
Partial Redundancy Elimination,
Loop Optimization
& Lazy Code Motion

Advanced Compiler Techniques
2005

Erik Stenman
Virtutech

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/2

Common-Subexpression
Elimination

(Repetition)

An occurrence of an expression in a program is a common subexpression if there is

another occurrence of the expression whose evaluation always precedes this one

in execution order and if the operands of the expression remain unchanged

between the two evaluations.

Local Common Subexpression Elimination (CSE) keeps track of the set of available

expressions within a basic block and replaces instances of them by references to

new temporaries that keep their value.

…

a=(x+y)+z;

b=a-1;

c=x+y;
…

Before CSE

…
tttt=x+y;
a=tttt+z;
b=a-1;
c=tttt;
…

After CSE

R
ep

et
it
io
n
: C

S
E

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/3

Not all occurrences

of b+c are redundant!

Some occurrences of

b+c are redundant

Redundant Expressions

An expression is redundant at a point p if, on every
path to p

1. It is evaluated before reaching p, and
2. None of its constituent values is redefined before p

Example

a←b+c

a←b+c b←b+1

a←b+c

a←b+c
a←b+c

a←b+c

R
ed

u
n
d
a
n
t
E
x
p
re
ss
io
n
s

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/4

b←b+1

a←b+c a←b+c

a←b+c

Inserting a copy of “a←b+c” after the definition

of b can make it redundant.

Partially Redundant
Expressions

An expression is partially redundant at p if it is redundant along
some, but not all, paths reaching p.

Example

b←b+1 a←b+c

a←b+cP
ar
ti
al
ly
 R
ed

u
n
d
an

t
E
x
p
re
ss
io
n
s

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/5

Another example:

Loop invariant expressions are partially redundant.
♦ Partial redundancy elimination performs code motion.
♦ Major part of the work is figuring out where to insert operations.

Loop Invariant Expressions

x←y*z

a←b+c
b + c is partially

redundant here

x←y*z

a←b+c

a←b+c

P
ar
ti
al
ly
 R
ed

u
n
d
an

t
E
x
p
re
ss
io
n
s

x←y*z

a←b+c

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/6

Loop Optimizations

♦ Loop Optimization is important because most
of the execution time occurs in loops.

♦ First, we will identify loops.

♦ We will study three optimizations:
♦ Loop-invariant code motion.

♦ Strength reduction.

♦ Induction variable elimination.

♦ We will not talk about loop unrolling which
is another important optimization technique.

L
o
o
p
 O

p
ti
m
iz
at
io
n
s

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/7

What is a Loop?

♦Set of nodes

♦Loop header

♦Single node

♦All iterations of
loop go through
header

♦Back edge

L
o
o
p
 O

p
ti
m
iz
at
io
n
s

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/8

Anomalous Situations

♦ Two back
edges, two
loops, one
header

♦ Compiler
merges loops

♦ No loop header,
no loop

L
o
o
p
 O

p
ti
m
iz
at
io
n
s

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/9

Defining Loops With
Dominators

Recall the concept of dominators:

♦ Node n dominates a node m if all paths from the
start node to m go through n.

♦ The immediate dominator of m is the last dominator
of m on any path from start node.

♦ A dominator tree is a tree rooted at the start node:

♦ Nodes are nodes of control flow graph.

♦ Edge from d to n if d is the immediate dominator of n.

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 D

o
m
in
a
to
rs

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/10

Identifying Loops

♦ A loop has a unique entry point – the header.

♦ At least one path back to header.

♦ Find edges whose heads (>) dominate tails (-),
these edges are back edges of loops.

♦ Given a back edge n→d:

♦ The node d is the loop header.

