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Common-Subexpression
Elimination

(Repetition)

An occurrence of an expression in a program is a common subexpression if there is 

another occurrence of the expression whose evaluation always precedes this one 

in execution order and if the operands of the expression remain unchanged 

between the two evaluations.

Local Common Subexpression Elimination (CSE) keeps track of the set of available 

expressions within a basic block and replaces instances of them by references to 

new temporaries that keep their value.

…

a=(x+y)+z;

b=a-1; 

c=x+y;
…

Before CSE

…
tttt=x+y;
a=tttt+z;
b=a-1; 
c=tttt;
…

After CSE
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Not all occurrences 

of b+c are redundant!

Some occurrences of 

b+c are redundant

Redundant Expressions

An expression is redundant at a point p if, on every 
path to p

1.  It is evaluated before reaching p, and
2.  None of its constituent values is redefined before p

Example

a←b+c

a←b+c b←b+1

a←b+c

a←b+c
a←b+c

a←b+c
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b←b+1

a←b+c a←b+c

a←b+c

Inserting a copy of “a←b+c” after the definition 

of b can make it redundant.

Partially Redundant 
Expressions

An expression is partially redundant at p if it is redundant along 
some, but not all, paths reaching p.

Example

b←b+1 a←b+c

a←b+cP
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Another example:

Loop invariant expressions are partially redundant.
♦ Partial redundancy elimination performs code motion.
♦ Major part of the work is figuring out where to insert operations.

Loop Invariant Expressions

x←y*z

a←b+c
b + c is partially  

redundant here

x←y*z

a←b+c

a←b+c
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Loop Optimizations

♦ Loop Optimization is important because most 
of the execution time occurs in loops.

♦ First, we will identify loops.

♦ We will study three optimizations:
♦ Loop-invariant code motion.

♦ Strength reduction.

♦ Induction variable elimination.

♦ We will not talk about loop unrolling which 
is another important optimization technique.
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What is a Loop?

♦Set of nodes

♦Loop header

♦Single node

♦All iterations of 
loop go through 
header 

♦Back edge
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Anomalous Situations

♦ Two back 
edges, two 
loops, one 
header

♦ Compiler 
merges loops

♦ No loop header, 
no loop

L
o
o
p
 O

p
ti
m
iz
at
io
n
s



Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/9

Defining Loops With 
Dominators

Recall the concept of dominators:

♦ Node n dominates a node m if all paths from the 
start node to m go through n.

♦ The immediate dominator of m is the last dominator 
of m on any path from start node.

♦ A dominator tree is a tree rooted at the start node:

♦ Nodes are nodes of control flow graph.

♦ Edge from d to n if d is the immediate dominator of n.
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Identifying Loops

♦ A loop has a unique entry point – the header.

♦ At least one path back to header.

♦ Find edges whose heads (>) dominate tails (-), 
these edges are back edges of loops.

♦ Given a back edge n→d:

♦ The node d is the loop header.

♦ The loop consists of n plus all nodes that can reach 
n without going through d (all nodes “between” d
and n)
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Loop Construction Algorithm

loop(d,n)
loop = {d}; stack = ∅; insert(n);
while stack not empty do 

m = pop stack;
for all p ∈ pred(m) do insert(p);

insert(m)
if m ∉ loop then 

loop = loop ∪ {m};
push m onto stack;
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Nested Loops

♦ If two loops do not have same header then
♦ Either one loop (inner loop) is contained in the 
other (outer loop)

♦ Or the two loops are disjoint

♦ If two loops have same header, typically they 
are unioned and treated as one loop

1

2 3

Two loops:
{1,2} and {1, 3}

Unioned: {1,2,3}
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Loop Preheader

♦ Many optimizations stick code before loop.

♦ Put a special node (loop preheader) before 
loop to hold this code.
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Loop Optimizations

♦Now that we have the loop, we can 
optimize it!

