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Instruction Scheduling: Delay slots
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Simple Execution Model
5 Stage pipe-line:

Cycle: 1 2 3 3 5

fetch decode | execute | memory |write back|

Fetch: get the next instruction.
Decode: figure out what that instruction is.
Execute: perform ALU operation.

address calculation in a memory op
Memory: do the memory access in a mem. op.
Write Back: write the results back.

A
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Handling Branch Instructions

Problem: We do not know the location of the
next instruction until later.
¢ after DE in jump instructions
¢ after EXE in conditional branch instructions

Branch IF DE EXE N\MEM WB

?7?? IF DE ﬁE MEM | WB
?2?2? @ DE | EXE | MEM | wB

Inst \—» IF DE | EXE | MEM | WB

What to do with the middle 2 instructions?

A
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Instruction Scheduling: Machine Model

ction Scheduling: Delay slots - Branches

Simple Machine Model

¢ Instructions are executed in sequence.
¢ Fetch, decode, execute, store results.
¢ One instruction at a time.
¢ For branch instructions, start fetching from
a different location if needed.
¢ Check branch condition.

¢ Next instruction may come from a new location
given by the branch instruction.

Advanc
Nt/ /Lamp.ept

Execution Models

time (cycles)

Model 1
Inst1 ‘ IF ‘ DE ‘EXE ‘MEM‘ WB ‘

Inst 2 IF ‘ DE

EXE ‘MEM‘ WB ‘

One instruction finish every 5 cycles.

Cycle: 1 2 3 4 5 6 7 8 9 10
Inst 1 ‘ IF DE | EXE | MEM | WB
Inst 2 IF DE | EXE | MEM | WB Model 2
Inst 3 F DE EXE | MEM | WB
Inst4 IF DE | EXE | MEM | WB
Inst5 IF DE | EXE | MEM | WB

One instruction finish every cycle.

A
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Handling Branch Instructions

What to do with the middle 2 instructions?

1. Stall the pipeline in case of a branch until we
know the address of the next instruction:
¢ wasted cycles

Cycle: 1 2 3 4 5 6 7 8

IF DE EXE MEM WB

IF DE EXE MEM WB
Empty | Empty Pty | Empty | Empty

DE EXE MEM WB
Empty | Empty | Empty | Empty

Branch

mpty
Next inst \4 IF DE | EXE | MEM | WB

A
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Handling Branch Instructions Branch Delay Slot(s)
What to do with the middle 2 instructions?
2. Delay the action of the branch

¢ Make branch affect only after two instructions

¢ Following two instructions after the branch get
executed regardless of the branch

MIPS has a branch delay slot

¢ The instruction after a conditional branch gets executed
even if the code branches to target

¢ Fetching from the branch target takes place only after

Instruction Scheduling; Delay slots - Branches
Instruction Scheduling; Delay slots - Branches

that
Branch IF DE | EXE \MEM | WB
Next seq inst IF | DE /&E MEM | WB ble (o, e
|:| Branch delay slot
Next seq inst ﬁ DE | EXE | MEM | WB
Branch target inst “—| IF | DE | EXE | MEM | WB What instruction to put in the branch delay

slot?

Filling the Branch Delay Slot Filling the Branch Delay Slot

Move an instruction from above the branch.

Simple Solution: Put a no-op. prev—instr

ble r3, 1bl
Branch delay slot

¢ Moved instruction executes iff branch executes.

¢ Get the instruction from the same basic block as the
branch.

¢ Don’t move a branch instruction!
¢ Instruction need to be moved over the branch.
¢ Branch does not depend on the result of the inst.

Wasted instruction, just like a stall.

ble r3, 1bl
nop Branch delay slot

Instruction Scheduling; Delay slots - Branches
Instruction Scheduling; Delay slots - Branches

Filling the Branch Delay Slot Filling the Branch Delay Slot
Move an instruction from the branch target.