♦ The loop consists of n plus all nodes that can reach
n without going through d (all nodes “between” d
and n)

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 I
d
en

ti
fy
in
g
 l
o
o
p
s

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/11

Loop Construction Algorithm

loop(d,n)
loop = {d}; stack = ∅; insert(n);
while stack not empty do

m = pop stack;
for all p ∈ pred(m) do insert(p);

insert(m)
if m ∉ loop then

loop = loop ∪ {m};
push m onto stack;

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 I
d
en

ti
fy
in
g
 l
o
o
p
s

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/12

Nested Loops

♦ If two loops do not have same header then
♦ Either one loop (inner loop) is contained in the
other (outer loop)

♦ Or the two loops are disjoint

♦ If two loops have same header, typically they
are unioned and treated as one loop

1

2 3

Two loops:
{1,2} and {1, 3}

Unioned: {1,2,3}

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 I
d
en

ti
fy
in
g
 l
o
o
p
s

1

3

4

2

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/13

Loop Preheader

♦ Many optimizations stick code before loop.

♦ Put a special node (loop preheader) before
loop to hold this code.

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 P
re
h
ea
d
er

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/14

Loop Optimizations

♦Now that we have the loop, we can
optimize it!

♦Loop invariant code motion:

♦Move loop invariant code to the header.

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 L
o
o
p
 i
n
v
ar
ia
n
t
co
d
e
m
o
ti
o
n

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/15

Loop Invariant Code Motion

If a computation produces the same value in
every loop iteration, move it out of the loop.

for i = 1 to N

x = x + 1

for j = 1 to N

a[i,j] = 100*N + 10*i + j + x

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 L
o
o
p
 i
n
v
ar
ia
n
t
co
d
e
m
o
ti
o
n

for i = 1 to N

x = x + 1

for j = 1 to N

a[i,j] = 100*N100*N100*N100*N + 10*i10*i10*i10*i + j + xxxx

t1 = 100*N
for i = 1 to N
x = x + 1
t2 = t1 + 10*i + x
for j = 1 to N
a[i,j] = t2 + j

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/16

Detecting Loop Invariant
Code

♦ A statement is loop-invariant if operands are

♦ Constant,

♦ Have all reaching definitions outside loop, or

♦ Have exactly one reaching definition, and that
definition comes from an invariant statement

♦ Concept of exit node of loop

♦ node with successors outside loop

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 L
o
o
p
 i
n
v
ar
ia
n
t
co
d
e
m
o
ti
o
n

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/17

Loop Invariant Code
Detection Algorithm

for all statements in loop

if operands are constant or have all reaching definitions
outside loop, mark statement as invariant

do

for all statements in loop not already marked invariant

if operands are constant, have all reaching definitions
outside loop, or have exactly one reaching definition from
invariant statement

then mark statement as invariant

until there are no more invariant statementsL
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 L
o
o
p
 i
n
v
ar
ia
n
t
co
d
e
m
o
ti
o
n

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/18

Loop Invariant Code Motion

♦ Conditions for moving a statement s: x = y+z
into loop header:
♦ s dominates all exit nodes of loop

♦ If it does not, some use after loop might get wrong value

♦Alternate condition: definition of x from s reaches no use
outside loop (but moving s may increase run time)

♦ No other statement in loop assigns to x
♦ If one does, assignments might get reordered

♦ No use of x in loop is reached by definition other
than s

♦ If one is, movement may change value read by use

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 L
o
o
p
 i
n
v
ar
ia
n
t
co
d
e
m
o
ti
o
n

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/19

Order of Statements in
Preheader

Preserve data dependences from original program
(can use order in which discovered by algorithm)

b = 2
i = 0

i < 80

a = b * b
c = a + a
i = i + c

b = 2
i = 0

i < 80

i = i + c

a = b * b
c = a + a

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 L
o
o
p
 i
n
v
ar
ia
n
t
co
d
e
m
o
ti
o
n

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/20

Induction Variables

Example:

for j = 1 to 100

*(&A + 4*j) = 202 - 2*j

Basic Induction variable:
J = 1, 2, 3, 4, …..

Induction variable &A+4*j:
&A+4*j = &A+4, &A+8, &A+12, &A+16, ….

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 I
n
d
u
ct
io
n
 V
ar
ia
b
le
s

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/21

What are induction variables?

