
Implementation of FPL &
Concurrency

Advanced Compiler Techniques
2005

Erik Stenman
EPFL

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler2

Functional Programming
Languages (Repetition)

♦ Possible properties of a functional languages:
♦ No statements.
♦ Higher order functions.
♦ Pureness.
♦ Laziness.
♦ Automatic memory management.

♦ A declarative language is a language where the
program declares what to calculate.

♦ In an imperative language the program states how
to calculate.

Im
p
le
m
en
ta
ti
o
n
 o
f
F
P
L

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler3

Higher Order Functions
(Repetition)

♦A function that takes a function as an
argument is called a higher order function.

♦E.g.

def f(x:int, g:int=>int) = x + g(x);

Im
p
le
m
en
ta
ti
o
n
 o
f
F
P
L

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler4

Tail calls
(Repetition)

♦A function call f(x) within a body of a
function g is in a tail position if calling f is
the last thing g will do before returning.

def g(x:int) = f(x + 1);

♦We can save stack space and execution time
by turning the call to f into a jump to f.

Im
p
le
m
en
ta
ti
o
n
 o
f
F
P
L

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler5

Continuations

♦ We can combine higher order functions with tail
calls to get continuations.

♦ Normally each function returns a value:

defdefdefdef f(x:int) = foo(x) + 1;

♦ We can instead let each function take a
continuation that tells where the execution is to
continue:

defdefdefdef f(x:int, cccc:int=>int) = cccc(foo(x) + 1);

Im
p
le
m
en
ta
ti
o
n
 o
f
F
P
L
: C

o
n
ti
n
u
at
io
n
s

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler6

Continuation Passing Style
(CPS)

♦ Continuations are the basis for a compilation
technique called continuation passing style (CPS).

♦ In CPS all functions are transformed to take one
extra argument, the continuation, and the bodies
are transformed to call the continuation instead of
returning.

♦ Also, all nested expressions of the function body
are transformed into continuations. (Primitive
operations such as + also takes a continuation.)

Im
p
le
m
en
ta
ti
o
n
 o
f
F
P
L
: C

o
n
ti
n
u
at
io
n
s

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler7

CPS Transformation

defdefdefdef f(x:int) = foo(x) + 1;

defdefdefdef f(x:int, cccc:int=>int) =

foo(x,

(v:int) => +(v, 1 ,c)

)Im
p
le
m
en
ta
ti
o
n
 o
f
F
P
L
: C

o
n
ti
n
u
at
io
n
s

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler8

CPS Transformation

♦ CPS transformation is used in many compilers for
functional languages such as Scheme and ML.

♦ CPS was studied extensively by e.g. Steele in the Rabbit
Scheme compiler, and Appel in the SML/NJ compiler.

♦ A disadvantage with CPS is that it introduces many
closures, and hence the compiler have to optimize away
as many of them as possible in order to get good
performance.

♦ An advantage is that, if closures are your only control
structure and you have optimized them to the max, then
you have optimized all control structures.

Im
p
le
m
en
ta
ti
o
n
 o
f
F
P
L
: C

o
n
ti
n
u
at
io
n
s

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler9

Implementation of Concurrency

♦What is concurrency?

♦Some communication methods.

♦Erlang – a concurrent language.

♦Implementation of Erlang.

Im
p
le
m
en
ta
ti
o
n
 o
f
C
o
n
cu
rr
en
cy

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler10

Concurrency vs. Parallelism

♦ Concurrency:
♦ If two events are concurrent then they conceptually
take place at the same time. That is, different
schedulings of two events are indistinguishable or
irrelevant.

♦ A language can be concurrent.

♦ Parallelism:
♦ If two events occur in parallel then they actually occur
at the same time.

♦ An implementation can be parallel.

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: C

o
n
ce
p
ts

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler11

Concurrency vs. Parallelism

♦A concurrent language can be implemented
either in parallel or sequentially.

♦Some sequential languages can also be
implemented either in parallel or
sequentially.

♦Declarative languages are usually easier to
make parallel than imperative ones.

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: C

o
n
ce
p
ts

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler12

Message Passing vs.
Shared Memory

♦ In a concurrent system with message passing each
message has to be copied from the sender to the
receiver. (Like when sending a mail to someone.)