♦Loop invariant code motion:

♦Move loop invariant code to the header.
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Loop Invariant Code Motion

If a computation produces the same value in 
every loop iteration, move it out of the loop.

for i = 1 to N

x = x + 1

for j = 1 to N

a[i,j] = 100*N + 10*i + j + x
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for i = 1 to N

x = x + 1

for j = 1 to N

a[i,j] = 100*N100*N100*N100*N + 10*i10*i10*i10*i + j + xxxx

t1 = 100*N
for  i = 1 to N
x = x + 1
t2 = t1 + 10*i + x
for  j = 1 to N
a[i,j] =  t2 + j
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Detecting Loop Invariant 
Code

♦ A statement is loop-invariant if operands are

♦ Constant,

♦ Have all reaching definitions outside loop, or

♦ Have exactly one reaching definition, and that 
definition comes from an invariant statement

♦ Concept of exit node of loop

♦ node with successors outside loop
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Loop Invariant Code 
Detection Algorithm

for all statements in loop

if operands are constant or have all reaching definitions 
outside loop, mark statement as invariant

do 

for all statements in loop not already marked invariant

if operands are constant, have all reaching definitions 
outside loop, or have exactly one reaching definition from 
invariant statement

then  mark statement as invariant

until there are no more invariant statementsL
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Loop Invariant Code Motion

♦ Conditions for moving a statement s: x = y+z 
into loop header:
♦ s dominates all exit nodes of loop

♦ If it does not, some use after loop might get wrong value

♦Alternate condition: definition of x from s reaches no use 
outside loop (but moving s may increase run time)

♦ No other statement in loop assigns to x
♦ If one does, assignments might get reordered

♦ No use of x in loop is reached by definition other 
than s

♦ If one is, movement may change value read by use
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Order of Statements in 
Preheader

Preserve data dependences from original program
(can use order in which discovered by algorithm)

b = 2
i = 0

i < 80

a = b * b
c = a + a
i = i + c

b = 2
i = 0

i < 80

i = i + c

a = b * b
c = a + a
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Induction Variables

Example:

for j = 1 to 100

*(&A + 4*j) = 202 - 2*j

Basic Induction variable:
J = 1, 2, 3, 4, …..

Induction variable &A+4*j:
&A+4*j = &A+4,    &A+8,      &A+12,    &A+16,  ….
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What are induction variables?

♦ x is an induction variable of a loop L if

♦ variable changes its value every iteration of the 
loop

♦ the value is a function of number of iterations of 
the loop

♦ In programs, this function is normally a linear 
function

Example: for loop index variable j, function d + c*j
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Types of Induction Variables

♦ Base induction variable:

♦ Only assignments in loop are of form i = i ± c

♦ Derived induction variables:

♦ Value is a linear function of a base induction 
variable.

♦ Within loop, j = c*i + d, where i is a base induction 
variable.

♦ Very common in array index expressions –
an access to a[i] produces code like p = a + 4*i.
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Strength Reduction for 
Derived Induction Variables

i = 0

i < 10

i = i + 1
p = 4 * i

use of p

i = 0
p = 0

i < 10

i = i + 1
p = p + 4

use of p
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Elimination of Superfluous 
Induction Variables

p = 0

p < 40

p = p + 4 use of p

i = 0
p = 0

i < 10

i = i + 1
p = p + 4

use of p
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Three Algorithms

♦ Detection of induction variables:

♦ Find base induction variables.

♦ Each base induction variable has a family of 
derived induction variables, each of which is a 
linear function of base induction variable.

♦ Strength reduction for derived induction 
variables.

♦ Elimination of superfluous induction 
variables.
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Output of Induction Variable 
Detection Algorithm

♦Set of induction variables:
♦base induction variables.

♦derived induction variables.

♦For each induction variable j, a triple 
<i,c,d>:
♦ i is a base induction variable.

♦ the value of j is i*c+d.

♦ j belongs to family of i.
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Induction Variable Detection 
Algorithm

Scan loop to find all base induction variables

do
Scan loop to find all variables k with one assignment of 
form k = j*b where j is an induction variable with triple 
<i,c,d>    (j = i*c + d, k = (i*c+d)*b = i*c*b + d*b)

make k an induction variable with triple <i,c*b,d*b>

Scan loop to find all variables k with one assignment of 
form k = j±b where j is an induction variable with triple 
<i,c,d>  (j = i*c + d, k = (i*c+d) ± b = i*c*b + d ± b)

make k an induction variable with triple <i,c,b±d>

until no more induction variables are found
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Strength Reduction
t = 202

for j = 1 to 100

t = t - 2

*(abase + 4*j) = t

Basic Induction variable:
J = 1, 2, 3, 4, …..