♦ x is an induction variable of a loop L if

♦ variable changes its value every iteration of the
loop

♦ the value is a function of number of iterations of
the loop

♦ In programs, this function is normally a linear
function

Example: for loop index variable j, function d + c*j

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 I
n
d
u
ct
io
n
 V
ar
ia
b
le
s

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/22

Types of Induction Variables

♦ Base induction variable:

♦ Only assignments in loop are of form i = i ± c

♦ Derived induction variables:

♦ Value is a linear function of a base induction
variable.

♦ Within loop, j = c*i + d, where i is a base induction
variable.

♦ Very common in array index expressions –
an access to a[i] produces code like p = a + 4*i.

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 I
n
d
u
ct
io
n
 V
ar
ia
b
le
s

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/23

Strength Reduction for
Derived Induction Variables

i = 0

i < 10

i = i + 1
p = 4 * i

use of p

i = 0
p = 0

i < 10

i = i + 1
p = p + 4

use of p

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 I
n
d
u
ct
io
n
 V
ar
ia
b
le
s
–
S
tr
en

g
th
 R
ed

u
ct
io
n

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/24

Elimination of Superfluous
Induction Variables

p = 0

p < 40

p = p + 4 use of p

i = 0
p = 0

i < 10

i = i + 1
p = p + 4

use of p

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 I
n
d
u
ct
io
n
 V
ar
ia
b
le
s
–
E
li
m
in
at
io
n

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/25

Three Algorithms

♦ Detection of induction variables:

♦ Find base induction variables.

♦ Each base induction variable has a family of
derived induction variables, each of which is a
linear function of base induction variable.

♦ Strength reduction for derived induction
variables.

♦ Elimination of superfluous induction
variables.

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 I
n
d
u
ct
io
n
 V
ar
ia
b
le
s

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/26

Output of Induction Variable
Detection Algorithm

♦Set of induction variables:
♦base induction variables.

♦derived induction variables.

♦For each induction variable j, a triple
<i,c,d>:
♦ i is a base induction variable.

♦ the value of j is i*c+d.

♦ j belongs to family of i.

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 I
n
d
u
ct
io
n
 V
ar
ia
b
le
s

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/27

Induction Variable Detection
Algorithm

Scan loop to find all base induction variables

do
Scan loop to find all variables k with one assignment of
form k = j*b where j is an induction variable with triple
<i,c,d> (j = i*c + d, k = (i*c+d)*b = i*c*b + d*b)

make k an induction variable with triple <i,c*b,d*b>

Scan loop to find all variables k with one assignment of
form k = j±b where j is an induction variable with triple
<i,c,d> (j = i*c + d, k = (i*c+d) ± b = i*c*b + d ± b)

make k an induction variable with triple <i,c,b±d>

until no more induction variables are found

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 I
n
d
u
ct
io
n
 V
ar
ia
b
le
s

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/28

Strength Reduction
t = 202

for j = 1 to 100

t = t - 2

*(abase + 4*j) = t

Basic Induction variable:
J = 1, 2, 3, 4, …..

Induction variable 202 - 2*j
t = 202, 200, 198, 196, …..

Induction variable abase+4*j:
abase+4*j = abase+4, abase+8, abase+12, abase+16, ….

1 1 1

-2 -2 -2

4 4 4

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 I
n
d
u
ct
io
n
 V
ar
ia
b
le
s
–
S
tr
en

g
th
 R
ed

u
ct
io
n

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/29

Strength Reduction Algorithm

for all derived induction variables j with triple

<i,c,d>

Create a new variable s

Replace assignment j = i*c+d with j = s

Immediately after each assignment i = i + e,
insert statement s = s + c*e (c*e is constant)

place s in family of i with triple <i,c,d>

Insert s = c*i+d into preheader

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 I
n
d
u
ct
io
n
 V
ar
ia
b
le
s
–
S
tr
en

g
th
 R
ed

u
ct
io
n

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/30

Strength Reduction for
Derived Induction Variables

i = 0

i < 10

i = i + 1
p = 4 * i

use of p

i = 0
p = 0

i < 10

i = i + 1
p = p + 4

use of p

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 I
n
d
u
ct
io
n
 V
ar
ia
b
le
s
–
S
tr
en

g
th
 R
ed

u
ct
io
n

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/31

Example

double A[256], B[256][256]double A[256], B[256][256]double A[256], B[256][256]double A[256], B[256][256]

j = 1j = 1j = 1j = 1

while(j<100)while(j<100)while(j<100)while(j<100)

