©]
1}
5}

Implementation of
High Level Languages

Advanced Compiler Techniques
2005
Erk Shenman
EPTL

Implementation of High Level
Languages

¢ We will look at some simple ways to
implement concepts in HLL.

¢ We will look at some more complex and
more efficient implementations of these
concepts.

¢ We will also look at some general
optimization techniques that can be used
with great advantage in HLL.

Implementation of
Object Oriented Languages

¢ In class based OO languages each object
belongs to a class that defines the fields,
methods, and the type of the object.

class A {
int x = 42; 2o (B8
inty =17 stack Mt a{Code:foo
= foo: .—% return x
int foo() { Heap header: 0/.{
return x; x: 42
} y: 17

©]
1}
5}

Implementation of OO

Overview

¢ In this second part of the course we will talk
about how to implement:
¢ Objects and inheritance.
¢ FPLs: higher order functions, laziness.
¢ Concurrency: processes, message passing.
¢ Automatic memory management. (GC)
¢ Virtual Machines.
¢ Just in time compilation.

Implementation of
Object Oriented Languages

¢ In class based OO languages each object
belongs to a class that defines the fields,
methods, and the type of the object.

class A { A a = new A;
int x = 42; 2o (B8
e & = 875 T3 VMT Code: foo
= /-{ foo: .—%a{ return x
int foo() { Heap header: &
return x; x: 42
} y: 17

}

Implementation of
Object Oriented Languages

¢ In class based OO languages each object
belongs to a class that defines the fields,
methods, and the type of the object.

class A { Representation of object
lobject
int x = 42; I/obj
int e i/ .
y Stack ‘Code.foo
/-{ foo: .—% return x
int foo() { Heap | header: @
return x; x: 42

} y: 17




entation of OO

Implementation of
Object Oriented Languages

¢ In class based OO languages each object
belongs to a class that defines the fields,
methods, and the type of the object.

A a = new A; Virtual Method Table
a.foo(); I/class

int y = 17; T3 VMT _/—/Code:foo
Hoap head;r: '/-{ foo: .—%a{ return x ‘

class A {

int x = 42;

int foo() {

return x; x: 42

} y: 17
}

Advanced
http://1amp. epf .ch/cea

Implementation of
Object Oriented Languages

¢ In class based OO languages each object
belongs to a class that defines the fields,
methods, and the type of the object.

Code for funchions (foo)

class A {

int x = 42;

\
mox |/closs

Stack |A a:
= foo: .—%a{ return x ‘
int foo() { Heap | header: 0/.{
return x; x: 42
} y: 17

}

Advanced
http://1amp. epfl .ch/ce:

Implementation of
Object Oriented Languages

¢ Object Oriented languages support
inheritance.
¢ Inheritance complicates the answer to some
questions:
¢ Where is the value of a field stored?
¢ Where is the code for a certain method?
+ What type will a value have at runtime?

Ad
hetp://amp.epf .t

Single Inheritance:
Fields

¢ With single inheritance we can order the
fields in such a way that all fields of a class
are stored after fields of the superclass.

¢ This way we know at compile time the
offset of each field.

Ad
htp://1amp.epfl

Single Inheritance:

Fields
¢ Example:
class A { int x = 0; }
class B extends A { int =0;
int ;

class C extends A { int
class D extends A { int

n 7 N < X
1

o 0 0o oo
—

Single Inheritance:

Fields
Heap | header:

x: 0 1
class A {int x = 8;} header
class B extends A {int y = 0; x: 0

int z = 0;} .
class C extends A {int r = 0;} headelg 78 O
class D extends B {int s = 0:} x: 0 z: 0
y: 0 s: 0
z: 0
Offsets:
Stack |A a: @&
(AB,CD).x: 1 Bb: ® 1
(BD)y:2 Cc: kQ header
(BD).z:3 X x: 0
Dd: r: 0
Q)r:2 ‘
(D).s: 4

Ad
http://1amp. epfl .ch/te:




g
)
@
e

Implementation of OO: Single Inheritance

Implementation of OO: Single Inheritance

Single Inheritance:
Methods

¢ If we only have single inheritance we can handle
methods’in much the same way as fields.

¢ We store addresses to methods in the VMT
instead of in the object.

¢+ We cop%i all the addresses of the super classes to
the VMT of the subclasses.

¢ If a method is overridden we use the address of
the new definition instead of the definition in the
superclass.

