
Advanced
Compiler

Techniques

Erik Stenman

Virtutech

http://lamp.epfl.ch/teaching/advancedCompiler/

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/2

Introduction

♦What is this course about?
♦How will this be taught?
♦Who is teaching the course?
♦Where to find more information?
♦Why is this course interesting?

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/3

Teachers

♦ Lecturer
♦ Erik Stenman

♦ Have been hacking for fun since 1980.
♦ Have been hacking compilers for money since 1996.
♦ Got a Ph.D. on “Efficient Implementation of Concurrent Programing

Languages” (i.e. Erlang) from Uppsala University in 2002.
♦ Was a member of LAMP and the Scala team 2003-2004.
♦ Currently working at Virtutech implementing full system simulators.

♦ Assistant
♦ Iulian Dragos

♦ Office: INR321, 021-69 36864 .

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/4

Course Goals

♦Give some theoretical framework for
compiler optimizations.

♦Give a general orientation on optimization
techniques.

♦Give an understanding of how some higher
level constructs are implemented.

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/5

Non-Goals and Requirements

♦ This course will not try to teach you all possible
optimizations, or even all common optimizations.

♦ We will not talk about parallel machines.
♦ You are supposed to be familiar with basic compiler

concepts: scanning, parsing, semantic analysis, and simple
code generation. (These topics will not be touched.)

♦ You are supposed to be used to programming in Java.

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/6

Course Content

♦Optimization Techniques
♦Implementation techniques for high level

languages (HLL).

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/7

Course Content

♦Optimization Techniques
♦ Theory for analysis and optimization
♦ Optimization algorithms

♦Implementation techniques for high level
languages (HLL).
♦ Virtual Machines
♦ Memory Management
♦ High level constructs

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/8

Course Structure

♦ The course will be made up of lectures, articles,
two projects, and an oral exam.

♦ The lectures will be given with slides like this
one, and the slides will be available on the web:
http://lamp.epfl.ch/teaching/advancedCompiler/

♦ I will try to have the final version of the slides on
the web at least a day before the lecture.

♦ Since I am commuting from Sweden to give this course,
the schedule is somewhat special.

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/9

Preliminary Schedule
1. Introduction, motivation, terminology,

local optimizations: CSE, constant propagation, copy propagation, dead code elimination,
(algebraic simplification, strength reduction)
Introduction to global optimizations and dataflow analysis.

2. Foundations of dataflow analysis, introduction to abstract interpretation.

3. Analysis for global optimizations: reaching definitions, available expressions, and liveness
analysis.

4. Static Single Assignment Form (SSA) & Dominators.

5. SSA-based Dead Code Elimination & Sparse Conditional Constant Propagation.
Partial Redundancy Elimination.

6. Loop Optimizations.
Lazy Code Motion.

7. Global Register Allocation
8. Code Scheduling
9. Introduction to part 2: "Implementation of high level languages"

Implementation of Objects and FPL (higher order functions, laziness).
10. Implementation of Concurrency.

11. (Automatic) Memory Management
12. Virtual Machines, Interpretation Techniques, and Just-In-Time Compilers.
13. Bits and pieces, such as implementation of exceptions, linkers and loaders.

Quiz.

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/10

Schedule

♦ 11/3 Lecture 1 & 2
♦ 18/3 Lecture 3 & 4
♦ 25/3 Easter Break
♦ 01/4 Easter break
♦ 08/4 Lecture 5 & 6
♦ 15/4 Project 1
♦ 22/4 Lecture 7 & 8
♦ 29/4 Project 2

♦ 06/5 Lecture 9 & 10
♦ 13/5 Lecture 11 & 12
♦ 20/5 Project 2
♦ 27/5 Project 2
♦ 03/6 Project 2
♦ 10/6 Project 2
♦ 13/6 – 17/6 Exams
♦ 17/6 Lecture 13

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/11

The Projects

♦ There will be two projects in the course and you may
work in groups of two persons.

♦ Project 1: A simple register allocator.
♦ The main goal of the first project is to get familiar with the

compiler framework that we will use for the second project.
♦ The task is to implement a Sethi-Ullman tree-based register

allocator for a given compiler.
♦ Project 2: Optimizations.

♦ The goal of the second project is to get a concrete understanding of
different optimization techniques.

♦ The task will be to implement different optimizations in the given
compiler in order to achieve a given speedup on a set of
benchmarks.