♦ In a shared memory system the participating
processes can all updated the shared memory,
and the new state is “immediately” visible to all.
(Like when two people are writing on and looking at the
same blackboard.)

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: C

o
n
ce
p
ts

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler13

Message Passing vs.
Shared Memory

♦ Shared memory:
♦ Pros:

1. Performance.

♦ Cons:
1. The programmer has to ensure consistency.
2. Can not (practically) be implemented in a distributed system.

♦ Message passing:
♦ Pros:

1. Processes are decoupled (errors don’t propagate as easily).
2. The programmer can reason about the process interaction on a

higher level.
3. Can easily be extended to a distributed system.

♦ Cons:
1. (Perceived) loss of performance.

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: C

o
n
ce
p
ts

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler14

Message Passing vs.
Shared Memory

♦ The distinction between shared memory and
message passing is done on the level that the
programmer has to deal with.

♦ On a lower level message passing can be
implemented with shared memory (and often is,
at least to some extent).

♦ In a network the shared memory model has to be
implemented with some form of message passing.

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler15

Synchronous vs. Asynchronous

♦ In a synchronous system both the sender and the
receiver have to be in special states (ready to send
and ready to receive).

♦ If either of the processes reaches this state before the
other it will block and wait until both are in the right
state.

♦ In an asynchronous system the sender does not
have to wait for the receiver to be ready in order
to send its message.

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: C

o
n
ce
p
ts

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler16

Synchronous vs. Asynchronous

♦ Only one type of primitives is necessary since
each can be implemented by the other.

♦ To implement synchronization in an
asynchronous environment you only need a loop
and a protocol where an acknowledgement is sent
back upon receive.

♦ To implement asynchronous messages in a
synchronous environment you need a relaying
process.

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: C

o
n
ce
p
ts

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler17

Processes vs. Threads

♦ In this presentation processes do not refer to OS
processes but processes implemented by a
programming language.

♦ Such processes can be assumed to be lightweight, not
to share memory, and execute concurrently.

♦ A thread is slightly more heavyweight, share
memory and can execute in parallel on a parallel
machine.

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: C

o
n
ce
p
ts

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler18

Concurrency in Programming
Languages

♦Concurrency in programming languages
can be implemented by utilizing processes
or threads from the operating system.

♦ Either directly like in C or with a thin
abstraction layer like in Java.

♦Further abstractions can be built into libraries.

♦Another approach is to build concurrency
into the language as such.

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: C

o
n
ce
p
ts

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler19

Implementation of Concurrency
Example: Erlang

♦ Erlang is a concurrent programming language,
i.e., concurrency is built into the language from
the beginning.

♦ Erlang was developed by the Ericsson to be used
in large telecom application such as telephone
exchanges. (Used in e.g. Ericsson’s ATM switch
and their GPRS systems.)

♦ We will present some details of how to
implement a concurrent language by studying
how Erlang is implemented.

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler20

Erlang

♦ The sequential part of Erlang is a small higher
order functional language with no mutable data
structures.

♦ Data in Erlang is represented by a term, a term
can be a list of terms, a tuple of terms or ground
(atoms, numbers, PIDs, …).

♦ Erlang uses pattern matching to decompose and
switch on the structure of Erlang terms.

♦ Erlang requires proper tail-calls.

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: E
rl
an
g

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler21

Erlang

♦ The concurrent part of Erlang (processes that
communicate through message passing) provides the
following constructs:
♦ Asynchronous send.
Receiver ! Message

♦ Blocking, selective receive with timeouts.
receivereceivereceivereceive PATTERN -> … ; afterafterafterafter T -> … endendendend.

♦ A method to dynamically spawn new processes.
spawnspawnspawnspawn(Closure).

♦ For error correction processes can be linked in order to receive
signals when a linked process dies:
linklinklinklink(Process).
or
spawn_linkspawn_linkspawn_linkspawn_link(Closure).

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: E
rl
an
g

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler22

A Simple Generic Server

loop(State,Handler) ->
receivereceivereceivereceive
{From, Request} ->
{Res,NewState} = Handler(State,Request),
From !!!! {selfselfselfself(), Res},
loop(NewState,Handler);

{swap_code,NewHandler} ->
loop(State, NewHandler);

quit -> ok
endendendend.

