeveloperTools/Conceptual/LowLevelABI/index.html

6

http://developer.apple.com/documentation/DeveloperTools/Conceptual/LowLevelABI/index.html

1.5 JIT compilation performances

Once JIT compilation was achieved, some performance comparisons have
been done on a program that does intensive calculation: computing the fac-
torial of a large number.

The results are very impressive. Here is a table summarizing the execution
times.

standard threaded jit
factorial(1200) on x86 (3Ghz) 7.150s 7.250s 1.160s
factorial(600) on x86 (3Ghz) 1.580s 1.610s 0.260s
factorial(1200) on ppc (667 Mhz) 25.532s 25.736s 6.801s
factorial(600) on ppc (667 Mhz) 5.646s 5.692s 1.491s

We notice that jit compiled code runs a lot faster, from 4 times on PowerPC
to 6 times on x86. We also observe that threaded mode is not as efficient
as one would expect. On smaller program, it’s not even worth jit compiling
since most of the time is spent in compilation instead of running the program.

7

Chapter 2

Precise copying garbage
collection

A copying garbage collector, called gc in this report, is another beautiful
technique to manage dynamic memory deallocation in a vm. But to run such
a gc, one needs to make it precise, which means to distiguish clearly integers
from pointers. That’s why this chapter is divided in two parts, one about
how to make the vm precise and one about the implementation of the gc
itself.

2.1 Differenciating integers from pointers

The usual way to distinguish clearly integers from pointers is to use a
tagging scheme. The one we chose is to represent an integer n as 2*n+1
in the bytecode, and to align every pointer on 4 bytes1. Thus the least
significant bit of pointers is always 0, and that of integers is always 1.

Our first implementation to differenciate pointers was all integrated in the
vm. The changes of the operators were straighforward and because the parser
of the vm has the knowledge of what is a label and what is an integer, we
marked a bit of the load of label instruction (LINT)to recognize it at run
time. Altough this implementation was faster than the final one, because it
avoided lots of instructions provided to correct the 2n+1 arithmetic by the
compiler, some drawbacks come into the light :

• We need to modify every operation of the vm, and this in each part :
normal, threaded and jited.

1Alignment on 2 bytes would also be correct, but for compatibility with our old mark
& sweep gc we maintain it on 4 bytes

8

• Optimisations which could be done in 2n+1 form aren’t possible at run
time

Thus we handled the tagging directly in the compiler and do just the minimal
changes in the vm. These transformations are explained below.

2.1.1 Changes in the compiler

The main idea in the compiler is to represent every integer as an odd value,
encoded with 2n+1 scheme. So in the vm, there will never be any even integer
neither in the register nor in memory. But there are a few exceptions where
even integers are produced by the compiler :

• The integer 2 used to represent any integers as 2n+1.

• The offset of the LOAD and STOR instructions.

• Some intermediate value of the transformation in 2n+1.

• The false value is 0 in the vm and 1 in the compiler.

The compiler is modified in the way to handle integers as 2n+1, by modi-
fying the class IntegerConstant to print 2 * value + 1 instead of simply value,
and then some changes for the exceptions listed above are made.

We introduced a new class PreciseIntegerConstant, which does not trans-
form integers in 2n+1.

I n s t r u c t i o n . s c a l a
case c l a s s IntegerConstant (va lue : Int) extends Constant {

ove r r i d e de f t oS t r i ng () : S t r ing = (2 ∗ value + 1) . t oS t r i ng () ;
}
case c l a s s Prec i s e In t ege rCons tant (va lue : Int) extends Constant {

ove r r i d e de f t oS t r i ng () : S t r ing = value . t oS t r i ng () ;
}

LOAD and STOR instructions generation is modified to use PreciseInte-
gerConstant for their offsets

Code . s c a l a
de f emit (op : OpcodeRRC , r1 : Reg i s te r , r2 : Reg i s te r , i : In t) : Unit =

emit (new InstructionRRC (op , r1 , r2 , Prec i s e In t ege rCons tant (i))) ;

9

Last but not least, we generated correction code for the arithmetic and the
logical operations on integers. The 2n+1 arithmetic is given below, as well
as the modification done for the multiplication.

n and m are the two real integers, f and g are their representation in 2n+1
form. Thus if the program want to multiply n to m, it expect the result n*m,
which encoded is 2*(n*m)+1. As the compiler uses f and g, it must substract
1 to f and g, multiply them, divide the result by 2 and finally add 1.

2 ∗ (n + m) + 1 = f + g − 1
2 ∗ (n − m) + 1 = f − g + 1
2 ∗ (n ∗ m) + 1 = ((f − 1) ∗ (g − 1)) / 2 + 1
2 ∗ (n / m) + 1 = ((f − 1) / (g − 1)) ∗ 2 + 1
2 ∗ (n % m) + 1 = ((f − 1) % (g − 1)) + 1

Every time PreciseIntegerConstant is used in order to perform operations
on real 1 and 2 instead of 3 and 5. So we load the value 2 in a register, which
can be potentially be seen as a pointer by the vm. So we load it in targetReg
to be sure that this value is overwritten by a valid one. Finally we load 1 in
yReg, to also be sure to have a valid value in it, because its previous value
can also potentially be even.