Move an instruction dominated by the ¢ Instruction dominated by target.

branch instruction. ¢ No other ways to reach target (if so, take care of them).

ble r3. 1bl ¢ If conditional branch, instruction should not have a lasting
— effect if the branch is not taken.

dom_instr Branch delay slot

1b1: ble r3, 1bl

instr Branch delay slot

Instruction Scheduling; Delay slots - Branches
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Instruction Scheduling: Delay slots - Example of filling

Instruction Scheduling: Delay slots - Example of filling

Load Delay Slots

Problem: Results of the loads are not
available until end of MEM stage

Load IF DE EXE MEM ~ WB

IF DE EXE MEM WB
Use of load

If the value of the load is used...what to do??

Ad
nttp: //1amp.

Example

r2 = *(rl + 4)
r3 = *(rl + 8)
rd =r2 +r3
r5=r2-1
goto L1

Advancer
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Example

r2
r3
noop

rd =r2 +r3
goto L1

noop

x(r1 + 4)
*(r1 + 8)
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Load Delay Slots

If the value of the load is used...what to do?

Always stall one cycle.

¢ Stall one cycle if next instruction uses the value.
¢ Need hardware to do this.

¢ Have a delay slot for load.
¢ The new value is only available after two instructions.
¢ If next inst. uses the register, it will get the old value.

Load IF DE  EXE MEM ~ WB
277 IF DE EXE EM WB
Use Of Ioad IF DE EXE MEM WB
Example

r2 = *(rl + 4)
r3 = *(rl1 + 8)
noop

rd =r2 +r3
r5=r2-1
goto L1

noop

Assume 1 cycle delay on branches
and 1 cycle latency for loads

http://Lamp.ep

Example

r2 = *(rl + 4)
r3 = *(rl + 8)
r5=r2 -1

goto L1
noop
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Example

r2 = *(rl + 4)
r3 = *(rl + 8)
r5=r2-1
goto L1

rd =r2 +r3

Ad
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From a Simple Machine Model
to a Real Machine Model

¢ Many pipeline stages.
¢ MIPS R4000 has 8 stages.
¢ Different instructions take different amount of
time to execute.

e mult 10 cycles
¢ div 69 cycles
¢ ddiv 133 cycles

¢ Hardware to stall the pipeline if an instruction
uses a result that is not ready.

Advancer
Nt //1amp.epf 1

Instruction Scheduling

Goal: Reorder instructions so that pipeline
stalls are minimized.

Constraints on Instruction Scheduling:
¢ Data dependencies.
+ Control dependencies .
¢ Resource constraints.

Ad
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Instruction Scheduling: Introduction

Instruction Scheduling: Data Dependencies

Example
r2 = *(rl + 4)
r3 = *(rl + 8)
r5=r2-1
goto L1
r4é =r2 +r3

Final code after delay slot filling

nttp://a

Real Machine Model cont.

¢ Most modern processors have multiple
execution units (superscalar).
¢ If the instruction sequence is correct, multiple
operations will take place in the same cycles.
¢ Even more important to have the right
instruction sequence.

Data Dependencies

¢ If two instructions access the same variable, they
can be dependent.
¢ Kinds of dependencies:
o True: write — read. (Read After Write, RAW)
o Anti: read — write. (Write After Read, WAR)
¢ Anti (Output): write — write. (Write After Write, WAW)
¢ What to do if two instructions are dependent?
¢ The order of execution cannot be reversed.
¢ Reduce the possibilities for scheduling.
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Instruction Scheduling: Data Dependencies

Instruction Scheduling: Control Dependencies

Computing Data Dependencies

¢ For basic blocks, compute dependencies by
walking through the instructions.
¢ Identifying register dependencies is simple.
¢ is it the same register?
¢ For memory accesses.
¢ simple: base + offsetl ?= base + offset2
¢ data dependence analysis: a[2i] ?= a[2i+1]
¢ interprocedural analysis: global ?= parameter
¢ pointer alias analysis: pl ?=p

Representing Dependencies

¢ Using a dependence DAG, one per basic block.
¢ Nodes are instructions, edges represent dependencies.

