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Dataflow Analysis

Compile-Time Reasoning About
♦ Run-Time Values of Variables or Expressions at 

different program points:
♦Which assignment statements produced the 

value of  the variables at this point?
♦Which variables contain values that are no 

longer used after this program point?
♦What is the range of possible values of a 

variable at this program point?
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Dataflow Analysis

♦Assumptions: 
♦We have a syntactically and semantically 

correct program (as far as compile time 
analysis can determine this).

♦We have the “whole” program, or a clearly 
defined subset of the program which will only 
interact with the rest of the program through a 
predefined interface. 
(That is, no self modifying code, and if the interface is a function then the 
parameters can take any value of the given type.)
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Dataflow Analysis: 
Basic Idea

♦Information about a program represented 
using values from an algebraic structure 
called lattice. (We will call this set of values P.)

♦Analysis produces a lattice value for each 
program point.

♦Two flavors of analysis:
♦Forward dataflow analyses.
♦Backward dataflow analyses.
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Forward Dataflow Analysis
♦ Analysis propagates values forward through

control flow graph with flow of control
♦Each node has a transfer function ƒ

♦ Input – value at program point before node.
♦ Output – new value at program point after node.

♦Values flow from program points after 
predecessor nodes to program points before 
successor nodes.

♦At join points, values are combined using a 
merge function.

♦ Canonical Example: Reaching Definitions.
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Backward Dataflow Analysis
♦ Analysis propagates values backward through 

control flow graph against flow of control:
♦Each node has a transfer function ƒ

♦Input – value at program point after node.
♦Output – new value at program point before node.

♦Values flow from program points before 
successor nodes to program points after 
predecessor nodes.

♦At split points, values are combined using a 
merge function.

♦ Canonical Example: Live Variables.
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Partial Orders

♦ Set P
♦ Partial order y such that ∀ x,y,z ∈ P

i. x y x (reflexive)

ii. x y y and y y x⇒ x = y (antisymmetric)
iii. x y y and y y z⇒ x y z (transitive)
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Upper Bounds

♦ If S ⊆ P then
♦ x∈P is an upper bound of S if

∀y ∈S, y ≤ x

♦ x∈ P is the least upper bound (lub) of S if
♦ x is an upper bound of S, and 
♦ x ≤ y for all upper bounds y of S

♦ ∨ - join, least upper bound, supremum (sup)

♦ ∨S is the least upper bound of S
♦ x ∨ y is the least upper bound of {x, y}
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Lower Bounds

♦If S ⊆ P then
♦ x∈P is a lower bound of S if ∀y∈S, x ≤ y

♦ x∈P is the greatest lower bound (glb) of S if
♦ x is a lower bound of S, and 
♦ y ≤ x for all lower bounds y of S

♦∧ - meet, greatest lower bound, infimum (inf)
♦ ∧ S is the greatest lower bound of S
♦ x ∧ y is the greatest lower bound of {x, y}
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Coverings

♦Notation: x < y if x ≤ y and x≠y

♦ x is covered by y (y covers x) if
♦ x < y, and
♦ x ≤ z < y⇒ x = z

♦Conceptually, y covers x if there are no 
elements between x and yTh
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Dataflow Analysis: 
Basic Idea

♦Information about a program represented 
using values from an algebraic structure 
called lattice. (We will call this set of values P.)

♦Analysis produces a lattice value for each 
program point.

♦Two flavors of analyses:
♦Forward dataflow analyses.
♦Backward dataflow analyses.
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Hasse Diagram

♦We can visualize a partial order with a 
Hasse Diagram.

♦For each element x we draw a circle:
♦If y covers x

♦Line from y to x
♦ y above x in diagram

y 

x
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Hasse Diagram: Example

P = {000, 001, 010, 011, 100, 101, 110, 111}
x ≤ y if (x bitwise_and y) = x
(standard boolean lattice, also called hypercube) 111

011
101

110

010001

000

100
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Lattices

♦ If x ∧ y and x ∨ y exist for all x,y ∈ P, 
then P is a lattice.

