
Using Program Analysis
for Optimization

Advanced Compiler Techniques

2005
Erik Stenman

Virtutech

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/2

♦Concept of definition and use
♦a=x+y

♦is a definition of a.
♦is a use of x and y.

♦A definition reaches a use if value written
by definition may be read by use.

Reaching Definitions

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/3

Reaching Definitions and
Constant Propagation

♦Is a use of a variable a constant?
♦ Check all reaching definitions.
♦ If all assign variable to same constant.
♦ Then use is in fact a constant.

♦Can replace variable with constant.

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

&
 C

on
st

an
t P

ro
p

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/4

Computing Reaching Definitions

♦Compute with sets of definitions:
♦ Represent sets using bit vectors.
♦ Each definition has a position in bit vector.

♦At each basic block, compute:
♦ Definitions that reach start of block.
♦ Definitions that reach end of block.

♦Do computation by simulating execution of
program until the fixed point is reached.

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/5

Formalizing Analysis

♦Each basic block has
♦ IN - set of definitions that reach beginning of

block
♦ OUT - set of definitions that reach end of block
♦ GEN - set of definitions generated in block
♦ KILL - set of definitions killed in the block

♦Compiler scans each basic block to derive
GEN and KILL sets.

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/6

Dataflow Equations

♦IN[bi] = OUT[b1] ∪ ... ∪ OUT[bn]
where b1, ..., bn are predecessors of bi

♦OUT[bi] = (IN[bi] - KILL[bi]) ∪ GEN[bi]
♦IN[entry] = 0000000
♦Result: system of equations.G

lo
ba

l O
pt

: R
ea

ch
in

g
D

ef
in

iti
on

s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/7

s1=0;
a2=4;
i3=0;
k==0

b4=1; b5=2;

i<n

s6=s+a*b;
i7=i+1; return s

IN[0] = 0000000
GEN[0] = 1110000
KILL[0] = 0000011

OUT[0]=(IN[0] -KILL[0])∪GEN[0]=
0000000-0000011∪ 1110000=1110000

IN[1]=OUT[0]
GEN[1] = 0001000
KILL[1] = 0000100

OUT[1]=(IN[1]-0000100)∪0001000

IN[2]=OUT[0]
GEN[2] = 0000100
KILL[2] = 0001000

OUT[2]=(IN[2]-0001000)∪0000100

IN[3]=OUT[1] ∪ OUT[2]
GEN[3] = 0000000
KILL[3] = 0000000

OUT[3]=IN[3]

IN[4]=OUT[3]
GEN[4] = 0000011
KILL[4] = 1010000

OUT[4]=(IN[4]-1010000)∪0000011

IN[5]=OUT[3]
GEN[5] = 0000000
KILL[5] = 0000000

OUT[5]=IN[5]

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/8

Solving Equations
♦Use fix point algorithm.
♦Initialize with solution of

OUT[bi] = 0000000
♦Repeatedly apply equations:

♦ IN[bi] = OUT[b1] ∪ ... ∪ OUT[bn]
♦ OUT[bi] = (IN[bi] - KILL[bi]) ∪ GEN[bi]

♦Until reach fixed point, i.e., until equation
application has no further effect.

♦Use a worklist to track which equation
applications may have further effect.

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/9

Reaching Definitions Algorithm
for all nodes n2N

OUT[n] = ;; // Or OUT[n] = GEN[n];
Changed = N; // N = all nodes in graph
while (Changed != ;) // Until fixed point reached.

choose n2Changed; // Node from worklist
Changed=Changed-{n}; // Remove from worklist
OldOut = OUT[n] // Remember old result
IN[n] = ;; // Calculate IN as join
for all nodes p2predecessors(n) // of predecessors.

IN[n]=IN[n]∪OUT[p];
OUT[n]=(IN[n]-KILL[n])∪GEN[n]; // Recalculate OUT
if (OUT[n] != OldOut) // If OUT[n] changed
for all nodes s2successors(n)

Changed=Changed∪{s}; //Add succs to worklist

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/10

Questions

♦ Does the algorithm halt?
♦ yes, because transfer function is monotonic.
♦ if increase IN, increase OUT.
♦ in limit, all bits are 1.