A
http://1amp.epfl

Single Inheritance:
Methods

class A {int f {.}: }
class B extends A {

VMT (A)

int g {.}: }
class C e:ﬁ:n:sa)f ] Heap . Y, VMT (B) Code:A_f
— header: @+
V—» header: & Code:B_g
——1 header: @ Code:C_f

A a = new A;

Bb=newB & |

Cc=newC; &

b.g();

c.fO; g%\‘i‘

LD r1,SP(8) : Get b LD r1,5P(4) ;‘Get c

LD r2,r1(0) ; Get &VMT(B) LD r2,r1(0) ; Get &VMT(C)
LD r3,r2(4) ; Get &B_g LD r3,r2(0) : Get & _f
call r3 ; Call B_g call r3 i Call C_f

Advance
hetp://1amp.epfl.ch/<

Single Inheritance:

Now we can do — header: @

c instanceof Aas:

Class Membership

class A {int f {.}; } Class A /
class B extends A {

int g {.}: }
class C extends B { B

int f {.}; } — Code:A_f
A2 new A @] Hem Class B
B b = new B; .\\—* header: @1 super: & Code:B_g
C c = new C; VMT| f: @
¢ instanceof h * header: @ g: P /Code:C_f

t = c.header super: @]
if t == A goto VMT | £:
t = t.super . @
if t !'= nil goto g: L
res = false
goto

:res = true

\.my

A
htp://amp.epfl

g
)
@
o

Implementation of OO: Single inheritance

Implementation of OO: Single inheritance

Single Inheritance:
Methods

¢ Example:
class A { int f {.}; }
class B extends A { int g {..}; }
class C extends B { int f {..}; }

Single Inheritance:
Testing Class Membership

¢ Many OO languages allow you to test class
membership of an object.

¢ In Java thereis “o instanceof C”.

¢ An object is a member of all its
superclasses.

¢ We need to be able to find the superclass of
a class. Let us extend our implementation
with class descriptors.

Advanced C
http://1amp.epf .ch/ceact

Single Inheritance:
Testing Class Membership

¢ Searching through the class hierarchy is
inefficient.

¢ We can trade space for speed.

¢ Let each class descriptor have a display of
all superclasses. I.E., a direct link to each
superclass.




D

Implementation of Of

fultiple Inheritance

Implementatior

Implementation of OO: Multiple inheritance

Single Inheritance:
Class Membership ., a2 =

class A {} -
class B extends A { } level: 1
class C extends B { } / S [
®
> Class B LVIT

Aa=newA; @ | Heap :
B b = new B; .\\—* header: &/ level: 2
Cc=newC; l SsS 3
c instance of A; » header: ® s pe

@

Now we can do — header: @
c instance of Aas: —
Class C

level:

VMT

tl = c.header

res = t1[0] >= 1 \\ A_level
if !res goto End

t2 = t1[2] \\ 2<-A_level+l

res = (t2 == A)
End:

3

®
®
®
@

A
http://1amp.epfl

Multiple Inheritance:
Graph Coloring

¢ One way to handle the layout of fields would be
to use graph coloring. (This can also be used for
methods.)

¢ All identical fields would have to occupy the
same offset in the object.

¢ For some objects there would be holes in the array
of fields. To reduce the wasted space the fields
can be compacted in the object by storing the
offsets in the class descriptor.

Advance
http://1amp.epfl.ch/<

Multiple Inheritance:

Graph Coloring
class A {int x = 0;} Class A
class B {int y = 0;
int z = 0;) Heap | header: x: 1
class C extends A,B {int r = 0;} x: 0
A a = new A; *l
B b= newB class B
B d = newB header: g|
Cc=newC y: 0 -
z: 0 yi 1
] 23 2
Offsets: header: @
Stack
(A,C).x: header[0]

B,C).y: header[1]

s @ Class C
z: 0
| i
(B,C).z: header[2] ?ader: @1
(

h
B x: 0
C).r: header(3] y: 0
z: 0
r. 0

TID ll?

SN X
A wWNe

A
htp://amp.epfl

=
O

Implementation of OO: Multiple inheritance

Implementation of OO: Multiple Inheritance

Multiple Inheritance

¢ In languages with multiple inheritance, i.e.,
where it is possible to extend several parent
classes with a class, all the operations we
have seen become more difficult.

¢ Java’s hybrid approach with interfaces
complicates these issues in the same way as
multiple inheritance.

