Foundations of
Dataflow Analysis

Advanced Com]oi\er Tec}’miques

Dataflow Analysis

Dataflow Analysis

Compile-Time Reasoning About

¢ Run-Time Values of Variables or Expressions at
different program points:

¢ Which assignment statements produced the
value of the variables at this point?

¢ Which variables contain values that are no

2005
Erk Shenman longer used after this program point?
VirkuYech ¢ What is the range of possible values of a
variable at this program point?
: Dataflow Analysis:
Dataflow Analysis Y

2
<
A

¢ Assumptions:

¢ We have a syntactically and semantically
correct program (as far as compile time
analysis can determine this).

¢ We have the “whole” program, or a clearly
defined subset of the program which will only
interact with the rest of the program through a
predefined interface.

(That is, no self modifying code, and if the interface is a function then the
parameters can take any value of the given type.)

Advanced Compiler Techniques
http://1anp. epfl ch/teaching/advancedCompi ler/

Dataflow Analysis

Basic Idea

¢ Information about a program represented
using values from an algebraic structure
called lattice. (We will call this set of values PP.)
¢ Analysis produces a lattice value for each
program point.
¢ Two flavors of analysis:
¢ Forward dataflow analyses.
¢ Backward dataflow analyses.

Advanced Compiler Techniques
http://Nanp. epfl..ch/teaching/advancedConpiler/

Dataflow Analysis

Forward Dataflow Analysis

¢ Analysis propagates values forward through
control flow graph with flow of control
¢ Each node has a transfer function f
¢ Input - value at program point before node.
¢ Output - new value at program point after node.
¢ Values flow from program points after
predecessor nodes to program points before
successor nodes.
¢ At join points, values are combined using a
merge function.

¢ Canonical Example: Reaching Definitions.

Advanced Compiler Techniques
http://1anp. epfl .ch/teaching/advancedCompi ler/

Dataflow Analysis

Backward Dataflow Analysis

¢ Analysis propagates values backward through
control flow graph against flow of control:
¢ Each node has a transfer function f
¢ Input - value at program point after node.
¢ Output - new value at program point before node.
¢ Values flow from program points before
successor nodes to program points after
predecessor nodes.
¢ At split points, values are combined using a
merge function.
¢ Canonical Example: Live Variables.

Advanced Compiler Techniques
http://4anp. epfl .ch/teaching/advancedConpiler/

Partial Orders

¢ SetP

¢ Partial order < such thatV s52 € P
i x<x (reflexive)
iz x<yandyr<zx=>x=yp (antisymmetric)
x<ypandyr<zs=>x<z (transitive)

Advan
http://1anp. epfl.ch/teachi

5]
e
O
[H

=
el

=1
=

151
=

Upper Bounds

¢ If S c P then
¢ xePis an upper bound of S if
VyeS, y<x
¢ xc Pis the least upper bound (lub) of S if
¢ xis an upper bound of S, and

¢ x <y for all upper bounds y of S
¢ V - join, least upper bound, supremum (sup)

¢ VS is the least upper bound of S

¢ xVyis the least upper bound of {x, 7}

Advanced Compil ue
http://4anp. epfl..ch/teaching/advancedConpiler.

S
15}

I
=
15}

E

Lower Bounds

¢ If S c P then

¢ xcPis a lower bound of S if VyeS, x <y

¢ sc P is the greatest lower bound (glb) of S if
¢ xis a lower bound of S, and
¢ 7 <xfor all lower bounds y of S

& A - meet, greatest lower bound, infimum (inf)
¢ ASis the greatest lower bound of S
¢ x A yis the greatest lower bound of {x, 5}

Advanced Compiler Techniques
http://1anp. epfl ch/teaching/advancedCompi ler/

Theory Foundation: Partial Orders

Coverings

¢ Notation: » < if x <y and x#r
¢ x is covered by y (v covers x) if
¢ x<y,and
¢ x<s<y=>x=2z
¢ Conceptually, covers x if there are no
elements between x and 5

Advanced Compiler Techniques
http://Nanp. epfl..ch/teaching/advancedConpiler/

Dataflow Analysis

Dataflow Analysis:
Basic Idea

¢ Information about a program represented
using values from an algebraic structure
called Ilattice. (We will call this set of values P.)
¢ Analysis produces a lattice value for each
program point.
¢ Two flavors of analyses:
& Forward dataflow analyses.
& Backward dataflow analyses.