1: r2 = *(rl + 4) 1 2
2: r3 =*(rl + 8)

3: r4=r2+r3 /&/
4: r5=r2 -1 4 3

Edge is labeled with latency:
v(i — j) = delay required between initiation times of
iand j minus the execution time ired by i.

Example

1: r2 = *(rl + 4)
2: r3 = *(r2 + 4) )
3: rd =r2 +r3 1 2
4: r5=1r2-1 /k/
2
4 3

Another Example

Control Dependencies and
Resource Constraints

¢ For now, let’s only worry about basic
blocks.

¢ For now, let’s look at simple pipelines.

1: r2 = *(rl + 4)
2: *(rl + 4) =713 )
3: r3=r2+r3 1 2
4: r5 =r2 - 1 / & /
1
4 3
Example
¢ Assume:
¢ Memory cached, available in 1 cycle.
¢ Mul 3 cycles
¢ Div 4 cycles

¢ Other 1 cycle
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Instruction Scheduling: List scheduling

Instruction Scheduling: List scheduling

Example
Results available in

1: LA rl,array 1 cycle
2: LD r2,4(rl) 1 cycle
3: AND r3,r3,0x00FF 1 cycle
4: MULC ré,r6,100 3 cycles
5: ST r7,4(r6)

6: DIVC r5,r5,100 4 cycles
7: ADD rd,r2,r5 1 cycle
8: MUL r5,r2,rd4 3 cycles
9:

ST ra,0(rl)
14 cycles!

12 3 4 st st 5 6 st st st 7|8 9

List Scheduling Algorithm

A o Idea:

+ Do a topological sort of the dependence DAG.

¢ Consider when an instruction can be scheduled
without causing a stall.

¢ Schedule the instruction if it causes no stall and all
its predecessors are already scheduled.

4 ¢+ Optimal list scheduling is NP-complete.

¢ Use heuristics when necessary.

List Scheduling Algorithm

¢ Create a dependence DAG of a basic block.
¢ Topological Sort.
READY = nodes with no predecessors.
Loop until READY is empty.
Schedule each node in READY when no stalling

READY +=nodes whose predecessors have all been
scheduled.

Heuristics for selection

Heuristics for selecting from the READY list
(the priority of the node) :
1. pick the node with the longest path to a leaf
in the dependence graph.
2. pick a node with the most immediate
successors.

3. pick a node that can go to a less busy pipeline
(in a superscalar implementation).

Heuristics for selection

Pick the node with the longest path to a leaf
in the dependence graph

Algorithm (for node x)
¢ If x has no successors d, =0
¢ dx = MAXVyEsucc(x)( dy i V(X —>Y))

Use reverse breadth-first visiting order

Heuristics for selection

Pick a node with the most immediate
SUCCessors.

Algorithm (for node x):
+ = number of successors of x
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Heuristics for selection from the
READY list

The priority of the node:

1. pick the node with the longest path to a leaf
in the dependence graph: Largest d,_

2. pick a node with the most immediate
successors: Largest f,.

Ad
nttp: //1amp.

Example
LA rl,array ! 3
S LD r2,4(rl) 1 3
: AND r3,r3,0x00FF 2 6
: MULC r6,r6,100
© ST r7,4(r6) ™ 4
: DIVC  r5,r5,100 7
: ADD  r4,r2,r5 y &
: MUL r5,r2,r4
. ST r4,o(rl) 8 9
Example
d=5 d=0 d=3
11 (3 ¢ £=1
1,3,4,6 11 31
READY ={ 6,1,4, 3} d=4 d=7 d=0
2 ) f=1 6 ) f=1 £=0
™ 13
7 =2
Y N\
d=0 d=0
8 k=0 % =0
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Instruction Scheduling: List scheduling

- Example
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Results available in