Multiple Inheritance:

Graph Coloring
Heap | header:
x: 0
class A {int x = 0;}
class B {int y = 0:
int z = 05} h der:
class C extends A,B {int r = 0:} eader:
y: 0
z: 0
Offsets:
Stack |A a: @
AC).x: 1 ®
(AOx 2 C 1
B0)y:2 Cc: & header:
(B,C).z:3 x: 0
. y: 0
(©)-r:4 z: 0
r: 0

Advanced C
http://1amp.epf .ch/ceact

Multiple Inheritance:
Graph Coloring

¢ One problem with global graph coloring is
that it is global: you need the whole
program - must be done at link time.

¢ If dynamic linking is possible this approach
becomes even harder.




=
O

Implementation of OO: Multiple inheritance

Implementation of OO: Multiple inheritance

Multiple Inheritance:
Hashing

¢ Second approach: Hashing.

¢ Instead of a global compile- or link time solution we can
calculate a hash value for each name at compile time.

¢ Atruntime we use the hash value as an offset into a hash
table in the class descriptor.

¢ This hash table contains the offset to fields in the object.
(This also works for method addresses.)

. T}iylls can be costly if there are many collisions in the hash
table.

A
http://1amp.epfl

Multiple Inheritance:

Trampolines
class A {
int x = 0; C VMT-A Code: tramp
int fO {.}}
qasse Sremes O
inty = 0; r
int g0 {e y -3} f: ®——— Code: f
oy C VMT-B
Ccl =new CO; - Code: tramp
Aa = (A) cl; Téheager. @ tramp: @ rl =r 8
Cc2=(0) a; X tramp g:®1 return rl
Bb = (B) c2; header: @&- P_8
Ce3= (0 b; y: 0 Code: tramp_g
Z:00 rl =rl + 8
call g
cl =
a =cl; Code: g
c2 = a.tramp(); /* = a */
b = c2+8;
c3 = b.tramp(); /* = b-8 */
Multiple Inheritance:
Trampolines
class A {
int x = 0; C VMT-A Code: tramp
class B { tramp: @
HOS ol f: ® | ——— Code: f

class C extends A,B { C VMT-B

c "1" z = GC(}) Code: tramp
C = new N .

Aa = (A) cl; ';?ag”' ®] tramp: r/| rlt M g

Cc2=1(0) a; header: &f tramp_ngl return

Bb = (B) c2; y: ® Cod.

Ce3= (0 b 722 0

cl.z; // cl[16]

cl.x; /7 cl(4]

cl.y; // cl[12]

cl.g(); // t=c[8]; t2=t[8]; call t2;

a.f(); // t=a[@]; t2=t[8]; call t2;

b.g(); // t=b[0]; t2=t[8]; call t2;

A
htp://amp.epfl

=
O

Implementation of OO: Multiple inheritance

Implementation of OO: Optimizations

Multiple Inheritance:
Trampolines

¢ Third approach: Trampoline functions.

¢ We give each object several headers, one
for each extended class.

¢ We add trampoline functions that changes
the view of the object from one class to
another in an efficient way.

htp://1amp. epf

Multiple Inheritance:

Trampolines
class A {
int x = 0; C VMT-A Code: tramp
int fO {.}}
cees B { tramp: @
inty = 6; r
ANt g0 {e v w3} f: ®——— Code: f
class C extends A.B {
0 C VMT-B
int z = 0:) q
Ccl = new CQO): : /|—> Code: tramp
LI | lman
Cc2=(0) a; : t @ return rl
Bb = (B) c2; header: &; ramp_g
Ce3= (0 b; y: 0 Code: tramp_g
z: 0
call g
cl=®
a =cl; Code: g
c2 = a.tramp(); /* = a */
b =c2+8@— —
c3 = b.tramp(); /* = b - 8 */

Adv
http://1amp. epfl .ch/ce:

Optimizing OO-Programs

¢ In modern machines a jump to a known address
is much faster than a jump to an address fetched
from a table.

¢ Dynamic dispatch also makes inlining and
interprocedural analysis harder.

¢ Possible solutions: Wholq[program optimization,
link time optimization, JIT compilation, or
runtime optimizations.

¢ When we have the whole program we can turn
many dynamic properties into static properties.

Adv
hetp://amp.epf .t




0
o
o}

Implementation of OO: Optimizations

Implementation of FPL

Inline caching

¢ Many dynamic calls actually go to the same
class all the time.

