Partial Redundancy Elimination, Loop Optimization \& Lazy Code Motion

```
Advanced Compiler Techniques
    2005
    Erik Stenman
    Virtutech
```


Redundant Expressions

An expression is redundant at a point p if, on every path to p

1. It is evaluated before reaching p, and
2. None of its constituent values is redefined before p

Example

Some occurrences of $\mathrm{b}+\mathrm{c}$ are redundant

Not all occurrences of $b+c$ are redundant!

Loop Invariant Expressions

Another example:

Loop invariant expressions are partially redundant.

- Partial redundancy elimination performs code motion.
- Major part of the work is figuring out where to insert operations.

Loop Optimizations

- Loop Optimization is important because most of the execution time occurs in loops.
- First, we will identify loops.
- We will study three optimizations:
- Loop-invariant code motion.
- Strength reduction.
- Induction variable elimination.
- We will not talk about loop unrolling which is another important optimization technique.

What is a Loop?

- Set of nodes

- Loop header
- Single node
- All iterations of loop go through header
- Back edge

Defining Loops With Dominators

Recall the concept of dominators:

- Node n dominates a node m if all paths from the start node to m go through n.
- The immediate dominator of m is the last dominator of m on any path from start node.
- A dominator tree is a tree rooted at the start node:
- Nodes are nodes of control flow graph.
- Edge from d to n if d is the immediate dominator of n.

Identifying Loops

- A loop has a unique entry point - the header.
- At least one path back to header.
- Find edges whose heads (>) dominate tails (-), these edges are back edges of loops.
- Given a back edge $\mathrm{n} \rightarrow \mathrm{d}$:
- The node d is the loop header.
- The loop consists of n plus all nodes that can reach n without going through d (all nodes "between" d and n)

```
Loop Construction Algorithm
loop(d,n)
    loop = {d}; stack = \varnothing; insert(n);
    while stack not empty do
        m = pop stack;
        for all p \in pred(m) do insert(p);
insert(m)
    if m}\not\in\mathrm{ loop then
        loop = loop }\cup{m}
        push m onto stack;
```


Loop Preheader

- Many optimizations stick code before loop.
- Put a special node (loop preheader) before loop to hold this code.

Loop Optimizations

- Now that we have the loop, we can optimize it!
- Loop invariant code motion:
- Move loop invariant code to the header.

Loop Invariant Code Motion

If a computation produces the same value in every loop iteration, move it out of the loop.

Loop Invariant Code Detection Algorithm

for all statements in loop
if operands are constant or have all reaching definitions outside loop, mark statement as invariant
do
for all statements in loop not already marked invariant
if operands are constant, have all reaching definitions outside loop, or have exactly one reaching definition from invariant statement
then mark statement as invariant
until there are no more invariant statements

Detecting Loop Invariant Code

- A statement is loop-invariant if operands are
- Constant,
- Have all reaching definitions outside loop, or
- Have exactly one reaching definition, and that definition comes from an invariant statement
- Concept of exit node of loop
- node with successors outside loop

Loop Invariant Code Motion

- Conditions for moving a statement $\mathrm{s}: \mathrm{x}=\mathrm{y}+\mathrm{z}$ into loop header:
- s dominates all exit nodes of loop
- If it does not, some use after loop might get wrong value
- Alternate condition: definition of x from s reaches no use outside loop (but moving s may increase run time)
- No other statement in loop assigns to x
- If one does, assignments might get reordered
- No use of x in loop is reached by definition other than s
- If one is, movement may change value read by use

What are induction variables?

- x is an induction variable of a loop L if
- variable changes its value every iteration of the loop
- the value is a function of number of iterations of the loop
- In programs, this function is normally a linear function
Example: for loop index variable j, function $d+c^{*} j$

Types of Induction Variables

- Base induction variable:
- Only assignments in loop are of form $\mathrm{i}=\mathrm{i} \pm \mathrm{c}$
- Derived induction variables:
- Value is a linear function of a base induction variable.
- Within loop, $j=c^{*} i+d$, where i is a base induction variable.
- Very common in array index expressions an access to $a[i]$ produces code like $p=a+4 * i$.

Elimination of Superfluous Induction Variables

Three Algorithms

- Detection of induction variables:
- Find base induction variables.
- Each base induction variable has a family of derived induction variables, each of which is a linear function of base induction variable.
- Strength reduction for derived induction variables.
- Elimination of superfluous induction variables.

Output of Induction Variable Detection Algorithm

- Set of induction variables:
- base induction variables.
- derived induction variables.
- For each induction variable j, a triple $<i, c, d>$:
$\rightarrow i$ is a base induction variable.
- the value of j is $i^{*} c+d$.
- j belongs to family of i.