♦ If ∧S and ∨S exist for all S ⊆ P,
then P is a complete lattice.

♦ Theorem: All finite lattices are complete.
♦ Example of a lattice that is not complete

♦ Integers Z
♦ For any x,y ∈Z, x ∨ y = max(x,y), x ∧ y = min(x,y)

♦ But ∨Z and ∧Z do not exist
♦ Z ∪ {+∞, −∞} is a complete lattice
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Top and Bottom

♦Greatest element of P (if it exists) is top ( ).
♦Least element of P (if it exists) is bottom (⊥).
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Connection between 
≤, ∧, and ∨

The following 3 properties are equivalent:
♦ x ≤ y
♦ x ∨ y = y
♦ x ∧ y = x

♦ Will prove:
♦ x ≤ y ⇒ x ∨ y = y and x ∧ y = x
♦ x ∨ y = y ⇒ x ≤ y
♦ x ∧ y = x ⇒ x ≤ y

♦ By Transitivity, 
♦ x ∨ y = y ⇒ x ∧ y = x 
♦ x ∧ y = x ⇒ x ∨ y = y
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Connecting Lemma Proofs (1)

♦ Proof of x ≤ y⇒ x ∨ y = y

♦ x ≤ y ⇒ y is an upper bound of {x,y}.
♦ Any upper bound z of {x,y} must satisfy y ≤ z.
♦ So y is least upper bound of {x,y} and x ∨ y = y

♦ Proof of x ≤ y⇒ x ∧ y = x

♦ x ≤ y ⇒ x is a lower bound of {x,y}.
♦ Any lower bound z of {x,y} must satisfy z ≤ x.
♦ So x is the greatest lower bound of {x,y},

that is x ∧ y = x
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Connecting Lemma Proofs (2)

♦Proof of x ∨ y = y⇒ x ≤ y
♦ y is an upper bound of {x,y} ⇒ x ≤ y 

♦Proof of x ∧ y = x⇒ x ≤ y
♦ x is a lower bound of {x,y} ⇒ x ≤ y
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Lattices as Algebraic Structures

♦Have defined ∨ and ∧ in terms of ≤.
♦Now define ≤ in terms of ∨ and ∧:

♦Start with ∨ and ∧ as arbitrary algebraic 
operations that satisfy associative, 
commutative, idempotence, 
and absorption laws.

♦Will define ≤ using ∨ and ∧.
♦Will show that ≤ is a partial order.
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Algebraic Properties of Lattices

Assume arbitrary operations ∨ and ∧ such that
♦ (x ∨ y) ∨ z = x ∨ (y ∨ z) (associativity of ∨)
♦ (x ∧ y) ∧ z = x ∧ (y ∧ z) (associativity of ∧)
♦ x ∨ y = y ∨ x (commutativity of ∨)
♦ x ∧ y = y ∧ x (commutativity of ∧)
♦ x ∨ x = x (idempotence of ∨)
♦ x ∧ x = x (idempotence of ∧)
♦ x ∨ (x ∧ y) = x (absorption of ∨ over ∧)
♦ x ∧ (x ∨ y) = x (absorption of ∧ over ∨)
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Connection Between
∧ and ∨

Theorem: x ∨ y = y if and only if x ∧ y = x
♦ Proof of x ∨ y = y ⇒ x = x ∧ y

x = x ∧ (x ∨ y) (by absorption)
= x ∧ y (by assumption)

♦ Proof of x ∧ y = x ⇒ y = x ∨ y
y = y ∨ (y ∧ x) (by absorption)

= y ∨ (x ∧ y) (by commutativity)
= y ∨ x (by assumption)
= x ∨ y (by commutativity)
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Properties of ≤