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/12

Literature

♦ Course Book:
♦ Keith Cooper and Linda Torczon,

Engineering a Compiler, Morgan Kaufmann, October 2003.
♦ Alternative:

♦ Andrew W. Appel,
Modern compiler implementation in Java (second edition).
Cambridge University Press, 2002, ISBN 052182060X.

♦ Reference:
♦ Steven Muchnick,

Advanced Compiler Design and Implementation,
Morgan Kaufmann, August 1997.

♦ Additional articles that will be handed out.

Expect to read a lot for this class, especially
in order to complete the projects.

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/13

The Slides

♦Many of the slides are based on
Konstantinos Sagonas set of slides for his
Advanced Compiler Techniques, held at
Uppsala University, January-February
2004.

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/14

The Exam

♦There will be an oral exam during the last
week of the course.

♦ The exam will concentrate on the understanding of the
concepts taught in the course, and not on details of
specific algorithms.

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/15

Why is this course interesting?

♦ Optimization is challenging—you can not write
an optimal compiler: there is always room for
improvements.

♦ The course will give you many techniques and
tools that you can use in other areas.

♦ You will gain a better understanding of how a
compiler works and what to expect of the code
generated by compilers.

♦ It is fun!

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/16

Introduction to Compiler
Optimization

♦ Compiler Optimization is hard.
♦ The most important aspect of an optimization is that it is

correct!
♦ The subject is confusing:

♦ The notion of optimality.
♦ Huge number of possible optimizations.
♦ Many intricate and NP-complete problems.

♦ The terminology is confusing:
♦ Global optimization means function local.
♦ Optimization means improvement.

♦ Compilation time vs. runtime speed is often a factor.

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/17

Introduction to Compiler
Optimization

♦ Suggested method for (compiler) optimization:
1. Look at the generated code – try to find sources of inefficient code.

(Better yet profile.)
2. Look in the literature for solutions to these inefficiencies. (Most

likely someone has already solved the problem.)
3. Implement the solution.
4. Repeat from 1.

♦ Most optimizations consists of two activities:
analysis and rewrite.
♦ First you must know what the program does, then you can rewrite

it so that it does it more efficiently.

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/18

Introduction to Compiler
Optimization

♦In this course we will describe a general
framework for doing analysis of computer
programs called abstract interpretation.

♦This framework can be used in many
different situations and for many different
optimizations.

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/19

Introduction to Compiler
Optimization

♦When the analysis is done, the rewrite part
is often easy.

♦We need to be able to associate the results
of the analysis with the actual code, and we
need to have a representation of the code
that will let us rewrite it easily.

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/20

Optimization Techniques
Taxonomy

♦We can divide optimizations into:
♦ Machine independent optimizations.

♦Decrease ratio of overhead to real work.
♦Example: dead code elimination.

♦ Machine dependent optimizations.
♦Take advantage of specific machine properties.
♦Work around limitations of a specific machine.
♦Example: instruction scheduling.

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/21

Optimization Techniques
Taxonomy

♦ We can further divide the optimizations on their
intended effect.

♦ Machine independent optimizations.
1. Eliminating redundant computations.
2. Move code to execute it less.
3. Eliminate dead code.
4. Specialize on context.
5. Enable other optimizations.

♦ Machine dependent optimizations.
1. Manage or hide latency.
2. Take advantage of special hardware features.
3. Manage finite resources.

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/22

Taxonomy of Global Compiler
Optimizations

Machine Independent

Redundancy

Redundancy Elimination

Partial Redund. Eliminat.

Consolidation

Code motion

Loop-invariant Code Motion

Consolidation

Global Scheduling

Constant Propagation

Useless code

Dead Code Elimination

Partial D.C.E.

Constant Propagation

Algebraic Simplification

Create opportunities

Re-association

Replication

Inline expansion

Specialization

Replication

Strength Reduction

Constant Propagation

Method Caching

Inline expansion

Heap→stack allocation

Tail Recursion Elimination

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/23

Taxonomy of Global Compiler
Optimizations

Machine Dependent

Hide Latency

Scheduling

Prefetching

Code layout

Data Packing

Manage Resources

Register allocation

Scheduling

Data packing

Coloring memory locations

Special features

Instruction selection

Peephole optimization

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/24

Terminology:
Program Representation

Control Flow Graph (CFG):
♦ Nodes N – statements of program
♦ Edges E – flow of control

♦pred(n) = set of all immediate predecessors of n
♦succ(n) = set of all immediate successors of n

♦ Start node n0

♦ Set of final nodes NfinalTe
rm

in
ol

og
y:

 P
ro

gr
am

 R
ep

re
se

nt
at

io
n

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/25

Terminology:
Control-Flow Graph

m ← a + b
n ← a + b

A

p ← c + d
r ← c + d

B

y ← a + b
z ← c + d

G

q ← a + b
r ← c + d

C

e ← b + 18
s ← a + b
u ← e + f

D e ← a + 17
t ← c + d
u ← e + f

E

v ← a + b
w ← c + d
x ← e + f

F

Control-flow graph (CFG)

• Nodes for basic blocks

• Edges for branches

• Basis for much of program
analysis & transformation

This CFG,

G = (N,E)

N = {A, B, C, D, E, F, G}
E = {(A, B), (A, C), (B, G),

(C, D), (C, E), (D, F),
(E, F),(F, G)}

|N| = 7
|E| = 8

Te
rm

in
ol

og
y:

 P
ro

gr
am

 R
ep

re
se

nt
at

io
n

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/26

Control Flow Graph
int add(n, k) {

s = 0; a = 4; i = 0;

if (k == 0)

b = 1;

else

b = 2;

while (i < n) {

s = s + a*b;

i = i + 1;

}

return s;

}

s = 0; a = 4; i = 0;
k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

entry

Te
rm

in
ol

og
y:

 C
FG

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/27

Control Flow Graph

♦ Nodes represent computation.
♦ Each node is a Basic Block (BB).
♦ Basic Block is a sequence of instructions with:

♦ No branches out of middle of basic block.
♦ No branches into middle of basic block.
♦ Basic blocks should be maximal.

♦ Execution of basic block starts with first instruction.
♦ Includes all instructions in basic block.

♦ Edges represent control flow.

Te
rm

in
ol

og
y:

 C
FG

 &
 B

B

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/28

Two Kinds of Variables

♦Temporaries (temps, a tmp):
♦ Introduced by the compiler.
♦ Transfer values only within basic block.
♦ Introduced as part of instruction flattening.
♦ Introduced by optimizations/transformations.

♦Program variables (vars, a var):
♦ Declared in original program.
♦ May transfer values between basic blocks.

Te
rm

in
ol

og
y:

 T
em

ps
 &

 V
ar

s

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/29

An EBB contains 1 or
more paths. This EBB
({A,B,C,D,E}) contains
the paths {A,B} {A,C,D}
{A,C,E}

Extended Basic Block (EBB):
A sequence of basic blocks B1, B2, …, Bn
where B1 has more than 1 predecessor, all
other Bi have a unique predecessor.

Terminology:
Extended Basic Block

m ← a + b
n ← a + b

A

p ← c + d
r ← c + d

B

y ← a + b
z ← c + d

G

q ← a + b
r ← c + d

C

e ← b + 18
s ← a + b
u ← e + f

D e ← a + 17
t ← c + d
u ← e + f

E

v ← a + b
w ← c + d
x ← e + f

F

EBB: Conceptually it is a
program sequence with
only one entry point but
possibly several exit
points.

An EBB contains 1 or
more paths.

Path:
A sequence of basic blocks B1, B2, …, Bn
where Bi is the predecessor of Bi+1.

Te
rm

in
ol

og
y:

 E
BB

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/30

♦ One program point before each node.
♦ One program point after each node.
♦ Join point – Program point with multiple

predecessors.
♦ Split point – Program point with multiple

successors.

Terminology:
Program Points

Te
rm

in
ol

og
y:

 P
ro

gr
am

 P
oi

nt
s A

B C

D

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/31

Analysis and Optimizations

♦ Program Analysis
♦ Discover properties of a program.

♦ Optimizations
♦ Use analysis results to transform the program.
♦ Goal: improve some aspect of the program

♦ number of executed instructions, number of cycles
♦ cache hit rate
♦ memory space (code or data)
♦ power consumption

♦ Has to be safe: Keep the semantics of the program.

In
tr

od
uc

tio
n

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/32

Basic Block Optimizations
(Local Optimizations)

♦ Common Sub-Expression
Elimination (CSE)
a=(x+y)+z; b=x+y;

t=x+y; a=t+z; b=t;

♦ Constant Propagation
x=5; b=x+y;

b=5+y;

♦ Algebraic Simplification
a=x*1;

a=x;

♦ Copy Propagation
a=x+y; b=a; c=b+z;

a=x+y; b=a; c=a+z;

♦ Dead Code Elimination
a=x+y; b=a; c=a+z;

a=x+y; c=a+z

♦ Strength Reduction
t=i*4;

t=i<<2;

Ba
si

c
Bl

oc
k

O
pt

im
iz

at
io

ns

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/33

Value Numbering
♦ Normalize BB so that all statements are of the form:

♦ var = var op var (where op is a binary operator)
♦ var = op var (where op is a unary operator)
♦ var = var

(I.E., no complex statements like x=a+b*c.)