♦ If bit is 1, is there always an execution in which
corresponding definition reaches basic block?

♦ If bit is 0, does the corresponding definition ever
reach basic block?

♦ Concept of conservative analysis.

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s,

su
m

m
ar

y

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/11

Available Expressions

♦ An expression x+y is available at a point p if
♦ every path from the initial node to p evaluates x+y

before reaching p,
♦ and there are no assignments to x or y after the

evaluation but before p.
♦ Available Expression information can be used to

do global (across basic blocks) CSE.
♦ If an expression is available at use, there is no

need to re-evaluate it.

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/12

Computing Available
Expressions

♦ Represent sets of expressions using bit vectors.
♦ Each expression corresponds to a bit.
♦ Run dataflow algorithm similar to reaching

definitions.
♦ Big difference:

♦ Definition reaches a basic block if it comes from ANY
predecessor in CFG.

♦ Expression is available at a basic block only if it is
available from ALL predecessors in CFG.

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/13

Expressions
1: x+y
2: i<n
3: i+c
4: x==0

0000

1001

1000

1000

1100 1100

a=x+y;
x==0

x=z;
b=x+y;

i<n

c=x+y;
i=i+c;

d=x+y

i=x+y;

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/14

Expressions
1: x+y
2: i<n
3: i+c
4: x==0

0000

1001

1000

1000

1100 1100

a=x+y;
t1=a;
x==0

x=z;
b=x+y;
t1=b;

i<n

c=t1;
i=i+c;

d=t1

i=t1;

Global CSE Transform

Must use same temp
for CSE in all blocks

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s &

 C
SE

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/15

Formalizing Analysis

♦ Each basic block has
IN - set of expressions that reach beginning of block.
OUT - set of expressions that reach end of block.
GEN - set of expressions generated in block.
KILL - set of expressions killed in the block.

♦ GEN[x=z; b=x+y] = 1000
♦ KILL[x=z; b=x+y] = 1001
♦ Compiler scans each basic block to derive GEN and

KILL sets.

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/16

Dataflow Equations

♦IN[bi] = OUT[b1] ∩ ... ∩ OUT[bn]
♦ where b1, ..., bn are predecessors of bi

♦OUT[bi] = (IN[bi] - KILL[bi]) ∪ GEN[bi]
♦IN[entry] = 0000
♦Result: system of equations.

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/17

Solving Equations

♦Use fix point algorithm.
♦IN[entry]=0000
♦Initialize with solution of

OUT[bi] = 1111
♦Repeatedly apply equations:

♦ IN[bi] = OUT[b1] ∩ ... ∩ OUT[bn]
♦ OUT[bi] = (IN[bi] - KILL[bi]) ∪ GEN[bi]

♦Use a worklist to track which equation
applications may have further effect.

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/18

Available Expressions Algorithm
for all nodes n2N // E is set of all expressions.

OUT[n] = E; // OUT[n] =E -KILL[n];
Changed = N; // N = all nodes in graph
while (Changed != ;)

choose n2Changed;
Changed=Changed-{n};
IN[n] = E ;
OldOut = OUT[n]
for all nodes p2predecessors(n)

IN[n]=IN[n]∩OUT[p];
OUT[n]=(IN[n]-KILL[n])∪GEN[n];
if (OUT[n] != OldOut)

for all nodes s2successors(n) Changed=Changed∪{s};

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/19

Questions

♦ Does algorithm always halt?
♦ If expression is available in some execution, is it

always marked as available in analysis?
♦ If expression is not available in some execution,

can it be marked as available in analysis?
♦ In what sense is the algorithm conservative?

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s,

su
m

m
ar

y

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/20

Duality In Two Algorithms

♦ Reaching definitions
♦ Confluence operation is set union.
♦ OUT[b] initialized to empty set.

♦ Available expressions
♦ Confluence operation is set intersection.
♦ OUT[b] initialized to set of available expressions.

♦ General framework for dataflow algorithms.
♦ Build parameterized dataflow analyzer once, use

for all dataflow problems.

G
lo

ba
l O

pt
: D

ua
lit

y

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/21

Liveness Analysis

♦ A variable v is live at point p if
♦ v is used along some path starting at p, and
♦ no definition of v along the path before the use.