Induction Variable Detection Algorithm

Scan loop to find all base induction variables do

Scan loop to find all variables k with one assignment of form $k=j * b$ where j is an induction variable with triple <i,c,d> (j = i* $\left.{ }^{*}+d, k=\left(i^{*} c+d\right)^{*} b=i^{*} c^{*} b+d^{*} b\right)$ make k an induction variable with triple $<i, c^{*} b, d^{*} b>$
Scan loop to find all variables k with one assignment of form $k=j \pm b$ where j is an induction variable with triple $<i, c, d>\left(j=i^{*} c+d, k=\left(i^{*} c+d\right) \pm b=i^{*} c^{*} b+d \pm b\right)$ make k an induction variable with triple $<\mathrm{i}, \mathrm{c}, \mathrm{b} \pm \mathrm{d}>$ until no more induction variables are found

Strength Reduction

$\mathrm{t}=202$
for $\mathrm{j}=1$ to 100
$\mathrm{t}=\mathrm{t}-2$

* (abase $\left.+4^{*} \mathrm{j}\right)=\mathrm{t}$

Basic Induction variable:
$\mathrm{J} \quad=1,1,2,1,3,1,4, \ldots$.
Induction variable $202-2^{*} \mathrm{j}$
$\mathrm{t} \quad=202,200,-2,198,196, \ldots$.
Induction variable abase $+4^{*}$ j:
abase $+4 * j=$ abase +4 , abase +8 , abase +12 , abase $+16, \ldots$.
4

	Exal	ple
	```double A[256], B[256][256] j = 1 while(j<100) A[j] = B[j][j] j = j + 2```	$\begin{aligned} & \text { double A[256], B[256][256] } \\ & j=1 \\ & a=\& A+8 \\ & b=\& B+2056 \quad / / 2048+8 \\ & \text { while }(j<100) \\ & \quad * a=* b \\ & \quad j=j+2 \\ & \quad a=a+16 \\ & b=b+4112 \quad / / 4096+16 \\ & \hline \end{aligned}$

## Induction Variable Elimination

Choose a base induction variable i such that only uses of $i$ are in
termination condition of the form $\mathrm{i}<\mathrm{n}$ assignment of the form $\mathrm{i}=\mathrm{i}+\mathrm{m}$
Choose a derived induction variable k with <i,c,d>
Replace termination condition with $\mathrm{k}<\mathrm{c}^{*} \mathrm{n}+\mathrm{d}$

## Summary <br> Loop Optimization

- Important because lots of time is spent in loops.
- Detecting loops.
- Loop invariant code motion.
- Induction variable analyses and optimizations:
- Strength reduction.
- Induction variable elimination.


## Lazy Code Motion

The concept

- Solve data-flow problems that reveal limits of code motion
- Compute INSERT \& DELETE sets from solutions
- Linear pass over the code to rewrite it (using INSERT \& DELETE)

The history

- Partial redundancy elimination (Morel \& Renvoise, CACM, 1979)
- Improvements by Drechsler \& Stadel, Joshi \& Dhamdhere, Chow, Knoop, Ruthing \& Steffen, Dhamdhere, Sorkin, ..
- All versions of PRE optimize placement
- Guarantee that no path is lengthened
- LCM was invented by Knoop et al. in PLDI, 1992
- We will look at a variation by Drechsler \& Stadel
$\qquad$



## Lazy Code Motion

The Name Space

- $r_{i}+r_{j} \rightarrow r_{k}$, always
(hash to find $k$ )
- We can refer to $r_{i}+r_{j}$ by $r_{k}$
- Variables must be set by copies
- No consistent definition for a variable
- Break the rule for this case, but require $\mathrm{r}_{\text {sain }}$ $\qquad$
- To achieve this, assign register names to variables first

Without this name space

- LCM must insert copies to preserve redundant values
- LCM must compute its own map of expressions to unique ids


## Lazy Code Motion

Predicates (computed by Local Analysis)

- DEExpr(b) contains expressions defined in $b$ that survive to the end of $b$.
$e \in \operatorname{DEExPR}(b) \Rightarrow$ evaluating $e$ at the end of $b$ produces the same value for $e$ as evaluating it in its original position.
- UEEXPR(b) contains expressions defined in $b$ that have upward exposed arguments (both args).
$e \in \operatorname{UEEXPR}(b) \Rightarrow$ evaluating $e$ at the start of $b$ produces the same
value for $e$ as evaluating it in its original position value for e as evaluating it in its original position
- KILLEDEXPR(b) contains those expressions whose arguments are (re)defined in b
$\mathrm{e} \in \operatorname{KILLEDEXPR}(\mathrm{b}) \Rightarrow$ evaluating e at the start of b does not produce the same result as evaluating it at its end

Lazy Code Motion: Running Example
$\mathcal{B}_{1}$
$r_{1} \leftarrow 1$
$r_{2} \leftarrow r_{1}$
$r_{3} \leftarrow r_{0}+@ m$
$r_{4} \leftarrow r_{3}$
$r_{5} \leftarrow\left(r_{1}<r_{2}\right)$
if $r_{5}$ then $\mathcal{B}_{2}$ else $\mathcal{B}_{3}$
$\mathcal{B}_{2}$ :
$r_{20} \leftarrow r_{17} * r_{18}$
$r_{21} \leftarrow r_{19}+r_{20}$
$r_{8} \leftarrow r_{21}$
$r_{6} \leftarrow r_{2}+1$
$r_{2} \leftarrow r_{6}$
$r_{7} \leftarrow\left(r_{2}>r_{4}\right)$
if $r_{7}$ then $\mathcal{B}_{3}$ else $\mathcal{B}_{2}$
$\mathcal{B}_{3}$ :

