Foundations of
Dataflow Analysis

gclvomcecl C om)oi\er -Tecymiq ues

2005
Eri\? S)’enmom

Vir‘)’u)’ec\'\

Advanced Compiler Techniques
te i vanc mpile



Datatlow Analysis

Compile-Time Reasoning About

¢ Run-Time Values of Variables or Expressions at
different program points:

¢ Which assignment statements produced the
value of the variables at this point?

¢ Which variables contain values that are no
longer used after this program point?

¢ What is the range of possible values of a
variable at this program point?

2
9p]
=
o]
L
<
2
o
—
©
)
©
-

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



A
9p]
=
o]
L
<
2
o
—
©
)
©
-

Datatlow Analysis

¢ Assumptions:

¢ We have a syntactically and semantically
correct program (as far as compile time
analysis can determine this).

¢ We have the “whole” program, or a clearly
defined subset of the program which will only
interact with the rest of the program through a
predefined interface.

(That is, no self modifying code, and if the interface is a function then the
parameters can take any value of the given type.)

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Datatlow Analysis:
Basic Idea

¢ Information about a program represented

using values from an algebraic structure
called lattice. (We will call this set of values P.)

¢ Analysis produces a lattice value for each
program point.
¢ Two tlavors of analysis:
¢ Forward dataflow analyses.
¢ Backward dataflow analyses.

2
9p]
=
o]
L
<
2
o
—
©
)
©
-

Advanced Compiler Techniques
te [ advancedCompile



Forward Dataflow Analysis

¢ Analysis propagates values forward through
control flow graph with flow of control
¢ Each node has a transfer function f
¢ Input - value at program point before node.
¢ Output - new value at program point after node.

¢ Values flow from program points after
predecessor nodes to program points before
successor nodes.

¢ At join points, values are combined using a
merge function.

¢ Canonical Example: Reaching Definitions.

2
9p]
=
o]
L
<
2
o
—
©
)
©
-

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Backward Datatlow Analysis

¢ Analysis propagates values backward through
control flow graph against flow of control:
¢ Each node has a transfer function f
¢ Input - value at program point after node.
¢ Output - new value at program point before node.
¢ Values flow from program points before

successor nodes to program points after
predecessor nodes.

¢ At split points, values are combined using a
merge function.

¢ Canonical Example: Live Variables.

2
9p]
=
o]
L
<
2
o
—
©
)
©
-

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Partial Orders

o ¢ SetlP

K} ¢ Partial order < such thatVsypz € P

5

= ; x<x (reflexive)

=

g z x<ygandy<zx=>x=y (antisymmetric)
P

E # x<ypandy<s=>x<yz (transitive)

)

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/




Upper Bounds

¢ If S c P then

¢ xc P is an upper bound of S it
VyresS, yp<x

¢ xc Pis the least upper bound (lub) of S if
¢ x is an upper bound of S, and
¢ x <y for all upper bounds y of S

[92]
—
]
o
—~
O
©
i
—
©
ol
=
=
45
©
o
S
)
o
o
P
—
o
o}
<
o

¢ Vv -join, least upper bound, supremum (sup)

¢ VS is the least upper bound of S
¢ x Vv yis the least upper bound of {x, r}

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/




Lower Bounds

¢ If S c P then

¢ xcPis a lower bound of S if V3 S, x <5
¢ sc P is the greatest lower bound (glb) ot S if

¢ xis alower bound of S, and
¢ y<xfor all lower bounds 7 of S

[92]
—
&
o
—~
@)
T
i
—
©
ol
=
=
-+
©
O
o
)
@)
(=
P>
—
o
)
<
o

¢ A - meet, greatest lower bound, infimum (inf)
¢ A Sis the greatest lower bound of S
¢ x A ris the greatest lower bound of {x, r}

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Coverings

¢ Notation: x <y if x <y and =%

¢ x1s covered by y (y covers x) it
¢ x<y,and
¢ x<s<y=>x=2s
¢ Conceptually, - covers x if there are no
elements between x and

[92]
—
]
o
—~
O
T
i
—
©
ol
=
=
45
©
o
S
)
o
o
P
—
o
o}
<
o

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/




Datatlow Analysis:
Basic Idea

¢ Information about a program represented

using values from an algebraic structure
called lattice. (We will call this set of values P.)