Induction variable 202 - 2*j
t                = 202,       200,        198,          196, …..

Induction variable abase+4*j:
abase+4*j = abase+4, abase+8, abase+12, abase+16,  ….

1 1 1

-2 -2 -2

4 4 4
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Strength Reduction Algorithm

for all derived induction variables j with triple

<i,c,d>

Create a new variable s

Replace assignment j = i*c+d with j = s

Immediately after each assignment i = i + e,           
insert statement s = s + c*e (c*e is constant)

place s in family of i with triple <i,c,d>

Insert s = c*i+d into preheader

L
o
o
p
 O

p
ti
m
iz
at
io
n
s:
 I
n
d
u
ct
io
n
 V
ar
ia
b
le
s 
–
S
tr
en

g
th
 R
ed

u
ct
io
n



Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/30

Strength Reduction for 
Derived Induction Variables

i = 0

i < 10

i = i + 1
p = 4 * i

use of p

i = 0
p = 0

i < 10

i = i + 1
p = p + 4

use of p
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Example

double A[256], B[256][256]double A[256], B[256][256]double A[256], B[256][256]double A[256], B[256][256]

j = 1j = 1j = 1j = 1

while(j<100)while(j<100)while(j<100)while(j<100)

A[j] = B[j][j]A[j] = B[j][j]A[j] = B[j][j]A[j] = B[j][j]

j = j + 2j = j + 2j = j + 2j = j + 2

double A[256], B[256][256]double A[256], B[256][256]double A[256], B[256][256]double A[256], B[256][256]

j = 1j = 1j = 1j = 1

a = &A + 8a = &A + 8a = &A + 8a = &A + 8

b = &B + 2056   // 2048+8b = &B + 2056   // 2048+8b = &B + 2056   // 2048+8b = &B + 2056   // 2048+8

while(j<100)while(j<100)while(j<100)while(j<100)

*a = *b*a = *b*a = *b*a = *b

j = j + 2j = j + 2j = j + 2j = j + 2

a = a + 16a = a + 16a = a + 16a = a + 16

b = b + 4112  // 4096+16b = b + 4112  // 4096+16b = b + 4112  // 4096+16b = b + 4112  // 4096+16
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Induction Variable 
Elimination

Choose a base induction variable i such that

only uses of i are in 

termination condition of the form i < n

assignment of the form i = i + m

Choose a derived induction variable k with 
<i,c,d>

Replace termination condition with k < c*n+d
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Summary
Loop Optimization

♦Important because lots of time is spent 
in loops.

♦Detecting loops.

♦Loop invariant code motion.

♦Induction variable analyses and 
optimizations:
♦Strength reduction.

♦ Induction variable elimination.
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Lazy Code Motion

The concept
♦ Solve data-flow problems that reveal limits of code motion
♦ Compute INSERT & DELETE sets from solutions
♦ Linear pass over the code to rewrite it  (using INSERT & DELETE)

The history

♦ Partial redundancy elimination          (Morel & Renvoise, CACM, 1979)

♦ Improvements by Drechsler & Stadel, Joshi & Dhamdhere, Chow, 
Knoop, Ruthing & Steffen, Dhamdhere, Sorkin, …

♦ All versions of PRE optimize placement
♦ Guarantee that no path is lengthened

♦ LCM was invented by Knoop et al. in PLDI, 1992 
♦ We will look at a variation by Drechsler & Stadel

SIGPLAN Notices, 

28(5), May, 1993
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Lazy Code Motion

The intuitions
♦ Compute available expressions
♦ Compute anticipable expressions
♦ These lead to an earliest placement for each expression
♦ Push expressions down the CFG until it changes behavior

Assumptions
♦ Uses a lexical notion of identity (not value identity)
♦ Code is in an Intermediate Representation with unlimited name space
♦ Consistent, disciplined use of names

