Using Program Analysis
for Optimization

Advanced Compiler Techniques

2005
Erik Stenman

Virtutech

Reaching Definitions

¢ Concept of definition and use

¢ A=X+Y
¢is a definition of a.
¢isause of x and y.

¢ A definition reaches a use if value written
by definition may be read by use.

n
S
g
$=
k=
Oy
)
A
10)
£
<
@)
©
Q
~
+
oF
O
©
Q
i
QO

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/

Q.
o
=
(ol
-
S
©
-+
N
S
o
O
3
n
S
2
=
k=
G
)
A
V0]
£
<
Q
©
Q
~
-
o8
@
©
QO
S
O

Reaching Detinitions and
Constant Propagation

¢ Is a use of a variable a constant?
¢ Check all reaching definitions.
¢ If all assign variable to same constant.
¢ Then use is in fact a constant.

¢ Can replace variable with constant.

Advanced Compiler Techniques
te [advancedCompile

Computing Reaching Definitions

¢ Compute with sets of definitions:

¢ Represent sets using bit vectors.

¢ Each definition has a position in bit vector.
¢ At each basic block, compute:

¢ Definitions that reach start of block.

¢ Definitions that reach end of block.

¢ Do computation by simulating execution of
program until the fixed point is reached.

7p)
g
2
5=
k=
—
)
-
e)0)
g
S
&)
©
)
~
e
o
@)
S
Q
e
O

Advanced Compiler Techniques
te [advancedCompiler

Formalizing Analysis

¢ Each basic block has

¢ IN - set of definitions that reach beginning of
block

¢ OUT - set of definitions that reach end of block
¢ GEN - set of definitions generated in block
¢ KILL - set of definitions killed in the block

¢ Compiler scans each basic block to derive
GEN and KILL sets.

7p)
g
2
5=
k=
—
)
-
e)0)
g
S
&)
©
)
~
e
o
@)
S
Q
e
O

Advanced Compiler Techniques
te [advancedCompile

n
S
g
$=
k=
Oy
)
A
10)
£
<
@)
©
Q
~
-+
oF
O
©
Q
i
QO

Datatlow Equations

¢ IN[b,] = OUT]|b;] U ... U OUT]b,]
where b, ..., b, are predecessors of b,
¢ OUT|[b,] = (IN[b,] - KILL[b,]) w GEN|[b,]
¢ INJentry] = 0000000
¢ Result: system of equations.

Advanced Compiler Techniques

IN[0] = 0000000
GEN][0] = 1110000
KILL[0] = 0000011

sl=0; | OuUT[0]=aN][0] -KILL[0])UGEN[0]=
a2=4; | 0000000-0000011u 1110000=1110000

e 3 _ (.
2 1°=0; IN[2]=0OUT[0]
= k==0 GENJ2] = 0000100
8 KILL[2] = 0001000

50 / \ OUT[2]=(IN[2]-0001000)w0000100
k=l IN[1]=OUT][0]

Sl GEN[1] = 0001000 D=1 : D5=2 .

,S_:j KILL[1] = 0000100 ! !

J& OUT[1]=(IN]1]-0000100)x0001000 x IN[3]=OUT[1] U OUT[2]
O : GEN[3] = 0000000

E sl KILL[3] = 0000000

o OUT][3]=IN[3

S / \ [3]=IN[3]

sb=gs+a*b;
return s

IN[5]=OUT[3]

IN[4]=OUT[3] GEN[5] = 0000000
GEN[4] = 0000011 KILL[5] = 0000000
KILL[4] = 1010000 OUT[5]=IN[5]

OUT[4]=(IN[4]-1010000)_0000011

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/

Solving Equations

¢ Use fix point algorithm.

¢ Initialize with solution of
OUT|b,] = 0000000
¢ Repeatedly apply equations:
¢ IN[b.] = OUT[b;] U ... U OUT[b.]
¢+ OUT[b.] = (IN[b;] - KILL[b.]) U GEN[b]
¢ Until reach fixed point, i.e., until equation
application has no further effect.

¢ Use a worklist to track which equation
applications may have further effect.

7p)
g
2
5=
k=
—
)
-
e)0)
g
S
&)
©
)
~
e
o
@)
S
Q
e
O

Advanced Compiler Techniques
te [advanc mpile

Reaching Definitions Algorithm

for all nodes n2N

OUT[n] = ;; OUT|n| = GEN|n
Changed = N; N
while (Changed !=)

choose n2Changed;

Changed=Changed-{n};
OldOut = OUT][n]
IN[n] = ;; IN
for all nodes p2predecessors(n)

IN[n]=IN[n]UOUT]p];
OUT[n]=(IN[n]-KILL[n])0GEN][n]; OuUT
if (OUT[n] != OldOut) OUT|n

for all nodes s2successors(n)
Changed=Changedu({s};

n
S
g
$=
k=
Oy
)
A
10)
£
<
@)
©
Q
~
+
oF
O
©
Q
i
QO

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/

Questions

¢ Does the algorithm halt?
¢ yes, because transfer function is monotonic.
¢ if increase IN, increase OUT.
¢ in limit, all bits are 1.

