
Advanced
Compiler

Techniques

Erik Stenman

LAMP

http://lamp.epfl.ch/teaching/advancedCompiler/

Advanced Compiler Techniques 08.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/2

Introduction

♦What is this course about?
♦How will this be taught?
♦Who is teaching the course?
♦Where to find more information?
♦Why is this course interesting?

Advanced Compiler Techniques 08.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/3

Teachers

♦Lecturer
♦Erik Stenman

♦have been hacking compilers for money since 1996.
Have been hacking for fun since 1980.

♦Office: INR315, 021-69 37593.
♦Assistant

♦Michel Schinz
♦whom you all know and love.
♦Office: INR318, 021-69 34209.

Advanced Compiler Techniques 08.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/4

Course Content

♦Optimization Techniques
♦Implementation techniques for high level

languages (HLL).

Advanced Compiler Techniques 08.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/5

Course Content

♦Optimization Techniques
♦Theory for analysis and optimization
♦Optimization algorithms

♦Implementation techniques for high level
languages (HLL).
♦Virtual Machines
♦Memory Management
♦High level constructs

Advanced Compiler Techniques 08.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/6

Course Goals

♦Give some theoretical framework for
compiler optimizations.

♦Give a general orientation on optimization
techniques.

♦Give an understanding of how some higher
level constructs are implemented.

Advanced Compiler Techniques 08.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/7

Non-Goals and Requirements

♦ This course will not try to teach you all possible
optimizations, or even all common optimizations.

♦ We will not talk about parallel machines.
♦ You are supposed to be familiar with basic compiler

concepts: scanning, parsing, semantic analysis, and simple
code generation. (These topics will not be touched.)

♦ You are supposed to be used to programming in Java.

Advanced Compiler Techniques 08.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/8

Course Structure

♦The course will be made up of lectures,
articles, two projects, and an oral exam.

♦The lectures will be given with slides like
this one, and the slides will be available on
the web:
http://lamp.epfl.ch/teaching/advancedCompiler/

♦I will try to have the slides on the web at
least a day before the lecture.

Advanced Compiler Techniques 08.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/9

Preliminary Schedule

1. Introduction
2. Control-Flow Analysis & Foundations of Data-Flow Analysis
3. Reaching Definitions, Available Expressions, and Liveness Analyses. Introduction to

Abstract Interpretation.
4. Static Single Assignment Form, SSA-based Dead Code Elimination & Sparse

Conditional Constant Propagation
5. [cont] Static Single Assignment Form, SSA-based Dead Code Elimination & Sparse

Conditional Constant Propagation
6. Partial Redundancy Elimination & Lazy Code Motion
7. Loop Optimizations
8. Global Register Allocation
9. Code Scheduling
10. Implementation of higher order functions, processes, and objects
11. Automatic Memory Management
12. Virtual Machines, Interpretation Techniques, and Just-In-Time Compilers
13. Presentations

Advanced Compiler Techniques 08.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/10

The Projects

♦ There will be two projects in the course and you may
work in groups of two persons.

♦ Project 1: A simple register allocator.
♦ The main goal of the first project is to get familiar with the

compiler framework that we will use for the second project.
♦ The task is to implement a Sethi-Ullman tree-based register

allocator for a given compiler.
♦ Project 2: Optimizations.

♦ The goal of the second project is to get a concrete understanding of
different optimization techniques.

♦ The task will be to implement different optimizations in the given
compiler in order to achieve a given speedup on a set of
benchmarks.

Advanced Compiler Techniques 08.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/11

Literature

♦ Course Book:
♦ Andrew W. Appel,

Modern compiler implementation in Java (second edition).
Cambridge University Press, 2002, ISBN 052182060X.

♦ Alternative:
♦ Keith Cooper and Linda Torczon,

Engineering a Compiler, Morgan Kaufmann, October 2003.
♦ Reference:

♦ Steven Muchnick,
Advanced Compiler Design and Implementation,
Morgan Kaufmann, August 1997.

♦ Additional articles that will be handed out.

Expect to read a lot for this class,
especially in order to complete the

projects.

Advanced Compiler Techniques 08.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/12

The Exam

♦There will be an oral exam during the last
week of the course.

♦ The exam will concentrate on the understanding of the
concepts taught in the course, and not on details of
specific algorithms.

Note:
The examination form of the course has changed from

“Branche à examen (oral) avec contrôle continu” to
“Contrôle continu”

Advanced Compiler Techniques 08.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/13

Feedback

♦This is the first time this course is given so
the format and the content is not set in
stone.

♦At the end of next week there will be an
evaluation of the course so far, and you will
have chance to influence the rest of the
course to a great extent.

Advanced Compiler Techniques 08.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/14

Why is this course interesting?

♦ Optimization is challenging—you can not write
an optimal compiler: there is always room for
improvements.

♦ The course will give you many techniques and
tools that you can use in other areas.

♦ You will gain a better understanding of how a
compiler works and what to expect of the code
generated by compilers.

♦ It is fun!