Example
1: LA rl,array 1
2: LD r2,4(rl) 1
3: AND r3,r3,0x00FF 1
4: MULC r6,r6,100 3
5: ST r7,4(r6)
6: DIVC r5,r5,100 4
7: ADD rd,r2,r5 1
8: MUL r5,r2,rd4 3
9: ST r4,0(rl)

cycle
cycle
cycle
cycles

cycles
cycle
cycles

Example
d=5 - -
D O WS
1] 3|
HBRIDAL =] d=4 d=7 d=0
2 ) f=1 6 =1 5 f=0
;\\\ ,//Z
, ¥d=3
£=2
¥ N
d=0 d=0
8 =0 0 f=0
Example
d=5 - -
11 ()85 (08
' !
READY ={/,1,4,3} i o A4
2 )f=1 (6 )f1 (5 =0
™ 43
7 f=2
¥ N
d=0 d=0
7 8 =0 0 f=0
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READY ={7,3,5} READY={, 3,5}
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Advancer
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Example
1 3

Example

1 3

- Example
- Example
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READY ={3,5 ] d=0 READY ={3,5,8,9}
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Example Example

1 3 4

1 3 4

d=0

I READY ={5, 8,9} I READY =1, 8,9

©
-~ S
I
oo

Advancer
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Example Example
1 3 4 1 3 4
| READY = {8, 9} A READY ={,9}
2 6 5 2 6 5
7 7
d=0 d=0 d=0 d=0
/_\ 8 Jt=0 9 =0 8 Jt=0 9 =0
6|1|2]4]7]3]5 6|1]2]a]7]3]5]s

Example Example
1 3 4 1 3 4
| READY = {9} I READY ={ "}
g 2 6 5, g 2 6 5,
7 7
d=0 d=0
e 9 =0 e 9 =0
6]1]2[a]7[3]5]s 6]1]2]a]7[3]5]8]9
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1 3 4
READY ={ }
2 6 5,
7
8 9

Example
Results available in

rl,array 1 cycle

r2,4(rl) 1 cycle

r3,r3,0x00FF 1 cycle

r6,r6,100 3 cycles

r7,4(r6)

r5,r5,100 4 cycles

rd,r2,r5 1 cycle

r5,r2,r4 3 cycles

r4,0(rl)
3 4 st st 5 6 st st st 7 8

14 cycles

2 4,73 |5,8|9 US-I

9c

Resource Constraints

¢ Modern machines have many resource
constraints.
¢ Superscalar architectures:
¢ can run few parallel operations.
¢ but have constraints.

Resource Constraints of a
Superscalar Processor

Example:
¢ 1 integer operation, e.g.,
ALUop dest, srcl, src2# in 1 clock cycle

In parallel with

¢ 1 memory operation, e.g.,
LD dst, addr # in 2 clock cycles
ST src, addr #in 1 clock cycle

List Scheduling Algorithm with
Resource Constraints

¢ Represent the superscalar architecture as
multiple pipelines.
+ Each pipeline represents some resource.

List Scheduling Algorithm with
Resource Constraints

¢ Represent the superscalar architecture as
multiple pipelines
¢ Each pipeline represents some resource
¢ Example:
¢ One single cycle ALU unit.
¢ One two-cycle pipelined memory unit.