¢ Analysis produces a lattice value for each
program point.
¢ Two tlavors of analyses:
¢ Forward dataflow analyses.
¢ Backward dataflow analyses.

2
9p]
=
o]
L
<
2
o
—
©
)
©
-

Advanced Compiler Techniques
te [ advancedCompile



Hasse Diagram

¢ We can visualize a partial order with a
Hasse Diagram.

¢ For each element x we draw a circle: o
¢ If 5 covers x

[92]
—
]
o
—~
O
©
i
—
©
ol
=
=
45
©
o
S
)
o
o
P
—
o
o}
<
o

¢ Line from y to = 7 I

¢ yabove xin diagram  _

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/




Hasse Diagram: Example

[P = {000, 001, 010, 011, 100, 101, 110, 111}
x <y if (= bitwise_and y) = x

(standard boolean lattice, also called hypercube)

110
011

[92]
—
]
o
—~
O
©
n-.‘:;
—
©
ol
=
=
45
©
o
S
)
o
o
P
—
o
o}
<
o

001 100

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



AN
<)
O
£
<
—
=
o
=
&
o
S
)
o
H~
>
—
o
Q
e
o

[Lattices

¢ If x Apand x v yexist for all x5 € P,
then P is a lattice.

¢ If ASand VS exist forall S c P,
then P is a complete lattice.

¢ Theorem: All finite lattices are complete.

¢ Example of a lattice that is not complete
¢ Integers Z
¢ For any xy € Z,x N y= maX(X,y), X ANy = mzzz(X,y)

¢ But VZ and AZ do not exist
¢ 7 U {400, —o} is a complete lattice

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Top and Bottom

¢ Greatest element of P (if it exists) is top (T).
¢ Least element of P (if it exists) is bottom (L).

N
Q
@)
._.E
s
—_
=
©)
-3
T
O
S
)
S
(8=
P
—
O
O
<
o

Advanced Compiler Techniques
e i vanc mpile



Connection between
<, A, and v

The following 3 properties are equivalent:
¢ XYy
¢XVy=Yy
¢ XAY=X

¢ Will prove:
¢x<y=xvy=yand x Ay =X
¢XVYy=y=XZYy

9p]
L
)]
o)
—
O
<
._.:1
—
©
i
o
=
—-—
©
o
c
i)
o
k-
)
—
o
Q
=
o

¢XAYV=X=XIY

¢ By Transitivity,
¢XVY=YV=XAY=X
¢XAY=X=XVY=Y

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Connecting Lemma Proofs (1)

¢ Proofofx<p=xvVvy=y
¢ x <y = yisan upper bound of {xr}.
¢ Any upper bound # of {x7} must satisty < ~.
¢ So 5 is least upper bound of {xr} and x v y =
¢ Proofofx<y=xAp=x
¢ x <y = xisalower bound of {x}.

[92]
—
]
o
—~
O
©
n-.‘:;
—
©
ol
=
=
45
©
o
S
)
o
o
P
—
o
o}
<
o

¢ Any lower bound ~ of {7} must satisty ~ < x.

¢ So x is the greatest lower bound of {x,r},
thatisx A yr=x

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/




Connecting Lemma Proofs (2)

¢ Proofofxvy=p=>x<yp
¢ 7 is an upper bound of {5} = x < »

¢ Proofofx Ayp=x=>x<p
¢ xisalower bound of {7} = x<»

9p]
L
)]
o)
—
O
<
._.:1
—
©
i
o
=
—-—
©
o
c
i)
o
k-
)
—
o
Q
=
o

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/




Lattices as Algebraic Structures

¢ Have defined v and A in terms of <.
¢ Now define < in terms of v and A:

¢ Start with v and A as arbitrary algebraic
operations that satisfy associative,
commutative, idempotence,
and absorption laws.

AN
<)
O
£
<
—
=
o
=
&
o
S
)
o
H~
>
—
o
Q
e
o

¢ Will define < using v and A.
¢ Will show that <is a partial order.