♦ Identical expressions define the same name
♦ No other expression defines that name }Avoids copies

Result serves as proxy 
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Lazy Code Motion

The Name Space
♦ ri+rj→rk, always  (hash to find k)
♦ We can refer to ri+rj byrk (bit-vector sets)

♦ Variables must be set by copies

♦ No consistent definition for a variable

♦ Break the rule for this case, but require rsource < rdestination

♦ To achieve this, assign register names to variables first

Without this name space
♦ LCM must insert copies to preserve redundant values
♦ LCM must compute its own map of expressions to unique ids
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Lazy Code Motion: Running 
Example

B1:

r1←1

r2←r1
r3←r0+@m

r4←r3
r5←(r1< r2)
if r5 then B2 else B3

B2:

r20←r17*r18
r21←r19+r20
r8←r21
r6←r2+1

r2←r6
r7←(r2>r4)
if r7 then B3 else B2

B3: ...

Variables:

r2,r4,r8
Expressions:

r1,r3,r5,r6,r7,r20,r21

B1

B2

B3
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Lazy Code Motion

Predicates (computed by Local Analysis)
♦ DEEXPR(b) contains expressions defined in b that survive to the 

end of b.
e ∈ DEEXPR(b) ⇒ evaluating e at the end of b produces the same 
value for e as evaluating it in its original position.

♦ UEEXPR(b) contains expressions defined in b that have upward 
exposed arguments (both args).
e ∈ UEEXPR(b) ⇒ evaluating e at the start of b produces the same 
value for e as evaluating it in its original position.

♦ KILLEDEXPR(b) contains those expressions whose arguments are 
(re)defined in b.
e ∈ KILLEDEXPR(b) ⇒ evaluating e at the start of b does not produce 
the same result as evaluating it at its end.
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B1:

r1←1

r2←r1
r3←r0+@m

r4←r3
r5←(r1< r2)
if r5 then B2 else B3

B2:

r20←r17*r18
r21←r19+r20
r8←r21
r6←r2+1

r2←r6
r7←(r2>r4)
if r7 then B3 else B2

B3: ...

Lazy Code Motion: Running 
Example

BBBB1 BBBB2 BBBB3

DEEDEEDEEDEEXPR XPR XPR XPR r1, r3, r5 r7, r20, r21

UEEUEEUEEUEEXPR XPR XPR XPR r1, r3 r6, r20

KKKKILLEDILLEDILLEDILLEDEEEEXPR XPR XPR XPR r5, r6, r7 r5, r6, r7, r21

Variables:

r2,r4,r8
Expressions:

r1,r3,r5,r6,r7,r20,r21
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Lazy Code Motion
Availability

Initialize AVAILIN(n) to the set of all names, except at n0

Set AVAILIN(n0) to Ø
Interpreting AVAIL

♦ e ∈ AVAILOUT(b) ⇔ evaluating e at end of b produces the same value 
for e. AVAILOUT tells the compiler how far forward e can move the 
evaluation of e, ignoring any uses of e.

♦ This differs from the way we talk about AVAIL in global redundancy 
elimination.

AVAILIN(n) = ∩∩∩∩m∈ preds(n) AVAILOUT(m), n ≠ n0

AVAILOUT(m) = DEEXPR(m) ∪ (AVAILIN(m) ∩ KILLEDEXPR(m))
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Lazy Code Motion

Initialize ANTOUT(n) to the set of all names, except at exit blocks
Set ANTOUT(n) to Ø, for each exit block n
Interpreting ANTOUT

♦ e ∈ ANTIN(b) ⇔ evaluating e at start of b produces the same value for 
e. ANTIN tells the compiler how far backward e can move

♦ This view shows that anticipability is, in some sense, the inverse of 
availability (& explains the new interpretation of AVAIL).