2 ALUop

MEM 1
MEM 2

11



List Scheduling Algorithm with Example
. (Shightly difRrent Fom previous example.)
Resource Constraints Sy ciffrect from s
2 B1: LA ri,array 1 d=4 3,d=0 7, d=2
g ) > b r2,4(r1) £=1 £=0 f=1
¢ Create a dependence DAG of a basic block. 2 r3.r3,0x00FF 1] 2|
3 . < B r6,8(sp) d=3 d=2 d=0
¢ Topological Sort | o 2 %=1 (6 %=1 (5 )f=0
& READY = nodes with no predecessors 6: ADD r5,r5,100 2\‘ ‘/1
® . . 7: ADD rd,r2,r5 7 d=1
3 Loop until READY is empty : 51214 L f=12
= Let n € READY be the node with the highest 7 Ea r4,e(r1) / \
priority EIREADY ={1,6,4,3) 8 )40 (9 420
5 Schedule n in the earliest slot il Luop | 1
that satisfies precedence + resource constraints S
Update READY —
Example Example
El1: LA ril,array d=0 d=2 ElLl: LA ril,array d=0 d=2
2 Lo r2,4(r1) ! 3)%=0 (4 g=1 E2: 1o r2,4(r1) ! 30 4=
E13: AND r3,r3,ox00FF 1 2] E13: AND r3,r3,ox00FF 1 2]
B4 LD r6,8(sp) d=3 d=2 d=0 B4 LD r6,8(sp) d=3 d=2 d=0
: I r7,4(r6) Z\fjl 6)f=1 (5)f=0 : I r7,4(r6) Z\fil 6)f=1 (5)f=0
Bl c: App r5,r5,100 1 6: ADD r5,r5,100 1
Edl7: ADD rd,r2,r5 2 7 d=1 7: ADD rd,r2,r5 2 7 d=1
Els: mMuL r5,r2,r4 f=2 8: MUL r5,r2,r4 f=2
Ho: s7 ra,0(r1) g Y‘ Ho: s7 ra,e(r1) }/ Y‘
= o d=0 d=0 = d=0 d=0
EREADY =(6,4,3} -2 g 90 g d=0 EREADY =(2,6,4,3 ) 8 929 (9 =0
E LUop 1 2 LUop -
EM 1 EM 1 2
EM 2 EM 2 2
Example Example
El1: LA ril,array d=0 d=2 ElLl: LA ril,array d=0 d=2
2 Lo r2,4(r1) ! 3)t=0 (4 g=1 E2: 1o r2,4(r1) ! 30 2=
E13: AND r3,r3,ox00FF 1 2] E13: AND r3,r3,ox00FF 1 2]
B4 LD r6,8(sp) d=2 d=0 B4 LD r6,8(sp) d=0
Ells: ST r7,4(r6) 2 6)¢=1 (5)f=0 : r7.4(r6) 2 6 5 )f=0
Bl c: App r5,r5,100 5 1 6: ADD r5,r5,100 2 1
E7: ApD ra,r2,rs 7 Td=1 7: ADD ra,r2,rs 7 gl
Els: mMuL r5,r2,r4 f=2 8: MUL r5,r2,r4 f=2
Ho: s7 ra,0(r1) }/ Y‘ Ho: s7 ra,e(ri) }/ Y‘
= d=0 d=0 = . d=0 d=0
EREADY =(6,4,3) 8 929 (9 =0 EREADY = (4,3} -7 8 929 (9 =0
EhiUop 1 6 EhiUop 1 6
EM1 2 EM1 2
EM 2 2 EM 2 2




Example Example
rl,array 1 3 d=0 rl,array 1 d=0
r2,4(r1) £=0 r2,4(ri) =0
r3,r3,0x00FF 1 r3,r3,0x00FF 1
r6,8(sp) r6,8(sp) =0
r7,4(r6) 2 6 r7,4(r6) 2 =0
r5,r5,100 2 1 r5,r5,100 2
rd,r2,r5 7 d=1 rd,r2,r5
r5,r2,r4 f=2 r5,r2,r4
r4,0(rl) }/ X z r4,0(rl) }/ \
{4,7,3) 8)ie (O {7,3} -5 8 )4 »
1 6 & 16
4 2 4 2
4 2 4 2
Example Example
rl,array 1 3 d=0 : LA rl,array 1 d=0
r2.4(r1) =0 1 LD r2,4(r1) £=0
r3,r3,0x00FF 1 : AND r3,r3,0x00FF 1
r6,8(sp) 1 LD r6,8(sp) =0
r7,4(r6) 2 6 2 ST r7,4(r6) 2 =0
r5,r5,100 2 1 : ADD r5,r5,100 2
rd,r2,r5 7 d=1 : ADD rd,r2,r5
r5,r2,rd f=2 : MUL r5,r2,rd
r4,0(rl) }/ X Ho: s7 r4,0(rl) 1
{7,3,5} 8 )40 (9 420 {READY ={3,5] 5,9 8 )90 4=
wop 1l - Ehivop 1 6 7
4 2 EM1 4 2
+ EM2 4 2
Example Example
rl,array 1 3 d=0 1: LA rl,array 1
r2,4(r1) =0 2: LD r2,4(rl)
r3,r3,0x00FF 1 3: AND r3,r3,0x00FF 1
r6,8(sp) 4: LD r6,8(sp) =0
r7,4(r6) 2 6 5: ST r7.4(r6) 2 =0
r5,r5,100 5 1 6: ADD r5,r5,100 5
rd,r2,r5 7 7: ADD rd,r2,r5
r5,r2,r4 8: MUL r5,r2,r4
: r4,0(rl) 1 1 9: ST r4,0(rl) 1
EADY ={3,5,8,9} 8 )40 (9 420 EADY ={5,8,9} g 420 4=
1.6 3 7 ALUop 1 6 3 7
4 2 EM1 4 2 5
42 M2 2