Advan
http://1anp. epfl .ch/teachi

Theory Foundation: Partial Orders

Hasse Diagram

¢ We can visualize a partial order with a
Hasse Diagram.

¢ For each element > we draw a circle: o

¢ If y covers x
¢ Line from y to x v
¢ yabove x in diagram I

Advance
http://1anp.epfl..ch/teachi

Hasse Diagram: Example

P = {000, 001, 010, 011, 100, 101, 110, 111}
x < yif (x bitwise_and y) = =

(standard boolean lattice, also called hypercube)

© 100

Advan
http://1anp. epfl.ch/teachi

0
33
=
=
=)
9]
=

Lattices

¢ If x A yand x v yexist for all x5 € P,
then IP is a lattice.

¢ If AS and VS exist forall S c P,
then P is a complete lattice.
¢ Theorem: All finite lattices are complete.

¢ Example of a lattice that is not complete
¢ Integers Z
¢ Forany xy €7, x V y = max(xy), x A 7= min(xy)

¢ But VZ and AZ do not exist
¢ 7 U {+oo, —oo} is a complete lattice

Advanced Compiler Techniques
http://4anp. epfl . ch/teaching/advancedConpiler/

Theory Found

Top and Bottom

¢ Greatest element of P (if it exists) is top (T).
¢ Least element of IP (if it exists) is bottom (L).

Advanced Compiler Techniques
http://1anp. epfl ch/teaching/advancedCompi ler/

Theory Foundation: Partial Orders

Connection between

<, A, and v
The following 3 properties are equivalent:
X<y
¢XVYy=Yy
¢XAY=X

¢ Will prove:
¢x<y=>xvy=yandxAy=Xx
¢XVYy=y=Xx<y
¢ XAYy=X=>X<Yy

¢ By Transitivity,
¢XVY=Y=>XAY=X
¢XAY=X=XVY=Y

Advanced Compiler Techniques
http://Nanp. epfl..ch/teaching/advancedConpiler/

i
o
S

=

Connecting Lemma Proofs (1)

¢ Proofof s<p=>xVvy=ys
¢ ¥ <y = yisanupper bound of {xs}.
¢ Any upper bound # of {xy} must satisfy y < z.
¢ So 7 is least upper bound of {zy} and x v y = 5
¢ Proofof x<y=xAnp=x
¢ x <y = xisalower bound of {z}.
¢ Any lower bound ~ of {x7} must satisfy » < .

¢ So x is the greatest lower bound of {5},
thatisx Ay ==

Advan
http://1anp. epfl .ch/teachi

Theory Foundation: Partial Orders

Connecting Lemma Proofs (2)

¢Proofofxvy=p=>5x<yp

¢ yis an upper bound of {xy} = x <
¢Proofof x Ay=x=x<yp

¢ xis alower bound of {zy} = < »

¥

Advance
http://1anp.epfl..ch/teachi

Theory Foundation: Lattices

Lattices as Algebraic Structures

¢ Have defined v and A in terms of <.

¢ Now define < in terms of v and A:

¢ Start with v and A as arbitrary algebraic
operations that satisfy associative,
commutative, idempotence,
and absorption laws.

¢ Will define < using v and A.

¢ Will show that < is a partial order.

o
g
=
i
g
S
9]
=

Algebraic Properties of Lattices

Assume arbitrary operations v and A such that
(associativity of v)
associativity of A)

¢ (xvy)vz=xVv(yVz)

¢ (XAY)AZ=XA(YAZ) (

¢XVY=yVX (commutativity of v)

¢XAY=YAX (commutativity of A)

¢ XVX=X (idempotence of v)
(idempotence of A)
(absorption of v over A)
(absorption of A over v)

®XAX=X
XV (XAY)=X
¢XA(XVY)=X

http://4anp. epfl.cl

Theory Foundation: Lattices

Connection Between
A and v

Theorem: x v y =y if and only if x A y =x
¢ Proofof x Vy=y=>x=xAYy

X=XA(XVY) (by absorption)
=XAY (by assumption)
¢ Proof of x Ay=x=>y=xvVvy
y=yVv(yAx) (by absorption)
=yv(xAy) (by commutativity)
=yvx (by assumption)
=XVy (by commutativity)