♦ Simulate execution of basic block:
♦ Assign a virtual value to each variable.
♦ Assign a virtual value to each expression.
♦ Assign a temporary variable to hold value of each

computed expression.

BB
 O

pt
: V

al
ue

 N
um

be
ri

ng

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/34

Value Numbering for CSE

As we simulate execution of program,
generate a new version of program:
♦ Each new value assigned to temporary
a=x+y; becomes
a=x+y; t1=a;

♦ Temporary preserves value for use later in
program even if original variable rewritten
a=x+y; a=a+z; becomes
a=x+y; t1=a; a=a+z; t2=a;

BB
 O

pt
: V

al
ue

 N
um

be
ri

ng

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/35

CSE Example
♦ Original

a=x+y

b=a+z

b=b+y

c=a+z

♦ After CSE
a=x+y

t1=a

b=a+z

t2=b

b=b+y

t3=b

c=t2♦Issues:
♦ CSE with different names:

a=x; b=x+y; c=a+y;

♦ Excessive temp generation and use.

BB
 O

pt
: C

SE

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/36

b→v5b→v6

a=x+y
b=a+z
b=b+y
c=a+z

a=x+y
t1=a
b=a+z
t2=b
b=b+y
t3=b

x→v1
y→v2
a→v3
z→v4

c→v5

Original Basic
Block

New Basic
Block

Var to Val

v1+v2→v3
v3+v4→v5

Exp to Val
v1+v2→t1
v3+v4→t2

Exp to Tmp

c=t2

v5+v2→v6 v5+v2→t3

BB
 O

pt
: C

SE

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/37

b→v5 b→v6

a=x+y
b=a+z
b=b+y
c=a+z

a=x+y
t1=a
b=a+z
t2=b
b=b+y
t3=b

x→v1
y→v2
a→v3
z→v4

c→v5

Original Basic
Block

New Basic
Block

Var to Val

v1+v2→v3
v3+v4→v5

Exp to Val
v1+v2→t1
v3+v4→t2

Exp to Tmp

c=t2

v5+v2→v6 v5+v2→t3

BB
 O

pt
: C

SE

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/38

Problems

♦ Algorithm has a temporary for each value.
a=x+y; t1=a;

♦ Introduces
♦ lots of temporaries.
♦ lots of copy statements to temporaries.

♦ In many cases, temporaries and copy statements
are unnecessary.

♦ So we eliminate them with copy propagation and
dead code elimination.

BB
 O

pt
: C

SE

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/39

Copy Propagation (CP)
♦Once again, simulate execution of program
♦If possible, use the original variable instead of a

temporary
♦a=x+y; b=x+y;

♦ After CSE becomes a=x+y; t1=a; b=t1;
♦ After CP becomes a=x+y; b=a;

♦Key idea: determine when original variables are
NOT overwritten between computation of
stored value and use of stored value.

BB
 O

pt
: C

op
y

Pr
op

ag
at

io
n

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/40

Copy Propagation Maps

♦Maintain two maps
♦ tmp to var: tells which variable to use instead

of a given temporary variable.
♦ var to set: inverse of tmp to var. Tells which

temps are mapped to a given variable by tmp
to var.

BB
 O

pt
: C

op
y

Pr
op

ag
at

io
n

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/41

Copy Propagation Example
♦ Original

a=x+y

b=a+z

c=x+y

a=b

♦ After CSE
a=x+y

t1=a

b=a+z

t2=b

c=t1
a=b

♦ After CSE and Copy
Propagation
a=x+y

t1=a

b=a+z

t2=b

c=a

a=b

BB
 O

pt
: C

op
y

Pr
op

ag
at

io
n

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/42

Copy Propagation Example

a=x+y
t1=a
b=a+z
t2=b
c=t1
a=b

Basic Block
After CSE

a=x+y
t1=a
b=a+z
t2=b
c=a
a=b

Basic Block After
CSE and Copy Prop

tmp to var var to set
t1→a
t2→b

a→{t1}
b→{t2}

BB
 O

pt
: C

op
y

Pr
op

ag
at

io
n

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/43

Copy Propagation Example

a=x+y
t1=a
b=a+z
t2=b
c=t1
a=b

Basic Block
After CSE

a=x+y
t1=a
b=a+z
t2=b
c=a
a=b

Basic Block After
CSE and Copy Prop

tmp to var var to set
t1→t1
t2→b

a→{}
b→{t2}

BB
 O

pt
: C

op
y

Pr
op

ag
at

io
n

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/44

Dead Code Elimination

♦ Copy propagation keeps all temporaries.
♦ There may be temps that are never read.
♦ Dead Code Elimination removes them.

a=x+y
t1=a
b=a+z
t2=b
c=a
a=b

a=x+y
b=a+z
c=a
a=b

Basic block after
CSE and Copy Prop.