A[j] = B[j][j]A[j] = B[j][j]A[j] = B[j][j]A[j] = B[j][j]

j = j + 2j = j + 2j = j + 2j = j + 2

double A[256], B[256][256]double A[256], B[256][256]double A[256], B[256][256]double A[256], B[256][256]

j = 1j = 1j = 1j = 1

a = &A + 8a = &A + 8a = &A + 8a = &A + 8

b = &B + 2056 // 2048+8b = &B + 2056 // 2048+8b = &B + 2056 // 2048+8b = &B + 2056 // 2048+8

while(j<100)while(j<100)while(j<100)while(j<100)

*a = *b*a = *b*a = *b*a = *b

j = j + 2j = j + 2j = j + 2j = j + 2

a = a + 16a = a + 16a = a + 16a = a + 16

b = b + 4112 // 4096+16b = b + 4112 // 4096+16b = b + 4112 // 4096+16b = b + 4112 // 4096+16

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 I
n
d
u
ct
io
n
 V
ar
ia
b
le
s
–
S
tr
en

g
th
 R
ed

u
ct
io
n

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/32

Induction Variable
Elimination

Choose a base induction variable i such that

only uses of i are in

termination condition of the form i < n

assignment of the form i = i + m

Choose a derived induction variable k with
<i,c,d>

Replace termination condition with k < c*n+d

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 I
n
d
u
ct
io
n
 V
ar
ia
b
le
s
–
E
li
m
in
at
io
n

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/33

Summary
Loop Optimization

♦Important because lots of time is spent
in loops.

♦Detecting loops.

♦Loop invariant code motion.

♦Induction variable analyses and
optimizations:
♦Strength reduction.

♦ Induction variable elimination.

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 S
u
m
m
ar
y

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/34

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/35

Lazy Code Motion

The concept
♦ Solve data-flow problems that reveal limits of code motion
♦ Compute INSERT & DELETE sets from solutions
♦ Linear pass over the code to rewrite it (using INSERT & DELETE)

The history

♦ Partial redundancy elimination (Morel & Renvoise, CACM, 1979)

♦ Improvements by Drechsler & Stadel, Joshi & Dhamdhere, Chow,
Knoop, Ruthing & Steffen, Dhamdhere, Sorkin, …

♦ All versions of PRE optimize placement
♦ Guarantee that no path is lengthened

♦ LCM was invented by Knoop et al. in PLDI, 1992
♦ We will look at a variation by Drechsler & Stadel

SIGPLAN Notices,

28(5), May, 1993

L
az

y
 C
o
d
e
M
o
ti
o
n

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/36

Lazy Code Motion

The intuitions
♦ Compute available expressions
♦ Compute anticipable expressions
♦ These lead to an earliest placement for each expression
♦ Push expressions down the CFG until it changes behavior

Assumptions
♦ Uses a lexical notion of identity (not value identity)
♦ Code is in an Intermediate Representation with unlimited name space
♦ Consistent, disciplined use of names

♦ Identical expressions define the same name
♦ No other expression defines that name }Avoids copies

Result serves as proxy

L
az

y
 C
o
d
e
M
o
ti
o
n

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/37

Lazy Code Motion

The Name Space
♦ ri+rj→rk, always (hash to find k)
♦ We can refer to ri+rj byrk (bit-vector sets)

♦ Variables must be set by copies

♦ No consistent definition for a variable

♦ Break the rule for this case, but require rsource < rdestination

♦ To achieve this, assign register names to variables first

Without this name space
♦ LCM must insert copies to preserve redundant values
♦ LCM must compute its own map of expressions to unique ids

L
az

y
 C
o
d
e
M
o
ti
o
n

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/38

Lazy Code Motion: Running
Example

B1:

r1←1

r2←r1
r3←r0+@m

r4←r3
r5←(r1< r2)
if r5 then B2 else B3

B2:

r20←r17*r18
r21←r19+r20
r8←r21
r6←r2+1

r2←r6
r7←(r2>r4)
if r7 then B3 else B2

B3: ...