Advanced Compiler Techniques
n/teaching/advancedCorpiler/

http://1anp. epfi -ci

Properties of <

¢ Definex<yifxvy=y
¢ Proof of transitive property. Show that
xvy=yandyvz=z=xvz=z

XVvz=xVv(yVz) (by assumption)
=(xvy)vz (by associativity)
=yvz (by assumption)
=z (by assumption)

Theory Foundation: Lattices

Properties of <

¢ Proof of asymmetry property. Show that
xvy=yandyvx=x=Xx=y
x=yvx (byassumption)
=xvy (by commutativity)
=y (by assumption)
¢ Proof of reflexivity property. Show that
XV X=X

XV X=X (by idempotence)

Advanced Compiler Techniques
ch/teaching/advancedConpi ler/

Theory Foundation: Lattices

Properties of <

¢ Induced operation < agrees with original
definitions of v and A, i.e.,

ex vy =sup {x, y}
ex Ay =inf {x, y}

Advanced Compiler Techniques
h/teaching/advancedConpiler/

Proof of x vy = sup {x, y}

¢ Consider any upper bound = for x and .

¢eGivensve=zandyve=g,
show x v <4,

Theory Foundation: Lattices

Proof of x Ay = inf {x, y}

* Consider any lower bound 7 for x and y-

e Givenx Az=zand y A7=
show 7<x Ay,
ie, (xAp)Az=7

ie,(xvy)vVe=u I=x N7 (by assumption)
«=xVau (by assumption) =xA(rA2) (by assumption)
=xV(rva) (by assumption) =(xAp) AL (by associativity)
=(xvy)ve (by associativity)
Chains Dataflow ‘A.nalysw
(repetition)

¢ AsetSisachainif VxpeS.y<xorx<ysy
¢ P has no infinite chains if every chain in P is finite
¢ [P satisfies the ascending chain condition if

for all sequences x; < x, < ... there exists n

such thatx, =x,,; = ...
That is, all increasing sequences in P eventually

becomes constant.

Advanced Compiler Techniques
http://1anp. epfl ch/teaching/advancedCompi ler/

£
@

<

]

¢ Information about a program represented using values
from a lattice (P). Analysis propagates values through
control flow graph, either forwards or backwards.
¢ For forward analysis:
Each node has a transfer function f,
¢ Input - value at program point before node.
¢ Output - new value at program point after node.

¢ Values flow from program points after predecessor nodes to
program points before successor nodes.

¢ Atjoin points, values are combined using a merge function.

Advanced Compiler Techniques
http://Nanp. epfl..ch/teaching/advancedConpiler/

&
2
<
A

Transfer Functions

¢ Assume a lattice P of abstract values.
¢ Transfer function f: P—P for each node in
control flow graph.

¢ f models the effect of the node on the
program information.

Advan
http://1anp. epfl .ch/teachi

Dataflow Analysis: Transfer Functions

Properties of Transfer Functions

Each dataflow analysis problem has a set IF of
transfer functions f:P—P
¢ Identity function e F

¢ F must be closed under composition:
Vf,s€F, the function 4 = Ax.f(s(x))e F

¢ Each feF must be monotone:x <y = f(x) < f(»)
¢ Sometimes all fe [are distributive:
fevn) =& v IiF)

¢ Distributivity = monotonicity

Advance
http://1anp.epfl..ch/teachi

Dataflow Analysis: Transfer Functions

Distributivity Implies
Monotonicity

Proof:
¢ Assume f(xVvy) = f(=) v f({7)
¢Show: x vy =r= f(x) Vv f(») = f(»)

f) = f= V) (by assumption)
=f(=) Vv f(r) (by distributivity)

&
&
<
a

L4
L4

*

Forward Dataflow Analysis

Simulates forward execution of a program

For each node n, we have
in, - value at program point before n
out, - value at program point after n

fa - transfer function for n (given in,, computes out,)
Require that solutions satisfy

i. Vn,out, = f,(in,)

ii. Vn#nyin,=v {out, | m € pred(n) }

m

ii. ingy=1

http://4anp. epfl.cl

el
s
=
7
ES
<
S
A

Dataflow Equations

¢ Result is a set of dataflow equations

out, := f,(in,)

in, := v {out, | m € pred(n) }

¢ Conceptually separates analysis problem
from program.