¢ For each call site remember the actual
target of the last call.

¢ Next time jump directly to this location,
and check if we end up in the right place.

Polymorphic Inline Caching

¢ Polymorphic inline caching can be
implemented with an if then else search
tree:

v.f()
—_—
if c.header < C {
if c.header < B A.f() else B.f()
} else {
if c.header < D C.f() else D.f()
}

Implementation of Functional
Programming Languages

¢ There is no common agreement on exactly what a
functional programming language is. But usually
such a language should have at least one of the
following concepts:

¢ No statements - only functions (or expressions).

¢ Higher order functions.

¢ Pureness (no side effects).

¢ Laziness.

¢ Automatic memory management (Garbage collection.)

.
o
o]

Implementation of OO

Implementation of FPL

Polymorphic Inline Caching

¢ If a call site is polymorphic inline caching
can lead to degraded performance.

¢ Solution: Polymorphic inline caching,
remember more than one target address.

OO: Summary

¢ Implementing OO efficiently means
implementing inheritance efficiently.

¢ There are several possible solution available and
there is still research going on in this area.

¢ One of the most successful techniques for
optimizing OO is to do it at runtime using JIT
compilation - something we will look closer at
later in the course.

Higher Order Functions

¢ In Eins (and in C) you have “second”-order functions.
+ That is, functions are also values in the language: you can take
their addresses and pass them around and apply them.
def apply(f: (Int) => Int, x: Int): Int = f(x);
+ These functions can be represented with just a function pointer,
i.e., the address of the function.

¢ Functions that take functions as arguments are called

¢ For a language to have interesting higher order functions
ou neec? to ge able to create new functions at runtime.
.g., in Scala you can write:
val f:(Int => Int) = x => x + 1;




B
i

Higher Order Functions

¢ To get really interesting functions at runtime you
need to be able to capture the of the
function.
¢ A free variable is a variable that is not bound by the
definition of the function. (y is free in x => x+y.)
def f(y:Int):(Int => Int) = x => x +
¢ In order to do this we need closures.

¢ A closure is a data structure that contains a
function pointer and a way to access all free
variables of the body of the function.

A
http://1amp.epfl

Implementation of FPL

Higher Order Functions

¢ This is more or less the way Scala implements
functions.

¢ To make it more general we can make all closures

implement the Function interface:
public interface Functionl {

public abstract java.lang.Object apply(java.lang.Object a@);
}

¢ We also need to take care of local (mutable)
variables that are captured by the function. This can
be done by turning them into references.

Implementation of FPL

Pure Functional Languages

¢ In a pure functional language there are no side
effects.

¢ This includes no updates of variables. That is,
variables are immutable.

¢ Variables are, like variables in mathematics, just names
for values.
¢ If wesay x = 42; then we give the value 42 a new
name: X, from now on x and 42 are interchangeable.
¢ With a pure functional language it is possible to
do equational reasoning.

B
i

Higher Order Functions

¢ Inan OO language a closure can be implemented as an object with a
single method and several instance variables.

def f(y:Int):(Int => Int) = x => x + y;
f(42) (17)

—
class F {
int y;
public F(int y) { this.y =y; }
public int apply(int x) {
return x+y;

}

public F f(int y) = new F(y);
f(42) .apply(17);

htp://1amp. epf

Implementation of FPL

Higher Order Functions

def f(y:Int):(Int => Int) = {
var z = y*2;
val f = x=>x+z;

class IntRef {
int v;
public IntRef(int i) {v=i;}

z =2z +1; public set(int i) {v=i;}
13 }
}
_ public F f(int y) = {
class F { IntRef z = new IntRef(y*2);
IntRef y; F f = new F(z);
public F(IntRef y) { z.set(z.v + 1);
this.y =y; } return f;
public int apply(int x) { }
return x+y.v;

Adv
http://1amp. epfl .ch/ce:

Implementation of FPL

Lazy Evaluation

¢ With lazy evaluation, an expression is not
evaluated unless its value is demanded by
some other part of the computation.

¢ In contrast, strict languages (Java, ML, C,

Erlang) evaluate each expression as the
control flow reaches it.

Adv
hetp://amp.epf .t




£
i
g
)

Call-by-Name Evaluation

¢ Most languages pass function arguments
using call-by-value:
¢+ i.e. all arguments are evaluated before a
function is called.

¢ e.g. in the expression f (g(x+y)), first (x+y) is
evaluated then the function g is called before
the function f is called.