♦ Define x ≤ y if x ∨ y = y
♦ Proof of transitive property. Show that

x ∨ y = y and y ∨ z = z ⇒ x ∨ z = z
x ∨ z = x ∨ (y ∨ z) (by assumption)

= (x ∨ y) ∨ z (by associativity)
= y ∨ z (by assumption)
= z (by assumption)
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Properties of ≤

♦Proof of asymmetry property. Show that
x ∨ y = y and y ∨ x = x ⇒ x = y

x = y ∨ x (by assumption)
= x ∨ y (by commutativity)
= y (by assumption)

♦Proof of reflexivity property. Show that
x ∨ x = x

x ∨ x = x (by idempotence)
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Properties of ≤

♦Induced operation ≤ agrees with original 
definitions of ∨ and ∧, i.e., 
♦x ∨ y = sup {x, y}
♦x ∧ y = inf {x, y}
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Proof of x ∨ y = sup {x, y}

♦Consider any upper bound u for x and y.
♦Given x ∨ u = u and y ∨ u = u, 

show x ∨ y ≤ u, 
i.e., (x ∨ y) ∨ u = u
u = x ∨ u (by assumption)

= x ∨ (y ∨ u) (by assumption)
= (x ∨ y) ∨ u (by associativity)
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Proof of x ∧ y = inf {x, y}

• Consider any lower bound l for x and y.
• Given x ∧ l = l and y ∧ l = l, 

show   l ≤ x ∧ y, 
i.e., (x ∧ y) ∧ l = l
l = x ∧ l (by assumption)

= x ∧ (y ∧ l) (by assumption)
= (x ∧ y) ∧ l (by associativity)
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Chains

♦ A set S is a chain if ∀x,y∈S. y ≤ x or x ≤ y

♦ P has no infinite chains if every chain in P is finite
♦ P satisfies the ascending chain condition if     

for all sequences x1 ≤ x2 ≤ … there exists n   
such that xn = xn+1 = …
That is, all increasing sequences in P eventually 
becomes constant.
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Dataflow Analysis
(repetition)

♦ Information about a program represented using values 
from a lattice (P). Analysis propagates values through
control flow graph, either forwards or backwards. 

♦ For forward analysis: 
♦ Each node has a transfer function ƒ, 

♦ Input – value at program point before node.
♦ Output – new value at program point after node.

♦ Values flow from program points after predecessor nodes to 
program points before successor nodes.

♦ At join points, values are combined using a merge function.
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Transfer Functions

♦Assume a lattice P of abstract values. 
♦Transfer function ƒ: P→P for each node in 

control flow graph.
♦ƒ models the effect of the node on the 

program information.
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Properties of Transfer Functions
Each dataflow analysis problem has a set F of 

transfer functions ƒ:P→P
♦ Identity function i∈F
♦ Fmust be closed under composition:             

∀ƒ,g∈F, the function h = λx.ƒ(g(x))∈F
♦ Each ƒ∈Fmust be monotone:x ≤ y⇒ ƒ(x) ≤ ƒ(y)
♦ Sometimes all ƒ∈F are distributive:                       

ƒ(x ∨ y) = ƒ(x) ∨ ƒ(y)
♦ Distributivity ⇒ monotonicity
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Distributivity Implies 
Monotonicity

Proof:
♦Assume ƒ(x ∨ y) = ƒ(x) ∨ ƒ(y)
♦Show: x ∨ y = y⇒ ƒ(x) ∨ ƒ(y) = ƒ(y)

ƒ(y) = ƒ(x ∨ y) (by assumption)
= ƒ(x) ∨ ƒ(y) (by distributivity)

D
at

af
lo

w
 A

na
ly

si
s:

 T
ra

ns
fe

r F
un

ct
io

ns

Advanced Compiler Techniques 
http://lamp.epfl.ch/teaching/advancedCompiler/32

Forward Dataflow Analysis
♦ Simulates forward execution of a program
♦ For each node n, we have

inn – value at program point before n
outn – value at program point after n
ƒn – transfer function for n (given inn, computes outn)