Example Example
El1: LA rl,array A1: LA rl,array
82: LD r2,4(rl) i ¢ E§2: LD r2,4(rl) ! 3 :
Ell3: AND r3,r3,0x00FF 1 B3 AND r3,r3,0x00FF 1 2
“j 4: LD r6,8(sp) o “j 4: LD r6,8(sp) o 6 5
Ells: ST r7,4(r6) Ells: ST r7,4(r6)
M 6: ADD r5,r5,100 2 l6: ADD r5,r5,100 2 1
Ed7: ADD rd4,r2,r5 7 7: ADD rd4,r2,r5 7
EQS8: MUL r5,r2,r4 EN8: MUL r5,r2,r4
Ho: s7 ra,e(r1) i i Ho: s7 r4,e(r1) 1 h
EREADY = 8,9} g 420 4=0 EREADY = {9} 8 9 420
Bhivop 1 6 3 s Bhivop 1 6 3 s
EM1 4 2 5 EM1 4 2 5 9
EM 2 42 EM 2 42
Example Register Allocation
p and Instruction Scheduling
A1 LA ri,array 1 3 g
2 LD r2,4(r1) 5
B3 AND r3,r3,0x00FF 1 E i L
Hll4: LD r6,8(sp) - Bl ¢ If register allocation is performed before
. P rrairs k3 instruction scheduling:
; 7: ADD r4:r2:r5 2 7 ; + the choices for scheduling are restricted.
Els: mMuL rs,r2,r4 E
Ho: s7 r,e(r1) i i :
HREADY ={ } 8 9 £
Bhilop 1 6 3 7 8 2
EM1 4 2 5 9
EM 2 42
Example Example
H 1w 200D 3| H 100 200 3|
& 2: ADD r3,r3,r2 A & 2: ADD r3,r3,r2 b\ 1
e 3: LD r2,4(r5) e 3: LD r2,4(r5)
&l 4: ADD ré,ré6,r2 K &l 4: ADD ré,ré6,r2 K
7; 3 7; False dependencies 3
g l 3 £ (Anti-dependencies) l 3
£ ALUop 2 4 4 £ 4
MEM1 1
3 How about using a different register?
MEM 2 1 3

14
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Instruction Scheduling: Across basic blocks
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Example
1
1: LD r2,e(rl) 31
2: ADD r3,r3,r2 2
3: LD r4,4(r5)
4: ADD ré,ré,rd
3
13
ALUop 2 |4 4
MEM1 1 3
MEM 2 1|3

Register Allocation
and Instruction Scheduling

¢ If register allocation is performed before
instruction scheduling;:
¢ the choices for scheduling are restricted.

¢ If instruction scheduling is performed
before register allocation:
¢ register allocation may spill registers.
+ will change the carefully done schedule!

Scheduling across basic blocks

¢ Number of instructions in a basic block is
small.

+ Cannot keep a multiple units with long
pipelines busy by just scheduling within a
basic block.

¢ Need to handle control dependencies.
¢ Scheduling constraints across basic blocks.
¢ Scheduling policy.

A path to B that does not execute A?