Variables:

r2,r4,r8
Expressions:

r1,r3,r5,r6,r7,r20,r21

B1

B2

B3

L
az

y
 C
o
d
e
M
o
ti
o
n

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/39

Lazy Code Motion

Predicates (computed by Local Analysis)
♦ DEEXPR(b) contains expressions defined in b that survive to the

end of b.
e ∈ DEEXPR(b) ⇒ evaluating e at the end of b produces the same
value for e as evaluating it in its original position.

♦ UEEXPR(b) contains expressions defined in b that have upward
exposed arguments (both args).
e ∈ UEEXPR(b) ⇒ evaluating e at the start of b produces the same
value for e as evaluating it in its original position.

♦ KILLEDEXPR(b) contains those expressions whose arguments are
(re)defined in b.
e ∈ KILLEDEXPR(b) ⇒ evaluating e at the start of b does not produce
the same result as evaluating it at its end.

L
az

y
 C
o
d
e
M
o
ti
o
n

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/40

B1:

r1←1

r2←r1
r3←r0+@m

r4←r3
r5←(r1< r2)
if r5 then B2 else B3

B2:

r20←r17*r18
r21←r19+r20
r8←r21
r6←r2+1

r2←r6
r7←(r2>r4)
if r7 then B3 else B2

B3: ...

Lazy Code Motion: Running
Example

BBBB1 BBBB2 BBBB3

DEEDEEDEEDEEXPR XPR XPR XPR r1, r3, r5 r7, r20, r21

UEEUEEUEEUEEXPR XPR XPR XPR r1, r3 r6, r20

KKKKILLEDILLEDILLEDILLEDEEEEXPR XPR XPR XPR r5, r6, r7 r5, r6, r7, r21

Variables:

r2,r4,r8
Expressions:

r1,r3,r5,r6,r7,r20,r21

L
az

y
 C
o
d
e
M
o
ti
o
n

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/41

Lazy Code Motion
Availability

Initialize AVAILIN(n) to the set of all names, except at n0

Set AVAILIN(n0) to Ø
Interpreting AVAIL

♦ e ∈ AVAILOUT(b) ⇔ evaluating e at end of b produces the same value
for e. AVAILOUT tells the compiler how far forward e can move the
evaluation of e, ignoring any uses of e.

♦ This differs from the way we talk about AVAIL in global redundancy
elimination.

AVAILIN(n) = ∩∩∩∩m∈ preds(n) AVAILOUT(m), n ≠ n0

AVAILOUT(m) = DEEXPR(m) ∪ (AVAILIN(m) ∩ KILLEDEXPR(m))

L
az

y
 C
o
d
e
M
o
ti
o
n

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/42

Lazy Code Motion

Initialize ANTOUT(n) to the set of all names, except at exit blocks
Set ANTOUT(n) to Ø, for each exit block n
Interpreting ANTOUT

♦ e ∈ ANTIN(b) ⇔ evaluating e at start of b produces the same value for
e. ANTIN tells the compiler how far backward e can move

♦ This view shows that anticipability is, in some sense, the inverse of
availability (& explains the new interpretation of AVAIL).

ANTOUT(n) = ∩∩∩∩m∈ succs(n) ANTIN(m), n not an exit block

ANTIN(m) = UEEXPR(m) ∪ (ANTOUT(m) ∩ KILLEDEXPR(m))

Anticipability

L
az

y
 C
o
d
e
M
o
ti
o
n

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/43

Lazy Code Motion

EARLIEST is a predicate
♦ Computed for edges rather than nodes (placement)
♦ e ∈ EARLIEST(i,j) if

♦ It can move to head of j,
♦ It is not available at the end of i, and

♦ either it cannot move to the head of i (KILLEDEXPR(i))