¢ If the function f doesn’t use its argument then
the evaluation of g and of x+y is done in vane.

Adva
http://1amp. epf .ch

Implementation of FPL

Call-by-Name Evaluation

¢ Scala provides call-by-name with explicit
def parameters.

¢ A problem with call-by-name is that a
thunk may be executed many times.
f(x) = x+x; istranslated to

f(x) X(O)+x();

Adva
htp://1amp. epf.ch

Implementation of FPL

Call-by-Need

Conceptually a thunk for x+y can be implemented as:
class Thunk {
res = null;
apply() = {
if res == null then res = x+y
else res

}
}

Adva
hcp://1amp. epf .ch

Implementa

Call-by-Name Evaluation

¢ Call-by-name evaluation avoids this problem by
not evaluating the arguments, instead a thunkis
created for each argument.

¢ A thunk is a function that can be called to
compute the value on demand.
f(g(x+y)) istranslated to
FCO=>g(()=>x+y))

¢ Any use of the argument in f is replaced by an application
of the function:
f(x) = x; istranslated to
fx) = x0;

Adva
hcp://1amp. epf.ch

Call-by-Need

¢ With call-by-need each thunk is only
evaluated once.

¢ This is implemented by giving each thunk a
memo slot that stores the evaluated value;
each evaluation of the thunk first checks
the memo slot: if it is empty the expression
is evaluated and stored in the slot,
otherwise the value in the slot is returned.

Adva
hcp://amp. epf .ch

Call-by-need

¢ A thunk can also be implemented just as
two words <thunk_function, memo_slot>

¢ When the thunk is evaluated both fields are
updated: the memo slot with the value and
the function with a new function that
returns the value.

Adva
hcp://amp. epf .ch




£
i
g
)

Optimization of FP

+ Functional programs tend to use many small
functions. Modern hardware is optimized for
imperative programs with few large functions,
i.e,, function calls are relatively expensive.

¢ Hence it can be profitable to reduce the number of
function calls and increase the size of functions.

¢ This can be done by inline expansion.

Adva
http://1amp. epf .ch

Implementation of FPL

Inline Expansion

¢ If inline expansion is applied

indiscriminately, the size of the program
explodes.

¢ To limit the code growth we can:

1. Expand only frequent call sites.
2. Expand only small functions.

3. Expand functions called only once, and
perform dead function elimination.

Adva
htp://1amp. epf.ch

Implementation of FPL

Inline Expansion

def loop(int x, int max, int y) =
if (x > max) y
else loop(x + 1, y * y);

def f(int z) =
loop(1,10,z);
9
def f(int z) = {
val x = 1; val max = 10; val y = z;
if (x > max) y
else loop(x + 1, max, y * y);

Adva
hcp://1amp. epf .ch

Implementa

Inline Expansion

¢ Inline expansion or inlining is an optimization
where a function call is replaced by the body of
the function.

¢ If this is done in a stage in the compiler where all
independent names are replaced by unique
symbols then the process is quite straightforward.
Otherwise the formal parameters need to be
renamed (a-converted).

Adva
hcp://1amp. epf.ch

Inline Expansion

¢ If we inline a recursive function just as any
other function we would probably end up
with a call to the original function. Either
directly after the first iteration or after a
while.

Adva
hcp://amp. epf .ch

Inline Expansion

¢ To remedy this we can bring the definition
of the recursion with us in the inlining by
splitting the function into a prelude and a
loop header.

Adva
hcp://amp. epf .ch




B
i

d

Inline Expansion

loop(int x, int max, int y) =
if (x> max)
else loop(x + 1, y * y);

&

e

def f(int z) =

loop(1,10,z);

def f(int z) = {

val x = 1; val max =
val loop =
(int xX, int maxX, int yX) =>
if (xX > maxX) yX
else loop(xX + 1, maxX, yX * yX);
if (x > max) y
else loop(x + 1, max, y * y);

10; val y = z;

A
http://1amp.epfl

Implementation of FPL

de

de

de

Loop-Invariant Hoisting

loop(int x, int max, int y) =
if (x> max)
else loop(x + 1, y * y);

&

&

f(int z) =
loop(1,10,z);

f f(int z) = {
val x = 1; val max = 10; val y = z;
val loop =
(int xX, int yX) =>
if (xX > max) yX
else loop(xX + 1, yX * yX);
if (x > max)
else loop(x + 1, y * y);

Implementation of FPL

Inline Expansion
& constant prop

loop(int x, int max, int y) =
if (x > max) y
else loop(x + 1, y * y);

f(int z) =
loop(1,10,2);

f@int z) = {
val x = 1; val max = 10; val y = z;
val loop =
(int xX, int yX) =>

if (xX > 10) yX

else loop(xX + 1, yX * yX);
if (x > 10) y
else loop(x + 1, y * y);

B
i

Loop-Invariant Hoisting

¢ We can avoid passing around values that
are the same in each recursive call by using
loop-invariant hoisting.