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/




Algebraic Properties of Lattices

Assume arbitrary operations v and A such that
¢ (xvy)vz=xv(yVz) (associativity of v)

¢ (XAY)AZ=XA(YAZ)
¢XVY=yVX commutativity of v)
¢ XAYV=Y AX commutativity of A)

(associativity of A)
(
(
® XV X=X (idempotence of V)
(
(
(

9]
Q
O
£
&
—
=
o
-.p::
o
o)
c
)
o
=~
>
—
o
Q
=
o

idempotence of A)
absorption of v over A)
absorption of A over V)

¢ XAX=X
¢ XV (XAY)=X
¢ XA(XVY)=X

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Connection Between

A and v
.§ Theorem: x vy =y if and only if x A y =x
é ¢ Proofofxvy=y=x=xAYy
E X=XA(XVY) (by absorption)
: =XAY (by assumption)
E ¢ Proofof xAy=x=y=xvVvy
= y=y V(Y AX) (by absorption)
=y VvV (XAY) (by commutativity)
=y VX (by assumption)
=XVYy (by commutativity)

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/




Properties of <

¢ Definex<yifxvy=y
¢ Proof of transitive property. Show that
xXvy=yandyvz=z=xvz=z

AN
<)
O
£
<
—
=
o
=
&
o
S
)
o
H~
>
—
o
Q
e
o

XVz=xV(yVz) (by assumption)
=(xVvy)vz (by associativity)
=yVvz (by assumption)

=7z (by assumption)

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/




Properties of <

¢ Proof of asymmetry property. Show that
Xvy=yandyvx=x=X=Yy
x=yvx (byassumption)
=xVvy (by commutativity)

AN
<)
O
£
<
—
=
o
=
&
o
S
)
o
H~
>
—
o
Q
e
o

=y (by assumption)
¢ Proof of reflexivity property. Show that
XV X=X

XV X=X (by idempotence)

Advanced Compiler Techniques
te [ advanc mpile



Properties of <

¢ Induced operation < agrees with original
definitions of v and A, i.e.,

¢X VY =sup {x, y}
¢ x Ay =inf {x, y}

9]
Q
O
£
&
—
=
o
-.p::
o
o)
c
)
o
=~
>
—
o
Q
=
o

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/




Proof of x vy =sup {x, y}

¢ Consider any upper bound « for x and y-

¢Givenzxve=zandyVz =g,
show x v <z,
i.e., (X\/y) Vu=u

99]
v
O
E
<
-
=
S
B
S
ge
S
=
S
i
>
—
o
)
=
)

u=xVu (by assumption)
=xV (rve)  (byassumption)
=(xvy)Vve  (byassociativity)

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Proof of x Ay = inf {x, y}

* Consider any lower bound 7 for x and -

e GivenxAz=zand y A7=
show 7<x A7,
e, (xAp) AL=Z

99]
v
O
E
<
-
=
S
B
S
ge
S
=
S
i
>
—
o
)
=
)

I=x N7 (by assumption)
=x A (A2 (by assumption)
=(xAp) AZ (by associativity)

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Chains

¢ AsetSisachainif VxyeS.p<xorx<p
¢ P has no infinite chains if every chain in P is finite

¢ [P satisties the ascending chain condition it

for all sequences x; < x, < ... there exists n
such thatx == ., = ...
That is, all increasing sequences in PP eventually

becomes constant.

9p]
5
o]
o=
O
=
o
=
©
3
=
)
®)
=
>
—
®)
)
1=
B

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/




A
9p]
=
o]
L
<
2
o
—
©
)
©
-

Datatlow Analysis
(repetition)

¢ Information about a program represented using values
from a lattice (P). Analysis propagates values through
control flow graph, either forwards or backwards.
¢ For forward analysis:
¢ Each node has a transfer function f,
¢ Input - value at program point before node.
¢ Output - new value at program point after node.

¢ Values flow from program points after predecessor nodes to
program points before successor nodes.

¢ Atjoin points, values are combined using a merge function.

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Transfer Functions

¢ Assume a lattice P of abstract values.

¢ Transfer function f: P—P for each node in
control flow graph.