ANTOUT(n) = ∩∩∩∩m∈ succs(n) ANTIN(m), n not an exit block

ANTIN(m) = UEEXPR(m) ∪ (ANTOUT(m) ∩ KILLEDEXPR(m))

Anticipability
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Lazy Code Motion

EARLIEST is a predicate
♦ Computed for edges rather than nodes (placement )
♦ e ∈ EARLIEST(i,j) if 

♦ It can move to head of j,
♦ It is not available at the end of i, and 

♦ either it cannot move to the head of i (KILLEDEXPR(i))

♦ or another edge leaving i prevents its placement in i (ANTOUT(i))

EARLIEST(i,j) = ANTIN(j) ∩ AVAILOUT(i) ∩ (KILLEDEXPR(i) ∪ ANTOUT(i))

EARLIEST(n0,j) = ANTIN(j) ∩ AVAILOUT(n0)

Earliest placement
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Lazy Code Motion

Initialize LATERIN(n0) to Ø
x ∈ LATERIN(k) ⇔ every path that reaches k has x ∈ EARLIEST(m) for 

some block m, and the path from m to k is x-clear & does not 
evaluate x.
⇒ the compiler can move x through k without losing any benefit.

x ∈ LATER(i,j) ⇔ <i,j> is its earliest placement, or it can be moved 
forward from i (LATER(i)) and placement at entry to i does not 
anticipate a use in i (moving it across the edge exposes that use).

LATERIN(j) = ∩∩∩∩ i ∈ preds(j) LATER(i,j), j ≠ n0

LATER(i,j) = EARLIEST(i,j) ∪ (LATERIN(i) ∩ UEEXPR(i))

Later (than earliest) placement

L
az

y
 C
o
d
e 
M
o
ti
o
n



Advanced Compiler Techniques 4/22/2005
http://lamp.epfl.ch/teaching/advancedCompiler/45

Lazy Code Motion

Rewriting the code

INSERT & DELETE are predicates

Compiler uses them to guide the rewrite step

♦ x ∈ INSERT(i,j) ⇒ insert x at start of i, end of j, or 
new block

♦ x ∈ DELETE(k) ⇒ delete first evaluation of x in k

INSERT(i,j) = LATER(i,j) ∩ LATERIN(j) 

DELETE(k) = UEEXPR(k) ∩ LATERIN(k), k ≠ n0

If local redundancy elimination has already been 

performed, only one copy of x exists.  Otherwise, 

remove all upward exposed copies of x. 
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Lazy Code Motion

Edge placement
♦ x ∈ INSERT(i,j)

Three cases
♦ |succs(i)| = 1⇒ insert x at end of i.
♦ |succs(i)| > 1 but |preds(j)| = 1⇒ insert x at start of j.
♦ |succs(i)| > 1 and |preds(j)| > 1⇒ create new block in <i,j> for x.

Bi

Bj

|succs(i)| = 1

x

|preds(j)| = 1

Bi

Bj Bk
x

|succs(i) > 1

|preds(j)| > 1

Bi

Bj Bk

Bh

x
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Lazy Code Motion Example

B1:r1←1

r2←r1
r3←r0+@m

r4←r3
r5←(r1<r2)

if r5 then B2 else B3
B2:r20←r17*r18

r21←r19+r20
r8←r21
r6←r2+1

r2←r6
r7←(r2>r4)

if r7 then B3 else B2
B3:...

B1

B2

B3

1,2 1,3 2,2 2,3

EEEEARLIESTARLIESTARLIESTARLIEST r20, r21 { } { } { }

Example is too small to show off LATER

INSERT(1,2) = { r20, r21 }

DELETE(2) = { r20 , r21 }

B1 B2 B3

DEEDEEDEEDEEXPR XPR XPR XPR r1, r3, r5 r7, r20, r21

UEEUEEUEEUEEXPR XPR XPR XPR r1, r3 r6, r20

KKKKILLEDILLEDILLEDILLEDEEEEXPR XPR XPR XPR r5, r6, r7 r5, r6, r7,r21

B1 B2 B3

AAAAVAILVAILVAILVAILIIIIN N N N { } r1, r3 r1, r3

AAAAVAILVAILVAILVAILOOOOUT UT UT UT r1, r3, r5 r1, r3, r7, r20, r21 …

AAAANTNTNTNTIIIIN N N N r1, r3 r6, r20 { }

AAAANTNTNTNTOOOOUT UT UT UT { } { } { }
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