♦ Require that solutions satisfy
i. ∀n, outn = ƒn(inn)
ii. ∀n ≠ n0, inn = ∨ { outm | m ∈ pred(n) }
iii. inn0 = ⊥
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Dataflow Equations

♦Result is a set of dataflow equations
outn := ƒn(inn)
inn := ∨ { outm | m ∈ pred(n) }

♦Conceptually separates analysis problem 
from program.D
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Worklist Algorithm for Solving 
Forward Dataflow Equations

for each n∈N do outn := ƒn(⊥)
worklist := N
while worklist ≠ ∅ do:

remove a node n from worklist
inn := ∨ { outm | m ∈ pred(n) }
outn := ƒn(inn)
if outn changed then

worklist := worklist ∪ succ(n)

D
at

af
lo

w
 A

na
ly

si
s: 

Fo
rw

ar
d

Advanced Compiler Techniques 
http://lamp.epfl.ch/teaching/advancedCompiler/35

Correctness Argument
Why result satisfies dataflow equations?
♦Whenever we process a node n,

set outn := ƒn(inn) 
Algorithm ensures that outn = ƒn(inn) 

♦ Whenever outm changes, put succ(m) on worklist. 
Consider any node n ∈ succ(m).                                     
It will eventually come off the worklist and the 
algorithm will set 

inn := ∨ { outm | m ∈ pred(n) } 
to ensure that inn = ∨ { outm | m ∈ pred(n) } 
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Termination Argument

Why does the algorithm terminate?
♦ Sequence of values taken on by inn or outn is a 

chain. If values stop increasing, the worklist 
empties and the algorithm terminates.

♦ If the lattice has the ascending chain property, the 
algorithm terminates
♦ Algorithm terminates for finite lattices.
♦ For lattices without the ascending chain property, we 

must use a widening operator.
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Widening Operators

♦ Detect lattice values that may be part of an 
infinitely ascending chain.

♦ Artificially raise value to least upper bound of the 
chain.

♦ Example: 
♦ Lattice is set of all subsets of integers.
♦ Widening operator might raise all sets of size n or 

greater to TOP (the set of all integers).
♦ Could be used to collect possible values taken on by a 

variable during execution of the program.
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Reaching Definitions

♦Concept of definition and use
♦z = x+y

♦ is a definition of z
♦ is a use of x and y

♦A definition (d) reaches a use (u) if the 
value written by d may be read by u.
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Reaching Definitions
s = 0; 
a = 4; 
i = 0;
k == 0 

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return sD
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Reaching Definitions Framework

♦ P = ℘ (the powerset) of the set of definitions in 
the program (all subsets of the set of definitions).

♦ ∨ = ∪ (order is ⊆)
♦ ⊥ = ∅
♦ F = all functions ƒ of the form ƒ(x) = a ∪ (x-b)

♦ b is the set of definitions that the node kills.
♦ a is the set of definitions that the node generates.

General pattern for many transfer functions
♦ ƒ(x) = GEN ∪ (x-KILL)
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Does Reaching Definitions 
Framework Satisfy Properties?

♦ ⊆ satisfies conditions for ≤
x ⊆ y and y ⊆ z ⇒ x ⊆ z (transitivity)
x ⊆ y and y ⊆ x ⇒ y = x (asymmetry)
x ⊆ x (reflexivity)

♦ F satisfies transfer function conditions
λx.∅ ∪ (x- ∅) = λx.x∈F (identity)
Will show ƒ(x ∪ y) = ƒ(x) ∪ ƒ(y) (distributivity)

ƒ(x) ∪ ƒ(y) = (a ∪ (x – b)) ∪ (a ∪ (y – b))
= a ∪ (x – b) ∪ (y – b) 
= a ∪ ((x ∪ y) – b)
= ƒ(x ∪ y)
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Does Reaching Definitions 
Framework Satisfy Properties?