m

Advanced Compiler Techniques
n/teaching/advancedCorpiler/

http://1anp. epfi -ci

Dataflow Analy

Worklist Algorithm for Solving
Forward Dataflow Equations

for each neN do out,, := f, (1)
=N
while = do:
remove a node n from
in, :=v{out, | m € pred(n) }
Outl’l = fn(lnn)
if out,, changed then
= U succ(n)

Advanced Compiler Techniques
http://Nanp. epfl..ch/teaching/advancedConpiler/

Dataflow Analysis: Forward

Correctness Argument

Why result satisfies dataflow equations?

¢ Whenever we process a node n,
set out,, := f,(in,)
Algorithm ensures that out,, = f, (in,)

¢ Whenever out,, changes, put succ(m) on
Consider any node n € succ(m).
It will eventually come off the
algorithm will set

and the

in, :=v {out, | m € pred(n) }
to ensure that in, = v { out,, | m € pred(n) }

Advanced Compiler Techniques
ch/teaching/advancedConpi ler/

3
<
a

Termination Argument

Why does the algorithm terminate?
¢ Sequence of values taken on by in, or out, is a
chain. If values stop increasing, the worklist
empties and the algorithm terminates.
¢ If the lattice has the ascending chain property, the
algorithm terminates
¢ Algorithm terminates for finite lattices.

¢ For lattices without the ascending chain property, we
must use a widening operator.

Advanced Compiler Techniques
h/teaching/advancedConpiler/

Dataflow Analysis: Forward

Widening Operators

¢ Detect lattice values that may be part of an
infinitely ascending chain.

¢ Artificially raise value to least upper bound of the
chain.

¢ Example:
¢ Lattice is set of all subsets of integers.
¢ Widening operator might raise all sets of size n or
greater to TOP (the set of all integers).
¢ Could be used to collect possible values taken on by a
variable during execution of the program.

ced Compler T«v rigues
ittp://1amp. epfl ing/advay

Reaching Definitions

¢ Concept of definition and use
¢z = x+y
¢ is a definition of z
¢ isauseof xand y
¢ A definition (d) reaches a use (u) if the
value written by d may be read by u.

Advanced Compiler Techniques
http://4anp. epfl . ch/teaching/advancedConpiler/

)
(s
&0
&
5
=
a
=
<
A

Reaching Definitions

return s
=
Advanced Compllr Techniques

p://Manp. epfl_ch/ts

: Forward (Re:

:
<
a

Reaching Definitions Framework

¢ P = g (the powerset) of the set of definitions in
the program (all subsets of the set of definitions).

¢ v=u (orderis)
¢ 1L=0
¢ [F = all functions f of the form f(x) = a U (x-b)

¢ b is the set of definitions that the node kills.

¢ a is the set of definitions that the node generates.
General pattern for many transfer functions

f(x) = GEN U (x-KILL)

Advanced Compiler Techniques
h/teaching/advancedCanpi ler/

Dataflow Analysis: Forward (Reaching Definitions)

Does Reaching Definitions
Framework Satisfy Properties?

¢ C satisfies conditions for <
xcyandycz=xcz (transitivity)
xcyandycx=y=x (asymmetry)
X C X (reflexivity)
¢ [F satisfies transfer function conditions
MDD U (x- D) = Ax.xeF (identity)
Will show f(x U y) = f(x) U f(y) (distributivity)
fUfly)=@ux-b)u@u(y-b)
=auU((x-b)u(y-b)
=au((xuy)-b)
=flxvy)

Advaneed Compiler Techniques
1. cn/eeach i

Dataflow Analysis: Forward (Reaching Definitions)

Does Reaching Definitions
Framework Satisty Properties?