> Server = spawnspawnspawnspawn(funfunfunfun()->loop(0,
funfunfunfun(S,inc)->{ok,S+1};

(S,get)->{S,S} endendendend)

endendendend),
Server !!!! {selfselfselfself(),inc}, receivereceivereceivereceive {_,_} -> ok endendendend,
Server !!!! {selfselfselfself(),get}, receivereceivereceivereceive {_,Val} -> Val endendendend.

1111
>

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: E
rl
an
g

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler23

Concurrency in Erlang

♦ Erlang is concurrent.
♦ The standard implementation is not parallel, but multi-tasking.

♦ Erlang processes are conceptually scheduled with pre-
emptive multitasking – the programmer does not have to
worry about the scheduling.
♦ The standard implementation uses cooperative multitasking
enforced by the compiler.

♦ Each function call is counted as a reduction, when the number of
reductions allocated to a process reaches 0 the process is
suspended.

♦ Since there are no loop constructs in Erlang other than tail calls,
this is sufficient to ensure cooperation.

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: E
rl
an
g

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler24

Implementation of Processes in
Erlang

♦ Each process has its own stack, heap, message
queue, and process control block (PCB).

♦ The PCB is small: ~70 words.
♦ The mailbox is a linked list of pointers to the heap
containing only unprocessed messages.

♦ The heap and the stack are collocated in one
memory area with a default initial size of 233
words. (233=fibonacci(12)).

♦ The heap and stack grow (and shrink) as needed.

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: E
rl
an
g

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler25

Processes in Erlang

P1 P2 P3

Stack pointer (sp)

Heap pointer (hp)

STACK

HEAP

Unused
memory

Live
data

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: E
rl
an
g

PCB

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler26

Process Communication in Erlang

♦ All communication between processes in Erlang
is done by message passing.

♦ In the standard implementation this means that
all messages are copied between the heap of the
sender and the heap of the receiver.

♦ This copying is done by first calculating the size
of the message, then allocating the right amount
on the receivers heap, finally the message is
copied.

♦ Since the receiver is guaranteed to be suspended,
no locking is needed.

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: E
rl
an
g

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler27

Some “Optimizations”

♦ Large chunks of immutable data can be stored in binaries.
♦ Binaries larger than 64 words are not stored on a process heap and
not copied when sent as messages.

♦ Binaries are managed by reference counting.

♦ Larger sets of shared, mutable data are handled by ETS-
tables.

♦ ETS stands for Erlang Term storage.

♦ Conceptually an ETS table could be implemented as a process
mapping keys to values.

♦ In reality ETS tables are implemented in C.

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: E
rl
an
g

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler28

Implementing Erlang
in Native Code

♦The standard implementation of Erlang
uses a virtual machine (VM). We will
discuss how to implement VMs in a later
lecture.

♦It is also possible to compile Erlang to
native code, here we will present some
implementation details for such an
implementation.

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: E
rl
an
g

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler29

Implementing Erlang
in Native Code

♦In order to enable easy integration with the
VM the native implementation uses the
same data representation, GC, and runtime
system as the VM.

♦The only major difference is that each
process that calls native code also get a
native stack.

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: E
rl
an
g

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler30

Processes in Erlang

P1 P2 P3

Stack pointer (sp)

Heap pointer (hp)

STACK

HEAP

Unused
memory

Live
data

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: E
rl
an
g

PCB

NATIVE STACK

Native stack pointer (nsp)

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler31

Implementation Details

♦ In order to handle scheduling and stack resizing
some bookkeeping code is added to the beginning
of each function:

reductions = reductions – 1;

if (reductions == 0) suspend(p); // p is the current process pointer

checkstack:

if (nsp - STACKNEED < stackEnd) {

resizeStack();

goto checkstack;

}

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: E
rl
an
g

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler32

Implementation Details

♦The stack need can be calculated at compile
time:
number of spills + max(∀ calls:
argsOnStack+callerSaves)+buffer.

♦By ensuring that there is a buffer of free
words on the stack we do not need the
bookkeeping code for leaf-functions that
uses less than that many words.