Basic block after
CSE, CP, &

Dead Code Elimination

BB
 O

pt
: D

ea
d

C
od

e
El

im
in

at
io

n

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/45

Dead Code Elimination

♦Basic idea:
♦ Process code in reverse execution order.
♦ Maintain a set of variables that are needed later

in computation.
♦ On encountering an assignment to a temporary

that is not needed, we remove the assignment.BB
 O

pt
: D

ea
d

C
od

e
El

im
in

at
io

n

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/46

a=x+y
t1=a
b=a+z
t2=b
c=a
a=b

Basic Block After
CSE and Copy Prop

and Dead Code Elimination
Needed Set

{b}
{a,b}
{a,b}
{a,b,z}
{a,z}

{a,z}

BB
 O

pt
: D

ea
d

C
od

e
El

im
in

at
io

n

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/47

Interesting Properties

♦ Analysis and optimization algorithms simulate
execution of the program.
♦ CSE and Copy Propagation go forward.
♦ Dead Code Elimination goes backwards.

♦ Optimizations are stacked.
♦ Group of basic transformations.
♦ Work together to get good result.
♦ Often, one transformation creates inefficient code that

is cleaned up by following transformations.

BB
 O

pt
: S

um
m

ar
y

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/48

Other Basic Block
Transformations

♦Constant Propagation.
♦Strength Reduction:

♦a*4; ⇒ a<<2;

♦3*a; ⇒ a+a+a;

♦Algebraic Simplification:
♦a*1; ⇒ a;

♦b+0; ⇒ b;

♦Unified transformation framework.

BB
 O

pt
: S

um
m

ar
y

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/49

Dataflow Analysis
(Global Analysis)

♦Used to determine properties of programs
that involve multiple basic blocks.

♦Typically used to enable transformations.
♦ common sub-expression elimination.
♦ constant and copy propagation.
♦ dead code elimination.

♦Analysis and transformation often come in
pairs.

G
lo

ba
l O

pt
: I

nt
ro

du
ct

io
n

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/50

♦Concept of definition and use
♦a=x+y

♦is a definition of a.
♦is a use of x and y.

♦A definition reaches a use if value written
by definition may be read by use.

Reaching Definitions

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/51

Reaching Definitions
s=0;
a=4;
i=0;
k==0

b=1; b=2;

i<n

s=s+a*b;
i=i+1; return s

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/52

Reaching Definitions and
Constant Propagation

♦Is a use of a variable a constant?
♦ Check all reaching definitions.
♦ If all assign variable to same constant.
♦ Then use is in fact a constant.

♦Can replace variable with constant.

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

&
 C

on
st

an
t P

ro
p

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/53

Is a constant in s=s+a*b?

s=0;
a=4;
i=0;
k==0

b=1; b=2;

i<n

s=s+a*b;
i=i+1; return s

Yes!
On all reaching

definitions
a=4

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

&
 C

on
st

an
t P

ro
p

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/54

Constant Propagation Transform

s=0;
a=4;
i=0;
k==0

b=1; b=2;

i<n

s=s+4*b;
i=i+1; return s

Yes!
a=4
in

s=s+a*b
Replace use of a

with 4.

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

&
 C

on
st

an
t P

ro
p

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/55

Is b constant in s=s+4*b?

s=0;
a=4;
i=0;
k==0

b=1; b=2;

i<n

s=s+4*b;
i=i+1; return s

No!
One reaching
definition with

b=1
One reaching
definition with

b=2

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

&
 C

on
st

an
t P

ro
p

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/56

Computing Reaching Definitions

♦Compute with sets of definitions:
♦ Represent sets using bit vectors.
♦ Each definition has a position in bit vector.

♦At each basic block, compute:
♦ Definitions that reach start of block.
♦ Definitions that reach end of block.

♦Do computation by simulating execution of
program until the fixed point is reached.