What about composition?
¢ Given f,(x) = a; U (x-b;) and f,(x) = a, U (x-b,)
¢ Show fl(fz()) can be expressed as a U (x - b)

S = 0 (@0 (b)) - by
—31 ((a; - by) W ((x-by) - by))
= (a; U (a3~ by)) U ((x-by) - by))
= (a; U (a3 - by)) L (x-(b, L by))
Leta=(a, U (a,-b))and b=b, Ub,

Then f;(f2(x)) =a v (x - b)

Advanced Compiler Techniques
h/teaching/advancedConpiler/

Dataflow Analysis

General Result

All GEN/KILL transfer function frameworks
satisfy the properties:
¢ Identity
¢ Distributivity
¢ Compositionality

A
http://1anp. epfilch/teaching/a

Dataflow Analysis: Forward (Available Expressions)

Available Expressions
Framework

¢ P =g (the powerset) of the set of all expressions
in the program (all subsets of set of expressions).
¢ v=n (order is D)
¢ L= g (butin,, =)
¢ [=all functions f of the form
f(x) =au (x-b).
¢ b is set of expressions that node kills.
¢ a is set of expressions that node generates.

¢ Another GEN/KILL analysis

T,:
S
‘B
7
2
£
55}
=
<
S
S
g
=
<
A

Concept of Conservatism

¢ Reaching definitions use U as join

¢ Optimizations must take into account all definitions that reach
along ANY path

¢ Available expressions use N as join
¢ Optimization requires expression to reach along ALL paths
¢ Optimizations must conservatively take all possible
executions into account.

¢ Structure of analysis varies according to the way the
results of the analysis are to be used.

Advanced Compiler Techniques
http://1anp. epfl ch/teaching/advancedCompi ler/

<
g
[22]
Z
g
<
A

Backward Dataflow Analysis

Simulates execution of program backward
against the flow of control.

For each node n, we have

in,, - value at program point before n.

out, - value at program point after n.

fn - transfer function for n (given out,, computes in,).
Require that solutions satisfy:

i. Vn.in, = f (out,)

ii. Vne Ng, . out,=v{in, | m € succ(n) }

iii. Vne Ny, .out, =1

Advanced Compiler Techniques
http://Nanp. epfl..ch/teaching/advancedConpiler/

Dataflow Analysis: Backward

Worklist Algorithm for Solving
Backward Dataflow Equations

for eachn € Ndoin, = f (1)
worklist := N
while worklist # @ do
remove a node n from worklist
out,:=v{in_ | m € succ(n) }
inm = fn(outn)
if in,, changed then
worklist := worklist U pred(n)

Advanced Compiler Techniques
http://1anp. epfl .ch/teaching/advancedCompi ler/

Dataflow Analysis: Backward (Live Variables)

Live Variables Analysis
Framework

¢ P = powerset of the set of all variables in the
program (all subsets of the set of variables).
¢ v=u (orderis c)
¢ L=0
¢ [F = all functions f of the form f(x) = a U (x-b)
¢ b is set of variables that the node kills.
¢ ais set of variables that the node reads.

Advanced Compiler Techniques
http://4anp. epfl .ch/teaching/advancedConpiler/

Dataflow Analysis: Results

Meaning of Dataflow Results

¢ Connection between executions of program and
dataflow analysis results.
¢ Each execution generates a trajectory of states:
¢ 5¢;Sy;...;Sywhere each s,€ S

¢ Map current state s, to
¢ Program point n where execution located.

¢ Value x in dataflow lattice.

¢ Require x <in,,

Dataflow Analysis: Results

Abstraction Function for
Forward Dataflow Analysis

¢ Meaning of analysis results is given by an
abstraction function AF:S—P

¢ Require that for all states s
AF(s) <in,,
where n is the program point where the
execution is located at in state s, and in,, is
the abstract value before that point.

http://4anp. epfl.cl

i
<
o
e

g
S8}
=
<
=)

Sign Analysis Example

Sign analysis - compute sign of each variable v
¢ Base Lattice: flat lattice on {-,zero,+}

¢ Actual lattice records a value for each variable
¢ Example element: [a—+, b—zero, c—-]

Advanced Compiler Techniques
n/teaching/advancedCorpiler/

http://1anp. epfi -ci

0
2
e
<
e
39
@
P
2
g
%
&
@
<
(a]

Interpretation of Lattice Values

If value of v in lattice is:
¢ L: no information about the sign of v.
¢ -: variable v is negative.
¢ zero: variable vis 0.
¢ +: variable v is positive.
¢ T: v may be positive or negative or 0.