¢ If bitis 1, is there always an execution in which
corresponding definition reaches basic block?

¢ If bit is 0, does the corresponding definition ever
reach basic block?

¢ Concept of conservative analysis.

o
—
©
g
g
)
9p]
)
S
e
=
5
Gy
V)
-
o10)
g
=
O
©
)
7
N
oF
@)
S
He!
2
O

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/

n
S
o
v
N
n
D)
=
o
X
M/
2
o)
&
'S
>
<
-+
oF
O
<
o)
=
QO

Available Expressions

¢ An expression x+y is available at a point p if

¢ every path from the initial node to p evaluates x+y
before reaching p,

¢ and there are no assignments to x or y after the
evaluation but before p.

¢ Available Expression information can be used to
do global (across basic blocks) CSE.

¢ If an expression is available at use, there is no
need to re-evaluate it.

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/

Computing Available
Expressions

¢ Represent sets of expressions using bit vectors.
¢ Each expression corresponds to a bit.

¢ Run dataflow algorithm similar to reaching
definitions.

¢ Big difference:

¢ Definition reaches a basic block if it comes from ANY
predecessor in CFG.

n
S
o
or
N
n
D)
=
o
X
M/
2
o)
&
'S
>
<
-+
oF
O
<
o)
=
QO

¢ Expression is available at a basic block only if it is
available from ALL predecessors in CFG.

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/

0000

a=xX+y;
Expressions X==
1001
1: X4y /
2: 1<n X=7;
4: x==0
v 1000

n
S
o
v
N
n
D)
=
o
X
M/
2
o)
&
'S
>
<
-+
oF
O
<
o)
=
QO

1100

d=X+Vy

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/

Global CSE Transform _ °99°

a=XxX+VY;
E . t 1 =a ;
=8 Expressions
5 1001 X==
1 X+y —
M 2: i<n X=Z;
Fll 3. i+c b=x+y;
L% 4. x==0 t1=p,
= v 1000
§ 1=t,;
:% Must use same temp 000
o | for CSE in all blocks v
% > 1<n
< 1100 1100
O L
C — t 17 d= t |
1=1+4C;

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/

Formalizing Analysis

¢ Each basic block has

IN - set of expressions that reach beginning of block.
OUT - set of expressions that reach end of block.
GEN - set of expressions generated in block.

KILL - set of expressions killed in the block.

¢ GEN[x=z; b=x+y]=1000
¢ KILL[x=2z; b=x+y]=1001

¢ Compiler scans each basic block to derive GEN and
KILL sets.

n
S
o
v
N
n
D)
=
o
X
M/
2
o)
&
'S
>
<
-+
oF
O
<
o)
=
QO

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/

Datatlow Equations

¢ IN|[b,] = OUT|b;] n ... n OUT|b,]
¢ where b, ..., b_ are predecessors of b,
¢ OUT|b,] = (IN]b,] - KILL[b,]) W GEN]b]
¢ INJentry] = 0000
¢ Result: system of equations.

n
S
@)
o=
n
n
D)
=
Q.
X
M/
2
o)
5
'S
>
<
-
oF
O
<
o)
=
QO

Advanced Compiler Techniques

Solving Equations

¢ Use fix point algorithm.
¢ IN[entry]=0000

¢ Initialize with solution of
OUT[b,] = 1111
¢ Repeatedly apply equations:
¢ IN[b.] = OUT[b,] A ... A OUT[b,]
+ OUT[b,] = (IN[b] - KILL[b.]) U GEN[b,]
¢ Use a worklist to track which equation
applications may have further effect.

n
S
o
v
N
n
D)
=
o
X
M/
2
o)
&
'S
>
<
-+
oF
O
<
o)
=
QO

Advanced Compiler Techniques
e i vanc mpile

Available Expressions Algorithm

for all nodes n2N E
OUT[n] = E; OUT|n| =E -KILL|n

Changed = N; N
while (Changed !=)
choose n2Changed;
Changed=Changed-{n};
IN[n] =E;
OldOut = OUT|[n]

for all nodes p2predecessors(n)
IN[n]=IN[n]nOUT[p];
OUT[n]=(IN[n]-KILL[n])UGEN|n];
if (OUT[n] != OldOut)
for all nodes s2successors(n) Changed=Changedu{S}jf;d SR

http://1amp.epfl.ch/teaching/advancedCompiler/

n
S
@)
v
n
n
D)
=
Q.
X
M/
2
o)
5
'S
>
<
-+
oF
O
<
o)
=
QO

>
—
S
g
g
5
n
)
S
2
N
N
U
T
oF
%
S8
=z
s
5
'S
>
<
o
o
O
I=
Q
=
O

Questions

¢ Does algorithm always halt?

¢ If expression is available in some execution, is it
always marked as available in analysis?

¢ If expression is not available in some execution,
can it be marked as available in analysis?