¢ f models the effect of the node on the
program information.

N
L
=
45
@]
ar
)
=~
—
]
G
n
L
©
—
—
n
R
i
©
L
<
2
o
-
©
-
)
-

Advanced Compiler Techniques
te [ advancedCompile



Properties of Transfer Functions

Each dataflow analysis problem has a set [F of
transfer functions f:P—P
¢ Identity function € F

¢ [F must be closed under composition:
Vf,7€F, the function 2 = Ax.f(s(x))eF

¢ Each fe[F must be monotone: = <y = f(x) < f(»)
¢ Sometimes all fe[F are distributive:

fev 1) = ) v 1)

¢ Distributivity = monotonicity

N
L
=
45
@]
ar
)
=~
—
]
G
n
L
©
—
—
N
R
i
©
L
<
2
o
-
©
-
)
-

Advanced Compiler Techniques
te [ advancedCompile



Distributivity Implies
Monotonicity

Proof:

¢ Assume f(=Vvy) = f(x) v f(»)
¢ Show: x vy =r= f(x) v f(r) = f(r)

f&) = f(=Vvy) (by assumption)
= #(=) V f(») (by distributivity)

n
S
@)
-":
O
S
)
&
—
]
—
n
L
©
—
o
n
2
(9]
L
<
2
o
-
©
-+
)
-

Advanced Compiler Techniques
e i vanc mpile



Forward Dataflow Analysis

¢ Simulates forward execution of a program

¢ For each node n, we have
in — value at program point before n
— value at program point after n
fa - transfer function for n (given in,, computes out,)

¢ Require that solutions satisty

o
—
©
=
—
@)
(8=
n
L
(o)
L
<
2
@)
=
©
-+
©
-

i. Vn,out,=f,(in,)
ii. Vn#nyin,=v{out, | m &€ pred(n)}
iii. in,,=_1

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/




Datatlow Equations

¢ Result is a set of datatlow equations

out, := f(in,)

in, :=v{out, | m €pred(n) }

o
—
©
=
—
@)
(8=
n
L
(o)
L
<
2
@)
=
©
-+
©
-

¢ Conceptually separates analysis problem
from program.

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



o
—
©
=
—
@)
(8=
n
L
(o)
L
<
2
@)
=
©
-+
©
-

Worklist Algorithm for Solving
Forward Dataflow Equations

for each neN do out, := (1)
=N
while # ) do:
remove a node n from
in, :=v{out, | me€predn)}
out, = f,(in,)
if out, changed then
= U succ(n)

Advanced Compiler Techniques
aching/advancedCompiler/



Correctness Argument

Why result satisfies datatlow equations?

¢ Whenever we process a node n,
set out, := f (in,)
Algorithm ensures that out, = f,(in,)

¢ Whenever out_ changes, put succ(m) on
Consider any node n € succ(m).
It will eventually come off the and the
algorithm will set

o
—
©
=
—
@)
(8=
n
L
(o)
L
<
2
@)
=
©
-+
©
-

in, :=v{out, | me€predn) }
to ensure that in, = v { out,, | m € pred(n) }

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Termination Argument

Why does the algorithm terminate?

¢ Sequence of values taken on by in_ or out,is a
chain. If values stop increasing, the worklist
empties and the algorithm terminates.

¢ If the lattice has the ascending chain property, the
algorithm terminates
¢ Algorithm terminates for finite lattices.

¢ For lattices without the ascending chain property, we
must use a widening operator.

o
—
©
=
—
@)
(8=
n
L
(o)
L
<
2
@)
=
©
-+
©
-

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Widening Operators

¢ Detect lattice values that may be part of an
infinitely ascending chain.

¢ Artificially raise value to least upper bound of the
chain.

¢ Example:
¢ Lattice is set of all subsets of integers.

o
—
©
=
—
@)
(8=
n
L
(o)
L
<
2
@)
=
©
-+
©
-

¢ Widening operator might raise all sets of size n or
greater to TOP (the set of all integers).

¢ Could be used to collect possible values taken on by a
variable during execution of the program.