What about composition?
♦Given ƒ1(x) = a1 ∪ (x-b1) and ƒ2(x) = a2 ∪ (x-b2)
♦Show ƒ1(ƒ2(x)) can be expressed as a ∪ (x - b)

ƒ1(ƒ2(x)) = a1 ∪ ((a2 ∪ (x-b2)) - b1)
= a1 ∪ ((a2 - b1) ∪ ((x-b2) - b1))
= (a1 ∪ (a2 - b1)) ∪ ((x-b2) - b1))
= (a1 ∪ (a2 - b1)) ∪ (x-(b2 ∪ b1))

Let a = (a1 ∪ (a2 - b1)) and b = b2 ∪ b1
Then ƒ1(ƒ2(x)) = a ∪ (x – b)
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General Result
All GEN/KILL transfer function frameworks 

satisfy the properties:
♦Identity
♦Distributivity
♦Compositionality
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Available Expressions 
Framework

♦ P =℘ (the powerset) of the set of all expressions 
in the program (all subsets of set of expressions).

♦ ∨ = ∩ (order is ⊇)
♦ ⊥ = ℘ (but inn0 = ∅)
♦ F = all functions ƒ of the form 

ƒ(x) = a ∪ (x-b).
♦ b is set of expressions that node kills.
♦ a is set of expressions that node generates.
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Concept of Conservatism

♦ Reaching definitions use ∪ as join
♦ Optimizations must take into account all definitions that reach 

along ANY path
♦ Available expressions use ∩ as join

♦ Optimization requires expression to reach along ALL paths
♦ Optimizations must conservatively take all possible 

executions into account. 
♦ Structure of analysis varies according to the way the 

results of the analysis are to be used.
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Backward Dataflow Analysis
• Simulates execution of program backward 

against the flow of control.
• For each node n, we have

inn – value at program point before n.
outn – value at program point after n.
ƒn – transfer function for n (given outn, computes inn).

• Require that solutions satisfy:
i. ∀n. inn = ƒn(outn)
ii. ∀n ∉ Nfinal. outn = ∨ { inm | m ∈ succ(n) }
iii. ∀n ∈ Nfinal . outn = ⊥
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Worklist Algorithm for Solving 
Backward Dataflow Equations

for each n ∈ N do inn := ƒn(⊥)
worklist := N
while worklist ≠ ∅ do

remove a node n from worklist
outn := ∨ { inm | m ∈ succ(n) }
inn := ƒn(outn)
if inn changed then 

worklist := worklist ∪ pred(n)
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Live Variables Analysis 
Framework

♦ P = powerset of the set of all variables in the 
program (all subsets of the set of variables).

♦ ∨ = ∪ (order is ⊆)
♦ ⊥ = ∅
♦ F = all functions ƒ of the form ƒ(x) = a ∪ (x-b)

♦ b is set of variables that the node kills.
♦ a is set of variables that the node reads.
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Meaning of Dataflow Results

♦ Connection between executions of program and 
dataflow analysis results.

♦ Each execution generates a trajectory of states:
♦ s0;s1;…;sk,where each si∈S

♦ Map current state sk to 
♦ Program point n where execution located.
♦ Value x in dataflow lattice.