Moving across basic blocks

Downward to adjacent basic block

A

Moving across basic blocks

Upward to adjacent basic block

Control Dependencies

Constraints in moving instructions across basic blocks

YOIl if .. )
if (.. .) d = *(al)
a=bopc
Not allowed if e.g Not allowed if e.g.
if (c 1=0) if(valid_address(al))
a=b/c d = *(al)

15



Trace Scheduling

¢ Find the most common trace of basic
blocks.
¢ Use profile information.
¢ Combine the basic blocks in the trace and
schedule them as one block.
¢ Create compensating (clean-up) code if the
execution goes off-trace.

Trace Scheduling

Trace Scheduling

&
5
o]
g
&
A
g

Instruction Scheduling: Trace Scheduling

Instruction Scheduling: Trace Scheduling

Trace Scheduling

Trace Scheduling

Trace Scheduling
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Large Basic Blocks via
Code Duplication

¢ Creating large extended basic blocks by
duplication.

¢ Schedule the larger blocks.

*_A *_A
B | [ ¢ ] [ B ] L c ]
\E j/ l !
D . D | . D |
E [ E ] [ E ]
Loop Example
Machine:

¢ One load/ store unit
¢load 2 cycles
¢ store 2 cycles
¢ Two arithmetic units
¢add 2 cycles
¢branch 2 cycles (no delay slot)
¢+ multiply 3 cycles
+ Both units are pipelined (initiate one op each
cycle)

&
g
3
%)
=
£
g
3
&
g
Z

Instruction Scheduling: Loop Scheduling

Summary

Scheduling for Loops

¢ Loop bodies are typically small.

¢ But a lot of time is spend in loops due to
their iterative nature.

¢ Need better ways to schedule loops.

Loop Example

Source Code

for i =1 toN
A[i] = A[i] * b

Assembly Code
loop:
1d r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ble r2, r5, loop

17



Loop Example

Assembly Code

Loop Unrolling

Oldest compiler trick of the trade:

& r6, (r2) 5 Unroll the loop body a few times
= mul r6, r6, r3 = Pros:
& st r6, (r2) 2 .
E ﬂ':d fi- r2, : E ¢ Creates a much larger basic block for the body.
7§ Schedulz (eg ;yélerssiaeroi‘t)gration) 7§ ¢ Eliminates few loop bounds checks.
$ ] st H Cons:
g Mem id st g ¢ Much larger program.
2 ALUL mu) | ble o 2 o Setup code (# of iterations < unroll factor).
. mul ° ¢ Beginning and end of the schedule can still have
ALUZ =dd unused slots.
add
Loop Example Loop Unrolling
M loop: loop: &
£ 1d r6, (r2) 1d r6,(r2) £
5 mul r6, r6, r3 mul r6, r6, r3 5 .
& st r6, (r2) st r6,(r2) Bl ¢ Rename registers.
= add r2, r2, 4 add r2, r2, 4 & . ; . . . .
3 ble r2, r5, loop 1d r6,(r2) S ¢ Use different registers in different iterations.
& mul r6, r6, r3 &
3 st r6,(r2) 3
2 add r2, r2, 4 2
il Schedule (8 cycles per iteration) ble r2, r5, loop f;
é Mem *“ id =E £ id =E *E
= ALU1 mul — mul — ble = =
mul mul
ALU2 add — add —
Loop Example Loop Unrolling
- 6. (r2 % re. (r2) :
£ 1d ré6, (r , £ ;
% mul ré ﬁs,)r3 mul r6. ré, r3 ] ¢ Rename registers.
4 ggd :g I{;?)‘; :5 d :g ﬁ;z) 4 4 + Use different registers in different iterations.
5 1d_r6, (r2) d r7, (r2) c
E mul r6, r6, r3 mul r7, r7, r3 2 o .
3 st r6, (r2) st r7, (r2) gl ¢ Eliminate unnecessary dependencies.
g add r2, r2, 4 add r2, r2, 4 B . . . .
g ble r2, r5, loop ble r2, r5, loop g ¢ again, use more registers to eliminate true, anti
i i and output dependencies.
¢+ eliminate dependent-chains of calculations
when possible.
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Loop Example

loop: loop:
1d r6, (r2) 1d r6, (rl)
mul r6, r6, r3 mul r6, r6, r3
st r6, (r2) st r6, (rl)
add r2, r2, 4 add r2, ri1, 4
1d r7, (r2) 1d r7, (r2)
mul r7, r7, r3 mul r7, r7, r3
st r7, (r2) st r7, (r2)
add r2, r2, 4 add r1, r2, 4
ble r2, r5, loop ble ri, r5, loop
Loop Example
loop loop:

1d r6, (rl) 1d r6, (rl)
mul r6, ré6, r3 mul r6, r6, r3
st r6, (rl) st r6, (rl)
add r2, rl, 4 add r2, ri1, 4
1d r7, (r2) 1d r7, (r2)
mul r7, r7, r3 mul r7, r7, r3
st r7, (r2) st r7, (r2)
add rl, add rl1, rl1, 8
ble r1, r5, loop ble r1, r5, loop

Advancer
Nt //1amp.epf 1

Software Pipelining

¢ Try to overlap multiple iterations so that

the slots will be filled.

¢ Find the steady-state window so that:

¢ all the instructions of the loop body is
executed.

¢ but from different iterations.

Ad
nttp: //1amp.

o
g
g
%)
S
i
g
el
3
g
)

Instruction Scheduling: Loop Scheduling

Loop Example

loop: loop:
1 ré, (rl) 1d r6, (rl)
mul r6, ré6, r3 mul r6, r6, r3
st r6, (rl) st r6, (rl)
add r2, ri1, 4 add r2, rl, 4
1d r7, (r2) 1d r7, (r2)
mul r7, r7, r3 mul r7, r7, r3
st r7, (r2) st r7, (r2)
add rl1, r2, 4 add ril,
ble ri1, r5, loop ble rl, r5, loop

Loop Example
looez

d r6, (rl)

mul r6, r6, r3

st r6, (rl)

add r2, ri1, 4

1d r7, (r2)

mul r7, r7, r3

st r7, (r2)

add r1, r1, 8

ble r1, r5, loop

Schedule (4.5 cycles per iteration)
Mem E id £ id = st = st
ALUl mul — mul — ble e
mul mul

ALUZ == add = add

Loop Example
Assembly Code
loop:
1d ré, (r2)
mul ré, r6, r3
st ré, (r2)
add r2, r2, 4
ble r2, r5, loop
Schedule
Id 1d2 st 1d3 1d4 st2 st3
Id Id2 st 1d3 Id4 st2
mul mul2 ble] mul3 mul4 | ble2
mul mul2 ble | mul3 muld
mul mul2 mul3
add add2 add3
add add2

st3

ble2
mul4

add3
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Loop Example

Assembly Code
loop:
1d re, (r2)
mul ré, r6, r3
st ré, (r2)
add r2, r2, 4
ble r2, r5, loop

Schedule (2 cycles per iteration)

1d3

st 1d3

mul2 |ble
mul2

add

Loop Example
4 iterations are overlapped.
¢+ values of r3 and r5 don’t change

¢ 4 regs for &A[i] (r2)
¢ each addr. incremented by 4*4

¢ 4 regs to keep value Ali] (r6)
loop:
¢ Same registers can be reused 1ld
after 4 of these blocks rggl
generate code for 4 blocks, add
otherwise need to move . ble

1d3

st 1d3

mul2 |ble
mul2

add

ré, (r2)

ré, r6, r3

ré, (r2)

r2, r2, 4

r2, r5, loop

Software Pipelining

¢ Optimal use of resources.
¢ Need a lot of registers.

¢ Values in multiple iterations need to be kept.

¢ Issues in dependencies.

¢ Executing a store instruction in an iteration before
branch instruction is executed for a previous iteration

(writing when it should not have).

¢ Loads and stores are issued out-of-order (need to
figure-out dependencies before doing this).

¢ Code generation issues.

¢ Generate pre-amble and post-amble code.
¢ Multiple blocks so no register copy is needed.

Advan
http://1amp.ep
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