Generator . s c a l a
code wi thFreshReg i s te r { l i n tReg =>

code . emit (new Instruct ionRC (LINT , l intReg ,
Prec i s e In t ege rCons tant (1))) ;

code . emit (SUB, targetReg , targetReg , l in tReg) ;
code . emit (SUB, yReg , yReg , l in tReg) ;
code . emit (MUL, yReg , targetReg , yReg) ;
code . emit (new Instruct ionRC (LINT , targetReg ,

Prec i s e In t ege rCons tant (2))) ;
code . emit (DIV, targetReg , yReg , targetReg) ;
code . emit (ADD, targetReg , targetReg , l in tReg) ;
code . emit (new Instruct ionRC (LINT , yReg ,

Prec i s e In t ege rCons tant (1))) ;
}

The logical operations shouldn’t be modified because they compare two
tagged integers so the result would be correct. But the if logical structure
should be modified because the result of the condition is tagged, but the
CMOV instruction used to perform the jump compares the value with a real

10

0. What we do is the following : we compute the condition, which is 1 if it
is false, 3 or greater otherwise and we compare it with a tagged 0. At this
point we have the inverse of the right answer, 0 if true and 1 if false. We then
generate another comparison with the register R0, which is always 0. The
final result is then 0 or 1, and can be interpreted correctly by the CMOV.

Generator . s c a l a
code wi thFreshReg i s te r { l i n tReg =>

code . emit (new Instruct ionRC (LINT , l intReg ,
IntegerConstant (0))) ;

code . emit (ISEQ , targetReg , targetReg , l in tReg) ;
code . emit (ISEQ , targetReg , targetReg , code .R0) ;

}

2.1.2 Changes in the virtual machines

The more interessting changes performed in the vm are in the two functions

int i s h e ap po i n t e r (int addr) ;
int i s c o d e p o i n t e r (int addr) ;

These functions test the least significant bit of addr in order to determine
precisely if it is a heap or code pointer. Their results can be fully trusted.
This accuracy is also valid for the mark & sweep gc, in which the others tests
we added to remove as much conservativeness as possible, are now obsolete.

The only instructions we need to adapt are OP ALOC, OP PINT and
OP PCHR where integers should be untagged, as well as OP RINT and
OP RCHR where integers should be tagged. These few modifications were
done in the normal execution mode as well as in the threaded and the jitted
one.

2.2 Copying grabage collector

The copying gc has its memory space divided into two part, from space
and to space. Moreover it has a variable space size which stores the size of
each space. The goal is to allocate linearly blocks in from space until it is
full, then copy every living block (i.e. reachable directly or indirectly from a
register) to to space, and finaly invert the role of from space and to space.

11

2.2.1 Allocation

The allocation is done in from space in a linear way. The pointer next free
indicate the end of the allocated zone, and is increased from the space of the
allocated block. This is very efficient.

A header containing the size of the allocated block is added at the begining
of each allocated block.

2.2.2 Copying phase

When from space is full, we run the copy procedure. It will iterate through
every registers (except R0) to find every heap pointer. If a heap pointer is
found, the pointed block will be copied to a new address in to space and its
new address will be returned. The copy to new address procedure is described
below using pseudo-code.

• Check if the block has already been moved

• If it is the case, retrieve the forwarding pointer and return it.

• Otherwise copy the block to to space + next free

• Tag the size of the block with a mask to note it as already copied

• Overwrite the first 4 bytes after the headers of the block with the
forwarding pointer2

• Return the new address.

After every block reachable from a register, the copy procedure will iterate
through the copied block using Cheney’s algorithm, in order to find indirect
living blocks, copy them and update the pointers references. Cheney’s algo-
rithm is used because it adds very little overhead to visite every block. The
copy procedure will end when the scan pointer will reach the next free one,
meaning that every block has been visited. The copy procedure will finally
invert from space and to space, and the allocation can continue, except if the
procedure didn’t free enough place.

2Admitted because the overwritten value are never read again

12

2.3 Performance and others results

The performance improvment of the copying gc is quite impressive. This
improvment comes from the linear allocation and the fact that it doesn’t scan
the whole heap memory like mark & sweep gc, but only the living objects.
The following table shows computation times of a factorial program launched
without gc, with mark & sweep gc and with copying gc. The heap size is the
default one, except without gc, which requierd more than 100MB of heap
size.

none ms copy
factorial(1200) 7.128s 13.625s 7.220s
factorial(600) 1.624s 2.340s 1.720s

We also do some tests to see which amount of memory is freed every
time the gc runs. The results are given with the default heap size and the
computation of factorial(1200)

range of % freed average %
mark & sweep 49 - 89% 84%
copying 83 - 94% 91%

The difference in the results between the two gc comes mainly from the
fragmentation generated by the free list, and the overhead of our implemen-
tation which sometimes allocate a bigger block than the one requested if the
remaining free block is to small. This was done in order to avoid very small
blocks of memory to be lost forever.

2.4 Drawback and further work

The main drawback of such precise gc is the reduction of the integer range,
but it can be avoided using others techniques, like using pointers to integers.

We also remark that in minischeme, the closures are persistant objects
stored in the global frame pointer, so they shouldn’t be copied from left to
right at every cleaning. This statement is the reason why generational gc
was developed.

13

Chapter 3

Previous parts

Implementing the two advanced parts, we remarked that some bugs re-
mained in the previous parts. We spent time to correct them in order to
achieve a completely running project.

• Threaded code : we corrected the disassembling

• The mark & sweep gc became precise with the advanced part, so it
is not wrong anymore to store marks in the headers. It has also be
cleaned from its obsolete checks

• Closure contained a small bug which is now corrected

14

	JIT compilation
	Translating opcodes to native code
	Handling labels
	Jumps and the references table

	Optimizations
	R0 optimization
	R29 optimization

	Difficulties
	Mac OS X ABI
	SPARC

	JIT compilation performances

	Precise copying garbage collection
	Differenciating integers from pointers
	Changes in the compiler
	Changes in the virtual machines

	Copying grabage collector
	Allocation
	Copying phase

	Performance and others results
	Drawback and further work

	Previous parts