♦ Require x ≤ inn
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Abstraction Function for 
Forward Dataflow Analysis

♦Meaning of analysis results is given by an 
abstraction function AF:S→P

♦Require that for all states s
AF(s) ≤ inn

where n is the program point where the 
execution is located at in state s, and inn is 
the abstract value before that point.
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Sign analysis - compute sign of each variable v
♦ Base Lattice: flat lattice on {-,zero,+}

♦ Actual lattice records a value for each variable
♦ Example element: [a→+, b→zero, c→-]

Sign Analysis Example

- zero +

T

⊥
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Interpretation of Lattice Values

If value of v in lattice is:
♦⊥: no information about the sign of v.
♦-: variable v is negative.
♦zero: variable v is 0 .
♦+: variable v is positive.
♦T: v may be positive or negative or 0.
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Operation ⊗ on Lattice

TTzeroTTT

T+zero-++

zerozerozerozerozerozero

T-zero+--

T+zero-⊥⊥

T+zero-⊥⊗
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Transfer Functions

Defined by structural induction on the shape 
of nodes:
♦If n of the form v = c

♦ ƒn(x) = x[v→ +] if c is positive
♦ ƒn(x) = x[v→zero] if c is 0
♦ ƒn(x) = x[v→ -] if c is negative

♦If n of the form v1 = v2*v3

♦ ƒn(x) = x[v1→x[v2] ⊗ x[v3]]
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Abstraction Function

♦ AF(s)[v] = sign of v
♦ AF([a→5, b→0, c→-2]) = [a→+, b→zero, c→-]

♦ Establishes meaning of the analysis results
♦ If analysis says a variable v has a given sign
♦ then v always has that sign in actual execution.

♦ Two sources of imprecision
♦ Abstraction Imprecision – concrete values (integers) abstracted as 

lattice values (-,zero, and +);
♦ Control Flow Imprecision – one lattice value for all different flow 

of control possibilities.D
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Imprecision Example

b = -1 b = 1

a = 1

[a→+, b→⊥, c→⊥]

c = a*b

Abstraction Imprecision:
[a→1] abstracted as [a→+]

Control Flow Imprecision:
[b→T] summarizes results of all executions. 
In any execution state s, AF(s)[b]≠T

[a→+, b→⊥, c→⊥]

[a→+, b→-, c→⊥] [a→+, b→+, c→⊥]

[a→+, b→T, c→⊥]

[a→+, b→T, c→T]

[a→⊥, b→⊥, c→⊥]
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General Sources of Imprecision
♦ Abstraction Imprecision

♦ Lattice values less precise than execution values.
♦ Abstraction function throws away information.

♦ Control Flow Imprecision
♦ Analysis result has a single lattice value to summarize results 

of multiple concrete executions.
♦ Join operation ∨ moves up in lattice to combine values from 

different execution paths.
♦ Typically if x ≤ y, then x is more precise than y.
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Why Have Imprecision?

ANSWER: To make analysis tractable
♦ Conceptually infinite sets of values in execution.

♦ Typically abstracted by finite set of lattice values.
♦ Execution may visit infinite set of states.

♦ Abstracted by computing joins of different paths.
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Augmented Execution States

♦Abstraction functions for some analyses 
require augmented execution states.
♦Reaching definitions: states are augmented 

with the definition that created each value.
♦Available expressions: states are augmented 

with expression for each value.
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Meet Over All Paths Solution

♦ What solution would be ideal for a forward 
dataflow analysis problem? 

♦ Consider a path p = n0, n1, …, nk, n to a node n 
(note that for all i, ni ∈ pred(ni+1))

♦ The solution must take this path into account:
ƒp(⊥) = (ƒn k

(ƒn k-1
(…ƒn1

(ƒn0
(⊥)) …)) ≤ inn

♦ So the solution should have the property that
∧{ƒp(⊥) | p is a path to n} = inn
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Conservative Solution

♦There is no algorithm to compute the 
optimal solution, due to infinite number of 
paths. 

♦A solution is conservative if for all paths p
to n, ƒp(⊥) ≤ inn
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Soundness Proof of Analysis 
Algorithm

Property to prove:
For all paths p to n, ƒp(⊥) ≤ inn

♦ Proof is by induction on the length of p.
♦ Uses monotonicity of transfer functions.
♦ Uses following lemma.