Advanced Compiler Techniques
http://Nanp. epfl..ch/teaching/advancedConpiler/

Dataflow Analysis: Example (Sign Analysis)

Operation ® on Lattice

® il - Zero + T
1 1 - Zero + T
- - i Zero - T

Zero | Zero | zero | zero | zero | zero

+ + - Zero + T

T T T Zero T T

Advanced Compiler Techniques
ch/teaching/advancedConpi ler/

Dataflow Analysis: Example (Sign Analysis)

Transfer Functions

Defined by structural induction on the shape
of nodes:

¢ If n of the form v =c
¢ f.(x) =x[v— +] if c is positive
¢ f.(x) = x[v—zero] if cis 0
¢ fo(x) =x[v— -] if c is negative

¢ If n of the form v, = v,*v,
¢ fo(x) = x[v,>x[v,] ® x[v3]]

Advanced Compiler Techniques
h/teaching/advancedConpiler/

Abstraction Function

¢ AF(s)[v] =signof v
¢ AF([a—>5, b—0, c—-2]) = [a—+, b—zero, c—-]
¢ Establishes meaning of the analysis results
¢ If analysis says a variable v has a given sign
¢ then v always has that sign in actual execution.
¢ Two sources of imprecision
¢ Abstraction Imprecision - concrete values (integers) abstracted as
lattice values (-,zero, and +);
¢ Control Flow Imprecision - one lattice value for all different flow
of control possibilities.

Advan
http://1anp. epfilch/teaching/adva

k%)
3]
o
a.
@
@

<

a

Imprecision Example

[a—>L, b—1, c—>1]

Abstraction Imprecision:
[a—1] abstracted as [a—>+] a=1

[a—=+ b1, c—l]/\AIa_> +,bo>l, col]

b=-1 b =1

[a—+, b—-, c—1] [a—+, b—+, c—1]

[a—>+, b>T, c>1] |
cC = a*b

Control Flow Imprecision:
[b—T] summarizes results of all executions.
In any execution state s, AF(s)[b]#T

[a—>+, b>T, c>T]

Advanced Compiler Techniques
http://4anp. epfl . ch/teaching/advancedConpiler/

General Sources of Imprecision

¢ Abstraction Imprecision
¢ Lattice values less precise than execution values.
¢ Abstraction function throws away information.
¢ Control Flow Imprecision

¢ Analysis result has a single lattice value to summarize results
of multiple concrete executions.

¢ Join operation v moves up in lattice to combine values from
different execution paths.

¢ Typically if x <y, then x is more precise than y.

Advanced Compiler Techniques
http://1anp. epfl ch/teaching/advancedCompi ler/

Dataflow Analysis: Imprecision

Why Have Imprecision?

ANSWER: To make analysis tractable

¢ Conceptually infinite sets of values in execution.
¢ Typically abstracted by finite set of lattice values.

¢ Execution may visit infinite set of states.
¢ Abstracted by computing joins of different paths.

Advanced Compiler Techniques
http://Nanp. epfl..ch/teaching/advancedConpiler/

Augmented Execution States

¢ Abstraction functions for some analyses
require augmented execution states.

¢ Reaching definitions: states are augmented
with the definition that created each value.

¢ Available expressions: states are augmented
with expression for each value.

Advar
http://1anp.epfl ch/teachi

Dataflow Analysis: Meet over all paths

Meet Over All Paths Solution

¢ What solution would be ideal for a forward
dataflow analysis problem?

¢ Consider a path p =ny, n,, ..., ny, n to anode n
(note that for all i, n; € pred(n;;4))

¢ The solution must take this path into account:
FoD) = (o (o y(ooofon (g D)) =) S,

¢ So the solution should have the property that

Nfp(L) | pisapathton}=in,

Advanced Compiler Techniques
http://Nanp. epfl..ch/teaching/advancedConpi ler/

Dataflow Analysis: Meet over all paths

Conservative Solution

¢ There is no algorithm to compute the
optimal solution, due to infinite number of
paths.

¢ A solution is conservative if for all paths p
ton, f (1) <in,

: Soundness

Dataflow Analy

Soundness Proof of Analysis

Algorithm

Property to prove:
For all paths p to n, f,(1) <in,

¢ Proof is by induction on the length of p.