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/57

s1=0;
a2=4;
i3=0;
k==0

b4=1; b5=2;

i<n

s6=s+a*b;
i7=i+1; return s

0000000

1110000 1110000

1111111
1111111

1111111

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/58

Formalizing Analysis

♦ Each basic block has
♦ IN - set of definitions that reach beginning of block
♦ OUT - set of definitions that reach end of block
♦ GEN - set of definitions generated in block
♦ KILL - set of definitions killed in the block

♦ GEN[s6=s+a*b;i7=i+1;] = 0000011
♦ KILL[s6=s+a*b;i7=i+1;] = 1010000
♦ Compiler scans each basic block to derive GEN and

KILL sets.

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/59

s1=0;
a2=4;
i3=0;
k==0

b4=1; b5=2;

i<n

s6=s+a*b;
i7=i+1; return s

GEN[0] = 1110000
KILL[0] = 0000011

GEN[2] = 0000100
KILL[2] = 0001000

GEN[1] = 0001000
KILL[1] = 0000100

GEN[3] = 0000000
KILL[3] = 0000000

GEN[4] = 0000011
KILL[4] = 1010000

GEN[5] = 0000000
KILL[5] = 0000000

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/60

Dataflow Equations

♦IN[bi] = OUT[b1] ∪ ... ∪ OUT[bn]
where b1, ..., bn are predecessors of bi

♦OUT[bi] = (IN[bi] - KILL[bi]) ∪ GEN[bi]
♦IN[entry] = 0000000
♦Result: system of equations.G

lo
ba

l O
pt

: R
ea

ch
in

g
D

ef
in

iti
on

s

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/61

s1=0;
a2=4;
i3=0;
k==0

b4=1; b5=2;

i<n

s6=s+a*b;
i7=i+1; return s

IN[0] = 0000000
GEN[0] = 1110000
KILL[0] = 0000011

OUT[0]=(IN[0] -KILL[0])∪GEN[0]=
0000000-0000011∪ 1110000=1110000

IN[1]=OUT[0]
GEN[1] = 0001000
KILL[1] = 0000100

OUT[1]=(IN[1]-0000100)∪0001000

IN[2]=OUT[0]
GEN[2] = 0000100
KILL[2] = 0001000

OUT[2]=(IN[2]-0001000)∪0000100

IN[3]=OUT[1] ∪ OUT[2]
GEN[3] = 0000000
KILL[3] = 0000000

OUT[3]=IN[3]

IN[4]=OUT[3]
GEN[4] = 0000011
KILL[4] = 1010000

OUT[4]=(IN[4]-1010000)∪0000011

IN[5]=OUT[3]
GEN[5] = 0000000
KILL[5] = 0000000

OUT[5]=IN[5]

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/62

Solving Equations
♦Use fix point algorithm.
♦Initialize with solution of

OUT[bi] = 0000000
♦Repeatedly apply equations:

♦ IN[bi] = OUT[b1] ∪ ... ∪ OUT[bn]
♦ OUT[bi] = (IN[bi] - KILL[bi]) ∪ GEN[bi]

♦Until reach fixed point, i.e., until equation
application has no further effect.

♦Use a worklist to track which equation
applications may have further effect.

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/63

Reaching Definitions Algorithm
for all nodes n2N

OUT[n] = ;; // Or OUT[n] = GEN[n];
Changed = N; // N = all nodes in graph
while (Changed != ;) // Until fixed point reached.

choose n2Changed; // Node from worklist
Changed=Changed-{n}; // Remove from worklist
OldOut = OUT[n] // Remember old result
IN[n] = ;; // Calculate IN as join
for all nodes p2predecessors(n) // of predecessors.

IN[n]=IN[n]∪OUT[p];
OUT[n]=(IN[n]-KILL[n])∪GEN[n]; // Recalculate OUT
if (OUT[n] != OldOut) // If OUT[n] changed
for all nodes s2successors(n)

Changed=Changed∪{s}; //Add succs to worklist

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/64

Question

♦Does the algorithm halt?

♦ We need some theory to answer this with
confidence.

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques 3/11/2005
http://lamp.epfl.ch/teaching/advancedCompiler/65

Summary

♦ Optimization is hard but fun.
♦ Terminology: CFG, BB, EBB, Program points.
♦ Basic blocks and basic block optimizations.

♦ Copy and constant propagation.
♦ Common sub-expression elimination.
♦ Dead code elimination.

♦ Dataflow Analysis
♦ Control flow graph.
♦ IN[b], OUT[b], transfer functions, join points.