♦ or another edge leaving i prevents its placement in i (ANTOUT(i))

EARLIEST(i,j) = ANTIN(j) ∩ AVAILOUT(i) ∩ (KILLEDEXPR(i) ∪ ANTOUT(i))

EARLIEST(n0,j) = ANTIN(j) ∩ AVAILOUT(n0)

Earliest placement

L
az

y
 C
o
d
e
M
o
ti
o
n

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/44

Lazy Code Motion

Initialize LATERIN(n0) to Ø
x ∈ LATERIN(k) ⇔ every path that reaches k has x ∈ EARLIEST(m) for

some block m, and the path from m to k is x-clear & does not
evaluate x.
⇒ the compiler can move x through k without losing any benefit.

x ∈ LATER(i,j) ⇔ <i,j> is its earliest placement, or it can be moved
forward from i (LATER(i)) and placement at entry to i does not
anticipate a use in i (moving it across the edge exposes that use).

LATERIN(j) = ∩∩∩∩ i ∈ preds(j) LATER(i,j), j ≠ n0

LATER(i,j) = EARLIEST(i,j) ∪ (LATERIN(i) ∩ UEEXPR(i))

Later (than earliest) placement

L
az

y
 C
o
d
e
M
o
ti
o
n

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/45

Lazy Code Motion

Rewriting the code

INSERT & DELETE are predicates

Compiler uses them to guide the rewrite step

♦ x ∈ INSERT(i,j) ⇒ insert x at start of i, end of j, or
new block

♦ x ∈ DELETE(k) ⇒ delete first evaluation of x in k

INSERT(i,j) = LATER(i,j) ∩ LATERIN(j)

DELETE(k) = UEEXPR(k) ∩ LATERIN(k), k ≠ n0

If local redundancy elimination has already been

performed, only one copy of x exists. Otherwise,

remove all upward exposed copies of x.

L
az

y
 C
o
d
e
M
o
ti
o
n

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/46

Lazy Code Motion

Edge placement
♦ x ∈ INSERT(i,j)

Three cases
♦ |succs(i)| = 1⇒ insert x at end of i.
♦ |succs(i)| > 1 but |preds(j)| = 1⇒ insert x at start of j.
♦ |succs(i)| > 1 and |preds(j)| > 1⇒ create new block in <i,j> for x.

Bi

Bj

|succs(i)| = 1

x

|preds(j)| = 1

Bi

Bj Bk
x

|succs(i) > 1

|preds(j)| > 1

Bi

Bj Bk

Bh

x

L
az

y
 C
o
d
e
M
o
ti
o
n

Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/47

Lazy Code Motion Example

B1:r1←1

r2←r1
r3←r0+@m

r4←r3
r5←(r1<r2)

if r5 then B2 else B3
B2:r20←r17*r18

r21←r19+r20
r8←r21
r6←r2+1

r2←r6
r7←(r2>r4)

if r7 then B3 else B2
B3:...

B1

B2

B3

1,2 1,3 2,2 2,3

EEEEARLIESTARLIESTARLIESTARLIEST r20, r21 { } { } { }

Example is too small to show off LATER

INSERT(1,2) = { r20, r21 }

DELETE(2) = { r20 , r21 }

B1 B2 B3

DEEDEEDEEDEEXPR XPR XPR XPR r1, r3, r5 r7, r20, r21

UEEUEEUEEUEEXPR XPR XPR XPR r1, r3 r6, r20

KKKKILLEDILLEDILLEDILLEDEEEEXPR XPR XPR XPR r5, r6, r7 r5, r6, r7,r21

B1 B2 B3

AAAAVAILVAILVAILVAILIIIIN N N N { } r1, r3 r1, r3

AAAAVAILVAILVAILVAILOOOOUT UT UT UT r1, r3, r5 r1, r3, r7, r20, r21 …

AAAANTNTNTNTIIIIN N N N r1, r3 r6, r20 { }

AAAANTNTNTNTOOOOUT UT UT UT { } { } { }

L
az

y
 C
o
d
e
M
o
ti
o
n