¢ Uses monotonicity of transfer functions.
¢ Uses following lemma.
Lemma:

The worklist algorithm produces a solution such that

if n € pred(m) then out, <in

m

(That is, what you get out of a predecessor is more precise than what will go
in to the node, because precision may be lost by the join function.)

http://4anp. epfl.cl

piler Techniques
/advancedConpiler/

o
2
a8
=S
<
A

Proof

¢ Base case: p is of length 0
¢Thenp=njand f (1) =L1= in,

¢ Induction step:
¢ Assume theorem for all paths of length k.
¢ Show for an arbitrary path p of length k+1.

Advanced Compiler Techniques
p://1anp. epflch/teaching/advancedCompi ler/

9
2
]
=1
3
@

<

[a]

Induction Step Proof

¢ Given a path p =ny, ..., n,, n show (fnk(fnk_l(. ..

Fuy(Fag(D) --2)) <in,

By induction assumption: (theorem holds for all paths of

length k)

(fnk_l("‘ fnl(an(J‘)))) < innk
Apply f,, to both sides:

Fon gy Fog (D)) 7 F(imy)

By monotonicity: (x<» = f(x) < f()
(Fr Py 1 G Ty (Frg(D)) < Fio (
By definition of fnk: (o (in,) = out,)

innk)

(P Fny 1 (oo T (D)) - 2)) S Ol e it

Dataflow Analysis: Distributivity

Distributivity

¢ Distributivity preserves precision.

¢ If framework is distributive, then the
worklist algorithm produces a precis result:
For all n:

vif, (1) | pisapathton}=in,

Advanced Compiler Techniques
ch/teaching/advancedConpi ler/

: Distributivity (Example)

Dataflow Analysis:

Lack of Distributivity Example

Integer Constant Propagation (ICP)
¢ Flat lattice on integlgrs

-2 10 1 2
L

¢ Actual lattice records a value for each variable

¢ Example element: [a—3, b—2, c—>5]

Advanced Compiler Techniques
h/teaching/advancedConpiler/

http://1anp. epfl.ch/teac!

Transfer Functions Lack of Distributivity Anomaly

¢ If n of the form v =c
¢ f.(x) = x[v—oc]

¢ If n of the form v, = v,+v;

Distributivity (Example)

¢ £.(x) = x[vi—=x[v,] + x[v3]]

Dataflow Analysis: Distributivity (Example)

Dataflow Analysis:

Advanced Compiler Techniques
iter/

Advanced Compiler Techniques
http://1anp. epfilch/teaching/advancedConpi le ng/advancedC v

http://4anp. epfl . ch/teaching/advancedConpiler/

Lack of distributivity of ICP Lack of Distributivity Anomaly

¢ Consider transfer function f forc=a+b

i (f(x) = x[e—x[a] + x[b]]) = a =2 a =3
: * f([a—3, b—2]) v f(Ja=2, b—3]) = £ b = 3 b = 2
2 [a—3, b—>2] [c— [a—3, b—>2][a] + [a—3, b—2][b]] v 2
Z [a—2, b—3] [c— [a—2, b—3][a] + [a—32, b—=3][b]] = z 2 b3
[a3, bo>2] [c— 3 + 2] v [a52, b—>3] [c> 2 + 3] = - Bnakas. =5y 10=2)
£ [a—3, b—=2] [c—5] v [a—2, b—=3] [c—5] =)
?_ [a>T, b>T, c—>5] 5 [a>T, b—>T] l
% O ;EEZ%’ ll)):%F]]\; [2_>2’ b=3]) = ff Lack of Distributivity Imprecision:
2 [ao>T, boT] [e— [asT, b>T][a] + [a5T, boT][b]] = = [a=T, b=>T, c=5] more precise.
[a=T, b>T, c>T] [a>T, b>T, c>T]
Summary

¢ Formal dataflow analysis framework
¢ Lattices, partial orders.
¢ Transfer functions, joins and splits.
¢ Dataflow equations and fixed point solutions.
¢ Connection with program
¢ Abstraction function AF: S —
¢ For any state s and program point n, AF(s) < in,,
¢ Meet over paths solutions, distributivity.

Summary

Advanced Compiler Techniques
ch/teaching/advancedConpi ler/