¢ Just let the constant value become a free
variable.

¢ In our example lift max from an argument
to a free variable.

htp://1amp. epf

Implementation of FPL

Inline Expansion

¢ Inline expansion in itself can be useful since the
overhead for a function call and return is
removed, but the real benefit comes from
applying standard optimizations on the inline
expanded program.

¢ Constant propagation and folding, dead code and
unreachable code elimination all work better
when the scope (of a function) is increased.

Adv
http://1amp. epfl .ch/ce:

Implementation of FPL

Inline Expansion
& copy prop

def loop(int x, int max, int y) =
if (x > max) y
else loop(x + 1, y * y);

def f(int z) =
loop(1,10,2);

EN

def f(int z) = {
val x = 1; val max = 10; val y = z;
val loop =
(int xX, int yX) =>

if (xX > 10) yX

else loop(xX + 1, yX * yX);
if (1> 10) z
else loop(l + 1, z * z);

Adv
hetp://amp.epf .t

10



B
i

Inline Expansion
& constant folding

de

&

loop(int x, int max, int y) =
if (x > max) y
else loop(x + 1, y * y);

def f(int z) =
loop(1,10,z);

def f(int z) = {
val loop =
(int xX, int yx) =>
if (xX > 10) yX
else loop(xX + 1, yX * yX);
. loop(2, z * z);

Implementation of FPL

Tail Calls

¢ A tail call can be transformed from a call to a
jump as follows:
1. Move actual parameters into argument registers (and
stack positions).
2. Restore callee-save registers.
3. Pop the stack frame of the calling function.
4. Jump to the callee.
¢ If both the caller and the callee have few arguments so
that they all fit in argument registers then step 1 might
be eliminated bfl a coalescing register allocator, and step
2 and 3 might also be unnecessary: the tail call becomes
just a jump.

Implementation of FPL

Optimization of Lazy FP

¢ A lazy language allows us to do some
optimizations that would not be safe in a
strict language:
¢ Invariant hoisting.
¢ Dead code removal (of function calls).
¢ Strictness Analysis.

B
i

Efficient Tail Calls

¢ A function call f(x) within a body of a
function g is in a tail position if calling f is
the last thing g will do before returning.

¢ We can save stack space and execution time
by turning the call to f into a jump to f.

¢ For some languages, like Erlang and
Scheme, proper tail calls is not an
optimization but a requirement.

Implementation of FPL

Equational Reasoning

¢ In a pure language we can perform
[-substitution.
¢ That is, replacing a call to a function with a
version of the body of the function where each
occurrence of the formal parameter is replaced
by the argument.
*((x)=>x+x)(42) p—42+42

¢ Basically: we can perform function calls at
compile time.

Implementation of FPL

Optimization of Lazy FP

¢ Invariant hoisting:
def (i) = {
def g(j) = h(i) * j;
&
}

def f(i) = {
val h = h(i);
def g(j) =h * j;
g
}

¢ If h(n) loops infinitely but the result of f(n) is never called
a strict language would loop in the call to f(n).

11



B
i

Optimization of Lazy FP

¢ Dead code removal:
def f(i:int): int = {
var d = g(x);
i+ 25
}
¢ In an imperative language g(x) can not be
removed, there might be side effects.

¢ In a strict pure language removing g(x) might
turn a non-terminating computation into a
terminating one.

A
http://1amp.epfl

B
i

Optimization of Lazy FP

¢ The overhead of thunk creation and evaluation is quite

high, so they should only be used when needed.

¢ If a function f(x) is certain to evaluate its argument x,
there is no need to create a thunk for x.

¢ We can use a strictness analysis to find out which

arguments should be evaluated at the call site and which

should be passed as thunks.

*

conservative approximation must be used, i.e., assume
that arguments who can not be proved strict are non-
strict.

htp://1amp. epf

In general exact strictness analysis is not computable - a

12