¢ In what sense is the algorithm conservative?

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/

Duality In Two Algorithms

¢ Reaching definitions

¢ Confluence operation is set union.
¢ OUT][Db] initialized to empty set.

¢ Available expressions
¢ Confluence operation is set intersection.
¢ OUT]Db] initialized to set of available expressions.

¢ General framework for datatlow algorithms.

¢ Build parameterized datatlow analyzer once, use
for all dataflow problems.

>
=
S
=)
A
-+
oF
@)
S
S,
2
O

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/

Liveness Analysis

¢ A variable v is live at point p if
¢ v is used along some path starting at p, and
¢ no definition of v along the path before the use.

¢ When is a variable v dead at point p?
¢ No use of v on any path from p to exit node, or

B
9]
i
@©
=
<
N
N
)
=
)
2
3
o
o
o
E=
2
<
O

¢ If all paths from p, redefine v before using v.

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/

B
9]
i
@©
=
<
N
N
)
=
)
2
3
o
o
o
E=
2
<
O

What Use is Liveness
Information?

¢ Register allocation.

¢ If a variable is dead, we can reassign its register.

¢ Dead code elimination.

¢ Eliminate assignments to variables not read later.

¢ But must not eliminate last assignment to variable (such as
instance variable) visible outside CFG.

¢ Can eliminate other dead assignments.

¢ Handle by making all externally visible variables live on
exit from CFG.

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/

Conceptual Idea of Analysis

¢ Simulate execution.

¢ But start from exit and go backwards in
CFG.

¢ Compute liveness information from end to
beginning of basic blocks.

.
%)
L5
©
a
<
)
N
)
S
)
=
—
-
oF
@)
S
L
=
O

Advanced Compiler Techniques
te [advancedCompile

¢ Assume a, b, ¢
visible outside
function. They are
live on exit.

¢ Assume x,v, z, t
are not visible.

0
B
=
)
-
<
)
N
)
S
)
2
—
-
Q.
@)
S
S
<
O

¢ Represent liveness
using a bit vector:

order is abcxyzt.

Liveness Example

1100111

b=t+z;

———__| 1100100

c=y+1;
1110000

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/

Using Liveness Information for

-
: Dead Code Elimination
£
B ¢ Assume a,b,c
< . A=X+y;
& visible outside t=a;
e function. They are S
. . ==O
& live on exit. -
E 1100111
d ¢ Assume x,v, z, t
4 are not visible. bEEA=)
— : 1100100
A ¢ Represent liveness =
= . . c=y+1;
Bl using a bit vector:
O 1110000

order is abcxyzt.

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/

Formalizing Analysis
¢ Each basic block has

IN - set of variables live at start of block.
OUT - set of variables live at end of block.

USE - set of variables with upwards exposed uses in block.
(GEN)

DEF - set of variables defined in block. (KILL)
¢ USE[x=z;x=x+1;y=1;]={z} (x not in USE)
¢ DEF[x=2z;x=x+1;y=1;] = {X, v}

¢ Compiler scans each basic block to derive USE and
DEF sets.

0
B
=
)
-
<
)
N
)
S
)
2
—
-
Q.
@)
S
S
<
O

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/

Algorithm
OUT]|EXxit] =
IN[Exit] = USE[n];
for all nodes n2N-{Exit}
IN[n] =
Changed = N {Exit};
while (Changed !=)
choose n 2 Changed;
Changed = Changed-{n};
OldIn=IN|[n]
OUT[n] =;;
for all nodes s 2 successors(n) OUT[n] = OUT|[n] U IN[p];
IN[n] = USE[n] U (OUT[n] - DEF[n]);
if (IN[n] != OldIn)
for all nodes p 2 predecessors(n) Changed=ChangeduU{p};

0
B
=
)
-
<
)
N
)
S
)
2
—
-
Q.
@)
S
S
<
O

Advanced Co mpl r Techni q
http://1lamp.epfl._ch/te h ng/advancedCompi /

Similar to Other Dataflow
Algorithms

¢ Backwards analysis, not forwards.
¢ Still have transfer functions.
¢ Still have confluence operators.

¢ Can generalize framework to work for both
forwards and backwards analyses.

0
B
=

)

-
<

)

N

)

S

)
2
—
-

Q.
@)
S
S
<
O

Advanced Compiler Techniques
te [advanc mpile

Analysis Information Inside
Basic Blocks

¢ One detail:
¢ Given dataflow information at IN and OUT of node.
¢ Also need to compute information at each statement of

basic block.
¢ Simple propagation algorithm usually works fine.

wn
aa)
M
3
-—

o
@
®
QO
i
O

¢ Can be viewed as restricted case of dataflow analysis.

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/

Summary

¢ Datatlow Analysis
¢ Control flow graph.
¢ IN[b], OUT][Db], transfer functions, join points.

¢ Pairs of analyses and transformations:
¢ Reaching definitions/constant propagation.

¢ Available expressions/common sub-expression
elimination.

¢ Liveness analysis/Dead code elimination.

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/