```
Variables:
```

$r_{2}, r_{4}, r_{8}$
Expressions:
$r_{1}, r_{3}, r_{5}, r_{6}, r_{7}, r_{20}, r_{21}$

Lazy Code Motion: Running Example
r}\mp@subsup{r}{8}{}\leftarrow\mp@subsup{r}{21}{
r}\mp@subsup{\sigma}{6}{\leftarrow}\mp@subsup{r}{2}{}+
r}\leftarrow\leftarrow\mp@subsup{r}{6}{
r}\leftarrow\leftarrow(\mp@subsup{r}{2}{}>\mp@subsup{r}{4}{}
if r}\mp@subsup{r}{7}{}\mathrm{ then }\mp@subsup{\mathcal{B}}{3}{}\mathrm{ else }\mp@subsup{\mathcal{B}}{2}{

```
\mathcal{B}
\mathcal{B}
 r}\leftarrow
 r}\leftarrow
 r
 r
 r
 r
 r4\leftarrowr
 r4\leftarrowr
 r}\leftarrow(\mp@subsup{r}{1}{}<\mp@subsup{r}{2}{}
 r}\leftarrow(\mp@subsup{r}{1}{}<\mp@subsup{r}{2}{}
 if }\mp@subsup{r}{5}{}\mathrm{ then }\mp@subsup{\mathcal{B}}{2}{}\mathrm{ else }\mp@subsup{\mathcal{B}}{3}{
 if }\mp@subsup{r}{5}{}\mathrm{ then }\mp@subsup{\mathcal{B}}{2}{}\mathrm{ else }\mp@subsup{\mathcal{B}}{3}{
\mathcal{B}
\mathcal{B}
 r 20}\leftarrow\mp@subsup{r}{17}{*}*\mp@subsup{r}{18}{
 r 20}\leftarrow\mp@subsup{r}{17}{*}*\mp@subsup{r}{18}{
 r 21}\leftarrow\mp@subsup{r}{19}{}+\mp@subsup{r}{20}{
 r 21}\leftarrow\mp@subsup{r}{19}{}+\mp@subsup{r}{20}{
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Variables:
\[
r_{2}, r_{4}, r_{8}
\] \\
Expressions:
\[
r_{1}, r_{3}, r_{5},
\]
\end{tabular}} \\
\hline & \({ }^{1} 1\) & B2 & B3 \\
\hline DEEXPR & r1, r3, r 5 & r7, r20, r21 & \\
\hline UEEXPR & r1, r3 & r6, r20 & \\
\hline KILLEDEXPR & r5, r6, r7 & r5, r6, r7, r21 & \\
\hline
\end{tabular}
\(\mathcal{B}_{3}\) :

\section*{Lazy Code Motion} Availability
\(\operatorname{AVAILIN}(n)=\cap_{m \in \operatorname{preds}(n)} \operatorname{AVAILOut}(m), \quad n \neq n_{0}\)
\(\operatorname{AVAILOUT}(m)=\operatorname{DEExPR}(m) \cup(\operatorname{AvAILIN}(m) \cap \overline{\operatorname{KILLEDExPR}(m)})\)

Initialize \(\operatorname{AVAILIN}(\mathrm{n})\) to the set of all names, except at \(\mathrm{n}_{0}\) Set Availln \(\left(n_{0}\right)\) to \(\varnothing\)
Interpreting AVAIL
- e \(\in \operatorname{AVAILOut}(b) \Leftrightarrow\) evaluating \(e\) at end of \(b\) produces the same value for e . AVAILOUT tells the compiler how far forward e can move the evaluation of e, ignoring any uses of \(e\).
This differs from the way we talk about AVAIL in global redundancy elimination.

\section*{Lazy Code Motion}

Anticipability
\(\operatorname{ANTOUT}(n)=\cap_{m \in \operatorname{succs}(n)} \operatorname{ANTIN}(m), n\) not an exit block
\(\operatorname{Antin}(m)=\operatorname{UEEXPR}(m) \cup(\operatorname{ANTOUT}(m) \cap \overline{\operatorname{KILLEDEXPR}(m}))\)

Initialize ANTOUT(n) to the set of all names, except at exit blocks
Set ANTOUT(n) to \(\varnothing\), for each exit block \(n\)
Interpreting ANTOUT
- e \(\in \operatorname{ANTIN}(b) \Leftrightarrow\) evaluating e at start of \(b\) produces the same value for
e. ANTIN tells the compiler how far backward e can move
- This view shows that anticipability is, in some sense, the inverse of availability (\& explains the new interpretation of AVAIL).


```