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/




Reaching Definitions

¢ Concept of definition and use

¢z = Xty
¢ is a definition of z
¢ isauseof xandy

¢ A definition (d) reaches a use (u) if the
value written by d may be read by u.

)
o
=
=
&
R
b}
-
b0
=
A=
&)
©
)
S
o
—
©
=
—
@)
(8=
n
R%)
L
(9]
L
<
2
@)
=
©
-+
©
-

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/




)
-
o

=

A=

(S
)

-
V0]

A=

Lo
&)
©
)

&

o
—
©
=
—
o

.
n

iy
(9]
L

<
2
e

e
©

-+
©

-

Reaching Definitions

p

S
a
.i
K

g = 1

A d

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Reaching Definitions Framework

¢ P = o (the powerset) of the set of definitions in
the program (all subsets of the set of definitions).

¢ v =u (orderis ©)

¢ 1=¢

¢ [F = all functions f of the form f(x) =a U (x-b)

¢ b is the set of definitions that the node kills.
¢ a is the set of definitions that the node generates.

General pattern for many transfer functions
¢ f(x) = GEN U (x-KILL)

)
o
=
=
&
R
b}
-
b0
§=
A=
&)
©
)
S
o
—
©
=
—
@)
(8=
n
L
(9]
L
<
2
@)
=
©
-+
©
-

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



n
-
o

=

A=

(S
)

-
V0]

A=

Lo
&)
©
)

&

o
—
©
=
—
o

.
n

iy
(9]
L

<
2
e

e
©

-+
©

-

Does Reaching Definitions
Framework Satisty Properties?

¢ C satisfies conditions for <

xcyandycz=xcCz (transitivity)

xcyandycx=y=Xx (asymmetry)

X C X (reflexivity)
¢ [F satisfies transfer function conditions

M. U (x- D) = AxxeF (identity)

Will show f(x Uy) = f(x) U f(y) (distributivity)
f)wf(y)=(@av(x-b)v(av(y-b)
=auU(x-b)U (y-b)
=au((xuvy)-b)
=flxwy)

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Does Reaching Definitions
Framework Satisty Properties?

What about composition?
¢ Given f,(x) = a; U (x-by) and f,(x) = a, U (x-b,)
¢ Show f,(f,(x)) can be expressed as au (x-b)

Fi(f2() = a; L ((a,  (x-by)) -b)
=a; U ((a - by) U ((x- ) b))
= (a1 Y (a; - by)) U ((x-by) - by))
= ( (az b)) L (x-(b, © by))

n
-
o

=

A=

(S
)

-
V0]

A=

Lo
&)
©
)

&

o
—
©
=
—
o

.
n

iy
(9]
L

<
2
e

e
©

-+
©

-

Leta=(a; U(a,-b))andb=b, Ub,
Then £,(f-(x)) = a U (x - b)

Advanced Compiler Techniques
/teaching/advancedCompiler/



General Result

All GEN/KILL transfer function frameworks

j satisfy the properties:
& o Identity

Z NN

: ¢ Distributivity

5 ¢ Compositionality

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Available Expressions
Framework

¢ P =g (the powerset) of the set of all expressions
in the program (all subsets of set of expressions).
¢ v = (order is D)
¢ L =g (butin, =)
¢ [ = all functions f of the form
f(x) =a v (x-b).
¢ b is set of expressions that node kills.
¢ a is set of expressions that node generates.

¢ Another GEN/KILL analysis

)
S
3=
wn
N
]
—
o
pes
8
=
e
e
o v
©
>
<
o
—
©
2
—
o
.
n
iy
©
L
<
2
o
o
©
<55
)
-

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



)
S
3=
wn
N
]
—
o
pes
8
=
e
e
o v
©
>
<
o
—
©
2
—
o
.
n
iy
©
L
<
2
o
o
©
<55
)
-

Concept of Conservatism

¢ Reaching definitions use U as join

¢ Optimizations must take into account all definitions that reach
along ANY path

¢ Available expressions use M as join
¢ Optimization requires expression to reach along ALL paths

¢ Optimizations must conservatively take all possible
executions into account.

¢ Structure of analysis varies according to the way the
results of the analysis are to be used.