Lemma:
The worklist algorithm produces a solution such that

if n ∈ pred(m) then outn ≤ inm
(That is, what you get out of a predecessor is more precise than what will go 

in to the node, because precision may be lost by the join function.)
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Proof

♦ Base case: p is of length 0
♦Then p = n0 and ƒp(⊥) = ⊥ = inn0

♦ Induction step:
♦ Assume theorem for all paths of length k.
♦ Show for an arbitrary path p of length k+1.D
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Induction Step Proof
♦ Given a path p = n0, …, nk, n show (ƒnk

(ƒnk-1
(… 

ƒn1
(ƒn0

(⊥)) …)) ≤ inn

By induction assumption: (theorem holds for all paths of 
length k)

(ƒnk-1
(… ƒn1(ƒn0(⊥)) …))  ≤ innk

Apply ƒnk
to both sides:

ƒnk
(ƒnk-1

(… ƒn1
(ƒn0

(⊥)) …)    ? ƒnk
(innk

)
By monotonicity: (x ≤ y⇒ ƒ(x) ≤ ƒ(y)) 

(ƒnk
(ƒnk-1

(… ƒn1
(ƒn0

(⊥)) …)) ≤ ƒnk
(innk

)

By definition of ƒnk
:  (ƒnk

(innk
) = outnk

)
(ƒnk

(ƒnk-1
(… ƒn1

(ƒn0
(⊥)) …)) ≤ outnk
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Distributivity

♦Distributivity preserves precision.
♦If framework is distributive, then the 

worklist algorithm produces a precis result:
For all n:

∨{ƒp (⊥) | p is a path to n} = innD
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Integer Constant Propagation (ICP)
♦ Flat lattice on integers

♦ Actual lattice records a value for each variable
♦ Example element: [a→3, b→2, c→5]

Lack of Distributivity Example

-1 10

T

⊥

-2 2 ……
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Transfer Functions
♦If n of the form v = c

♦ƒn(x) = x[v→c]
♦If n of the form v1 = v2+v3

♦ƒn(x) = x[v1→x[v2] + x[v3]]
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Lack of Distributivity Anomaly

a = 2
b = 3

a = 3
b = 2

c = a+b
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Lack of distributivity of ICP
♦Consider transfer function ƒ for c = a + b 

(ƒ(x) = x[c→x[a] + x[b]])
♦ ƒ([a→3, b→2]) ∨ ƒ([a→2, b→3]) = 

[a→3, b→2] [c→ [a→3, b→2][a] + [a→3, b→2][b]] ∨
[a→2, b→3] [c→ [a→2, b→3][a] + [a→2, b→3][b]] =
[a→3, b→2] [c→ 3 + 2] ∨ [a→2, b→3] [c→ 2 + 3] =
[a→3, b→2] [c→5] ∨ [a→2, b→3] [c→5] =
[a→T, b→T, c→5]

♦ ƒ([a→3, b→2]∨[a→2, b→3]) =  
ƒ([a→T, b→T]) = 
[a→T, b→T] [c→ [a→T, b→T][a] + [a→T, b→T][b]] = 
[a→T, b→T, c→T]

D
at

af
lo

w
 A

na
ly

si
s: 

D
is

tr
ib

ut
iv

ity
(E

xa
m

pl
e)

Advanced Compiler Techniques 
http://lamp.epfl.ch/teaching/advancedCompiler/70

Lack of Distributivity Anomaly

a = 2
b = 3

a = 3
b = 2

[a→3, b→2][a→2, b→3]

[a→T, b→T]

c = a+b

[a→T, b→T, c→T]

Lack of Distributivity Imprecision: 
[a→T, b→T, c→5] more precise.D
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Summary

♦Formal dataflow analysis framework
♦Lattices, partial orders.
♦Transfer functions, joins and splits.
♦Dataflow equations and fixed point solutions.

♦Connection with program
♦Abstraction function AF: S→ P
♦For any state s and program point n, AF(s) ≤ inn
♦Meet over paths solutions, distributivity.
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