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: E
rl
an
g

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler33

Implementation Details

♦ The function suspend has to be implemented in machine
code in order to get access to the return address.

supend: // p (the current process) is passed as the argument.

p->pc = <RETADDRESS> // From the stack on x86 from a register on SPARC

p->status = READY;

SAVE(p); // Save the process sp, switch to C stack.

add(p,readyQueue);

p = schedule();

RESTORE(p); // Restore the process sp, switch from C stack.

jmp p->pc;

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: E
rl
an
g

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler34

The Scheduler

♦Since Erlang does not use OS processes or
threads, the Erlang runtime system has to
implement its own scheduler. (In, e.g., C)

pid schedule() {

static int majorReductions = MREDS;

majorReductions--;

if(majorReductions == 0) { externalPoll();
majorReductions = MREDS; }

checkTimeouts();

pid p = nextReady(readyQueue);
p->reductions = REDS; p->status = RUNNING;

return p;

}

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: E
rl
an
g

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler35

Send

♦A message send from p1 to p2 can be
implemented as:

send(pid:p1, pid:p2, term:message) {

int s = size(message);

if(s > (p2->heapTop - p2->heapPointer)) gc(p2,s);

term mp = copy(message,p2->heapTop);

add(mp,p2->messageQueue);

if(p2->status == SUSPENDED) {

p2->status = READY;

add(p2,readyQueue);

}

}

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: E
rl
an
g

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler36

Receive

♦ A message receive is slightly more complicated.
messageLoop:

m = nextMessage(p);

if (m == NIL)
sleep(p,timeout,&messageLoop,&handler);

cont = MATCH(m,PATTERNS);

if (cont == 0) goto messageLoop;

unlink(p);

jmp cont;

handler:

…

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: E
rl
an
g

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler37

Receive

M1 NIL
mQueue

mNext

mEnd
M2

M3

M1 NIL

nextMessage(pid p) {

term m = p->mNext;

p->mNext = m->next;

return m;

}

unlink(pid p) {

term m = p->mNext;

if(m->prev != NIL)

p->prev->next = m->next;

else

p->mQueue = m->next;

if(p->mEnd == m)

p->mEnd = m->prev;

p->mNext = p->mQueue;

}

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: E
rl
an
g PCB

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler38

Receive

sleep(p,timeout,messageLoop,handler) {

p->pc = messageLoop;

p->handler = handler;

add(p,now()+timeout,timeoutQueue)

p->status = SUSPENDED;

p = schedule();

(p->pc)();

}

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: E
rl
an
g

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler39

Receive

♦The checkTimeout function in the
scheduler will activate a process when the
timeout has elapsed.

♦While doing so p->pc will be updated
with p->handler so that the process will
start executing in the timeout handler when
scheduled.

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: E
rl
an
g

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler40

Spawn

♦The spawn primitive creates a new process,
i.e. allocates a new PCB, stack, and heap.

♦Then the argument to spawn (the closure)
is copied to the new heap.

♦The new pid is added to the ready queue.

♦Then execution continues in the old process
with the instructions after spawn.

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: E
rl
an
g

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler41

Summary

♦Concurrency is an important concept that
can be useful as an abstraction when
decomposing a program, just as modules,
objects, and functions.

♦Concurrency can be implemented by either
using primitives provided by the OS or by
implementing a scheduler specifically for
the language.

Im
p
le
m
en
ta
ti
o
n
 o
f
co
n
cu
rr
en
cy
: E
rl
an
g

Advanced Compiler Techniques 5/6/2005
http://lamp.epfl.ch/teaching/advancedCompiler42

Call with Current Continuation
call/cc

♦ If we have a language compiled with CPS we can easily
implement a very powerful construct called call/cc or call
with current continuation.

def call_cc(call_cc(call_cc(call_cc(ffff,,,,cccc) =) =) =) = ffff((((cccc,,,,cccc))))

♦ That is, we call the function f with the current
continuation c as an argument, and also as the
continuation of f.

♦ call/cc can be implemented even in non-CPS compilers,
but it is trickier because it requires capturing of the stack.

♦ With call/cc you can “easily” implement backtracking,
exceptions, coroutines, and concurrency.

Im
p
le
m
en
ta
ti
o
n
 o
f
F
P
L
: C

o
n
ti
n
u
at
io
n
s