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Backward Dataflow Analysis

* Simulates execution of program backward
against the flow of control.
e For each node n, we have
in, - value at program point before n.
out, - value at program point after n.
f,, - transfer function for n (given out,, computes in,)).
* Require that solutions satisty:
i. Vn.in_ = f_(out,)
ii. Vne¢ N, .. out =v{in, | m € succ(n) }
iii. Vne Ng_,.out, =1

o
—
©
=

4
O
o)

/M
9p]

2
©
e

<
2
o

—
©
-—
©

-

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Worklist Algorithm for Solving
Backward Datatlow Equations

for eachn € Ndoin, := f (1)
worklist ;=N
while worklist # & do
remove a node n from worklist
out, :=v{in , | m € succ(n) }
in, := f,(out,)
if in, changed then
worklist := worklist U pred(n)

o
—
©
=

4
O
©

/M
9p]

2
©
L

<
2
o

=
©

-—
©

-

Advanced Compiler Techniques
te i vanc mpile



Live Variables Analysis
Framework

¢ [P =powerset of the set of all variables in the
program (all subsets of the set of variables).

¢ v =uU (orderis ©)
¢ 1L=0
¢ [F = all functions f of the form f(x) =a U (x-b)

¢ b is set of variables that the node kills.
¢ a is set of variables that the node reads.

s
2
e
.S
—
©
>
o))
A=
=
S
—
S
LY
Q
(qv]
a'n)]
=
=
i
(o]
=
<
2
o
-
©
-
©
A

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



=
)
92]
]
o
%
i
©
S
<
2
e
—
©
-
©
-

Meaning of Datatlow Results

¢ Connection between executions of program and
datatlow analysis results.

¢ Each execution generates a trajectory of states:

¢ 54,51...;5,Where each s,€S

¢ Map current state s, to
¢ Program point n where execution located.
¢ Value x in dataflow lattice.

¢ Require x <in

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Abstraction Function for
Forward Datatlow Analysis

¢ Meaning of analysis results is given by an
abstraction function AF:S—P

¢ Require that for all states s
AF(s) <in,
where n is the program point where the
execution is located at in state s, and in,, is
the abstract value before that point.

=
)
92]
]
o
%
i
©
S
<
2
e
—
©
-
©
-

Advanced Compiler Techniques
te i advanc



Sign Analysis Example

Sign analysis - compute sign of each variable v
¢ Base Lattice: flat lattice on {-,zero,+}

T
- zero +

¢ Actual lattice records a value for each variable
¢ Example element: [a—+, b—zero, c—-]

o
9p)
iy
©
L
<
C
b
°2)
=
o,
&
©
X
(8
9p)
2
©
(e
<
2
o
—
©
-—
©
-

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/




Interpretation of Lattice Values

[f value of v in lattice is:
¢ L: no information about the sign of v.
¢ -: variable v is negative.
¢ zero: variable vis 0 .
¢ +: variable v is positive.

¢ I: v may be positive or negative or 0.

o
9p)
iy
©
L
<
C
b
°2)
=
o,
&
©
X
(8
9p)
2
©
(e
<
2
o
—
©
-—
©
-

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/




o
9p)
2
©
L
<
L
b
°2)
=
o,
&
©
X
(8
9p)
2
©
e
<
2
o
=
©
-—
©
-

Operation ® on Lattice

X 1 - Zero + T

1 1 - Zero + T

- - + Zero - T
Zero | zero | zero | zero | zero | zero

+ + - Zero + T

T T T Zero T T

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



o
9p)
iy
©
L
<
C
b
°2)
=
o,
&
©
X
(8
9p)
2
©
(e
<
2
o
—
©
-—
©
-

Transfer Functions

Defined by structural induction on the shape

of nodes:
¢ If n of the form v = c
¢ f.(x) =x[v— +] if cis positive
¢ f.(xX) =x[v—>zero]if cis 0

¢ f.(x) =x|v— -] if c is negative
¢ If n of the form v, = v,*v;
¢ fn(x) = x[v,—>x[v,] & x[v;]]

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



o
9p)
iy
©
L
<
C
b
°2)
=
o,
&
©
X
(8
9p)
2
©
(e
<
2
o
—
©
-—
©
-

Abstraction Function

¢ AF(s)[v] =signof v
¢ AF([a—5, b—0, c—-2]) = [a—>+, b—>zero, c—-]
¢ Establishes meaning of the analysis results

¢ If analysis says a variable v has a given sign
¢ then v always has that sign in actual execution.