♦ When is a variable v dead at point p?
♦ No use of v on any path from p to exit node, or
♦ If all paths from p, redefine v before using v.G

lo
ba

l O
pt

: L
iv

en
es

s A
na

ly
si

s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/22

What Use is Liveness
Information?

♦ Register allocation.
♦ If a variable is dead, we can reassign its register.

♦ Dead code elimination.
♦ Eliminate assignments to variables not read later.
♦ But must not eliminate last assignment to variable (such as

instance variable) visible outside CFG.
♦ Can eliminate other dead assignments.
♦ Handle by making all externally visible variables live on

exit from CFG.

G
lo

ba
l O

pt
: L

iv
en

es
s A

na
ly

si
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/23

Conceptual Idea of Analysis

♦Simulate execution.
♦But start from exit and go backwards in

CFG.
♦Compute liveness information from end to

beginning of basic blocks.G
lo

ba
l O

pt
: L

iv
en

es
s A

na
ly

si
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/24

Liveness Example

a=x+y;
t=a;
c=a+x;
x==0

b=t+z;

c=y+1;

1100100

1110000

♦Assume a,b,c
visible outside
function. They are
live on exit.

♦Assume x,y,z,t
are not visible.

♦Represent liveness
using a bit vector:
order is abcxyzt.

1100111

G
lo

ba
l O

pt
: L

iv
en

es
s A

na
ly

si
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/25

Using Liveness Information for
Dead Code Elimination

a=x+y;
t=a;
c=a+x;
x==0

b=t+z;

c=y+1;

1100100

1110000

♦Assume a,b,c
visible outside
function. They are
live on exit.

♦Assume x,y,z,t
are not visible.

♦Represent liveness
using a bit vector:
order is abcxyzt.

1100111

G
lo

ba
l O

pt
: L

iv
en

es
s A

na
ly

si
s &

 D
ea

d
C

od
e

El
im

in
at

io
n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/26

Formalizing Analysis
♦ Each basic block has

IN - set of variables live at start of block.
OUT - set of variables live at end of block.
USE - set of variables with upwards exposed uses in block.

(GEN)
DEF - set of variables defined in block. (KILL)

♦ USE[x=z;x=x+1;y=1;] = {z} (x not in USE)
♦ DEF[x=z;x=x+1;y=1;] = {x, y}
♦ Compiler scans each basic block to derive USE and

DEF sets.

G
lo

ba
l O

pt
: L

iv
en

es
s A

na
ly

si
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/27

Algorithm
OUT[Exit] = ;;
IN[Exit] = USE[n];
for all nodes n2N-{Exit}

IN[n] = ;;
Changed = N-{Exit};
while (Changed != ;)

choose n 2 Changed;
Changed = Changed-{n};
OldIn=IN[n]
OUT[n] = ;;
for all nodes s 2 successors(n) OUT[n] = OUT[n] ∪ IN[p];
IN[n] = USE[n] ∪ (OUT[n] - DEF[n]);
if (IN[n] != OldIn)

for all nodes p 2 predecessors(n) Changed=Changed∪{p};

G
lo

ba
l O

pt
: L

iv
en

es
s A

na
ly

si
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/28

Similar to Other Dataflow
Algorithms

♦Backwards analysis, not forwards.
♦Still have transfer functions.
♦Still have confluence operators.
♦Can generalize framework to work for both

forwards and backwards analyses.G
lo

ba
l O

pt
: L

iv
en

es
s A

na
ly

si
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/29

Analysis Information Inside
Basic Blocks

♦One detail:
♦ Given dataflow information at IN and OUT of node.
♦ Also need to compute information at each statement of

basic block.
♦ Simple propagation algorithm usually works fine.
♦ Can be viewed as restricted case of dataflow analysis.

G
lo

ba
l O

pt
 &

 B
Bs

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/30

Summary

♦Dataflow Analysis
♦ Control flow graph.
♦ IN[b], OUT[b], transfer functions, join points.

♦Pairs of analyses and transformations:
♦ Reaching definitions/constant propagation.
♦ Available expressions/common sub-expression

elimination.
♦ Liveness analysis/Dead code elimination.

Su
m

m
ar

y