¢ Two sources of imprecision

¢ Abstraction Imprecision - concrete values (integers) abstracted as
lattice values (-,zero, and +);

¢ Control Flow Imprecision - one lattice value for all different flow
of control possibilities.

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Imprecision Example
l[a—>L1, b—>l1, c—1]

[a—1] abstracted as [a—+] a = 1

[a—>+, b—1, C%“/\[aﬁ + bosl, o]

b= -1 b =1

Abstraction Imprecision:

[a—+, b—-, c—>1] [a>+, b+, c—>1]

L
=
B2

Q)

b}

—

oF

=
—

n
2

(9]

<
<

2

o
e

©
-

)
-

l[a—>+, b—>T, c—1] l
C = a*Db
Control Flow Imprecision: [a—>+, b—>T, c>T]
|b—T] summarizes results of all executions.
In any execution state s, AF(s)[b]#T

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/




General Sources of Imprecision

¢ Abstraction Imprecision

¢ Lattice values less precise than execution values.
¢ Abstraction function throws away information.

¢ Control Flow Imprecision

¢ Analysis result has a single lattice value to summarize results
of multiple concrete executions.

¢ Join operation v moves up in lattice to combine values from
different execution paths.

L
=
2

Q)

b}

—

Q,

=
—

n
2

©

L
<

2

o
=

©
-

)
A

¢ Typically if x <y, then x is more precise thany.

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/




Why Have Imprecision?

ANSWER: To make analysis tractable

¢ Conceptually infinite sets of values in execution.
¢ Typically abstracted by finite set of lattice values.

¢ Execution may visit infinite set of states.
¢ Abstracted by computing joins of different paths.

L
=
2

Q)

b}

—

Q,

=
—

n
2

©

L
<

2

o
=

©
-

)
A

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Augmented Execution States

¢ Abstraction functions for some analyses
require augmented execution states.

¢ Reaching definitions: states are augmented
with the definition that created each value.

¢ Available expressions: states are augmented
with expression for each value.

N
)
45
©
4
N
o
]
45
ar
]
&
o0
i)
<
n
R%)
o
©
L
<
2
e
—
©
-
)
-

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Meet Over All Paths Solution

¢ What solution would be ideal for a forward
dataflow analysis problem?

¢ Consider a path p =ny, ny, ..., n, nto anode n
(note that for all i, n; € pred(n,,))

¢ The solution must take this path into account:

Fp(h) = (Fa (Fr G fry (Frg(D) ) S iny,
¢ So the solution should have the property that

NMfo(L) | pisapathton}=in,

n
<
=
©
o,
<
—
]
>
o
)
)
S
2]
i
©
e
<
2
o
—
©
=
©
-

Advanced Compiler Techniques
te i advanc



Conservative Solution

¢ There is no algorithm to compute the
optimal solution, due to infinite number of
paths.

¢ A solution is conservative if for all paths p
ton, f, (L) <in,

n
<
=
©
o,
<
—
]
>
o
)
)
S
2]
i
©
e
<
2
o
—
©
=
©
-

Advanced Compiler Techniques
te [ advancedCompile



n
n
)
S
o
c
)
o
N
N
B
s
o]
S
<
2
@)
=
©
-+
)
-

Soundness Proof of Analysis
Algorithm

Property to prove:
For all paths p ton, f,(1) <in,

¢ Proof is by induction on the length of p.
¢ Uses monotonicity of transfer functions.
¢ Uses following lemma.

Lemma:

The worklist algorithm produces a solution such that
if n € pred(m) then out, <in

(That is, what you get out of a predecessor is more precise than what will go
in to the node, because precision may be lost by the join function.)

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Proof

¢ Base case: p is of length 0
¢ Thenp =njand f,(1) = L=in,
¢ Induction step:
¢ Assume theorem for all paths of length k.

n
n
)
S
o
ar
]
o
N
n
R%)
=
©
L
<
2
<
Gy
©
)
©
-

¢ Show for an arbitrary path p of length k+1.

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



n
n
)
S
o
ar
]
o
N
n
R%)
=
©
L
<
2
<
Gy
©
)
©
-

Induction Step Proot

¢ Given a path p =n,, ..., ny, nshow (f, (f,_,(---

Fry(Fnp() ) <iny,

By induction assumption: (theorem holds for all paths of

length k)
(fnk-l(' . fnl(an(J—)) . )) < innk
Apply f,, to both sides:

FoeFon o (ov Fo (gL ) 7 F (i)
By monotonicity: (s<»= f() < f())
(o (Fry (- oy (Frg(D) ) = S (i, )

By definition of foy (#,,(in, ) = out, )

(Fr, Py G on T (P (D) <22)) S OOy iy o oo s



Distributivity

¢ Distributivity preserves precision.

¢ If framework is distributive, then the
worklist algorithm produces a precis result:

For all n:

>
=
2
-+
)
=
B
=
-
n
R%)
=
S
S
<
2
e
—
©
-+
©
-

Vif, (L) | pisapathton}=in,

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Lack of Distributivity Example

Integer Constant Propagation (ICP)
¢ Flat lattice on integers

O)
oF
=
©
X

=
>~

S

1=

-—
)

2
B

A

-
92]

iep
o]
S

<
2
o

—
@
-
©

-

¢ Actual lattice records a value for each variable
¢ Example element: [a—3, b—2, c—J]

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Transfer Functions

¢ If n of the form v =c
¢ fo(x) = x[v—]

¢ If n of the form v, = v,+v,
¢ f,(x) = x[v;>x[v,] + x| v;]]

O)
oF
=
©
X

=
>~

S

1=

-—
)

2
B

A

-
92]

iep
o]
S

<
2
o

—
@
-
©

-

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Lack of Distributivity Anomaly
T

2 a
3 b

N

C = atb

i1
N W

O
i1

O)
oF
=
©
X

=
>~

S

1=

-—
)

2
B

A

-
92]

iep
o]
S

<
2
o

—
@
-
©

-

Advanced Compiler Techniques
e i vanc mpile



Lack of distributivity of ICP

¢ Consider transfer function f forc=a+b

(f(x) = x[c—x]a] + x[b]])
¢ f([a—3, b—>2]) v f(Ja—2, b—>3]) =
a—3, b—2] [c— [a—3, b—>2][a] + [a—3, b—>2][b]] v
a—2, b—>3] [c— [a—2, b—>3][a] + [a—2, b—3][b]] =
a—3, b>2] [c—> 3+ 2] v][a—>2, b>3] [c—>2+3]=
a—3, b—2] [c—>5] v [a—>2, b—3] [c—>5] =
a—T, b—>T, c—5]

¢ f([a—3, bo2]v[a—2, b—>3]) =
f([a=T, b—>T]) =
[a—>T, b—>T] [c— [a—>T, b—>T][a] + [a—T, b—T][b]] =
[a—>T, b—>T, c—>T]

O)
oF
=
©
X

=
>~

S

1=

-—
)

2
B

A

-
92]

iep
o]
S

<
2
o

—
@
-
©

-

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



Lack of Distributivity Anomaly

= 3
= 2

O
|
W
O QL

[a—>2, b—3] [a—3, b—2]

Lack of Distributivity Imprecision:

C = atb
[a—T, b—>T, c—>5] more precise.

O)
oF
=
©
X

=
>~

S

1=

-—
)

2
B

A

-
92]

iep
o]
S

<
2
o

—
@
-
©

-

[a—T, b>T, c—>T]

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/




Summary

¢ Formal dataflow analysis framework

¢ Lattices, partial orders.

¢ Transfer functions, joins and splits.

¢ Dataflow equations and fixed point solutions.
¢ Connection with program

¢ Abstraction function AF: S —

¢ For any state s and program point n, AF(s) <in

¢ Meet over paths solutions, distributivity.

n

Advanced Compiler Techniques
http://1amp.epfl.ch/teaching/advancedCompiler/