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/1

Foundations of
Dataflow Analysis

This lecture is primarily based on Konstantinos Sagonas set of slides
(Advanced Compiler Techniques, (2AD518)

at Uppsala University, January-February 2004).
Used with kind permission.

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/2

Terminology:
Program Representation

Control Flow Graph (CFG):
♦Nodes N – statements of program
♦Edges E – flow of control

♦pred(n) = set of all immediate predecessors of n
♦succ(n) = set of all immediate successors of n

♦Start node n0

♦Set of final nodes NfinalTe
rm

in
ol

og
y:

 P
ro

gr
am

 R
ep

re
se

nt
at

io
n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/3

Terminology:
Control-Flow Graph

m ← a + b
n ← a + b

A

p ← c + d
r ← c + d

B

y ← a + b
z ← c + d

G

q ← a + b
r ← c + d

C

e ← b + 18
s ← a + b
u ← e + f

D e ← a + 17
t ← c + d
u ← e + f

E

v ← a + b
w ← c + d
x ← e + f

F

Control-flow graph (CFG)

• Nodes for basic blocks

• Edges for branches

• Basis for much of program
analysis & transformation

This CFG,

G = (N,E)

N = {A, B, C, D, E, F, G}
E = {(A, B), (A, C), (B, G),

(C, D), (C, E), (D, F),
(E, F),(F, G)}

|N| = 7
|E| = 8

Te
rm

in
ol

og
y:

 P
ro

gr
am

 R
ep

re
se

nt
at

io
n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/4

An EBB contains 1 or
more paths. This EBB
({A,B,C,D,E}) contains
the paths {A,B} {A,C,D}
{A,C,E}

Extended Basic Block (EBB):
A sequence of basic blocks B1, B2, …, Bn
where B1 has more than 1 predecessor,
all other Bi have a unique predecessor.

Terminology:
Extended Basic Block

m ← a + b
n ← a + b

A

p ← c + d
r ← c + d

B

y ← a + b
z ← c + d

G

q ← a + b
r ← c + d

C

e ← b + 18
s ← a + b
u ← e + f

D e ← a + 17
t ← c + d
u ← e + f

E

v ← a + b
w ← c + d
x ← e + f

F

EBB: Conceptually it is a
program sequence with only
one entry point but possibly
several exit points.

An EBB contains 1 or
more paths.

Path:
A sequence of basic blocks B1, B2, …, Bn
where Bi is the predecessor of Bi+1.

Te
rm

in
ol

og
y:

 P
ro

gr
am

 R
ep

re
se

nt
at

io
n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/5

♦ One program point before each node.
♦ One program point after each node.
♦ Join point – Program point with multiple

predecessors.
♦ Split point – Program point with multiple

successors.

Terminology:
Program Points

Te
rm

in
ol

og
y:

 P
ro

gr
am

 R
ep

re
se

nt
at

io
n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/6

Dataflow Analysis

Compile-Time Reasoning About
♦ Run-Time Values of Variables or Expressions at

different program points:
♦Which assignment statements produced the

value of the variables at this point?
♦Which variables contain values that are no

longer used after this program point?
♦What is the range of possible values of a

variable at this program point?

D
at

af
lo

w
 A

na
ly

si
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/7

Dataflow Analysis

♦Assumptions:
♦We have a syntactically and semantically

correct program (as far as compile time
analysis can determine this).

♦We have the “whole” program, or a clearly
defined subset of the program which will only
interact with the rest of the program through a
predefined interface.
(That is, no self modifying code, and if the interface is a function then the
parameters can take any value of the given type.)

D
at

af
lo

w
 A

na
ly

si
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/8

Dataflow Analysis:
Basic Idea

♦Information about a program represented
using values from an algebraic structure
called lattice. (We will call this set of values P.)

♦Analysis produces a lattice value for each
program point.

♦Two flavors of analyses:
♦Forward dataflow analyses.
♦Backward dataflow analyses.

D
at

af
lo

w
 A

na
ly

si
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/9

Forward Dataflow Analysis
♦ Analysis propagates values forward through

control flow graph with flow of control
♦Each node has a transfer function ƒ

♦ Input – value at program point before node.
♦ Output – new value at program point after node.

♦Values flow from program points after
predecessor nodes to program points before
successor nodes.

♦At join points, values are combined using a
merge function.

♦ Canonical Example: Reaching Definitions.

D
at

af
lo

w
 A

na
ly

si
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/10

Backward Dataflow Analysis
♦ Analysis propagates values backward through

control flow graph against flow of control:
♦Each node has a transfer function ƒ

♦Input – value at program point after node.
♦Output – new value at program point before node.

♦Values flow from program points before
successor nodes to program points after
predecessor nodes.

♦At split points, values are combined using a
merge function.

♦ Canonical Example: Live Variables.

D
at

af
lo

w
 A

na
ly

si
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/11

Partial Orders

♦ Set P
♦ Partial order · such that ∀ x,y,z ∈ P

i. x · x (reflexive)

ii. x · y and y · x⇒ x = y (antisymmetric)
iii. x · y and y · z⇒ x · z (transitive)

Th
eo

ry
 F

ou
nd

at
io

n:
 P

ar
tia

l O
rd

er
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/12

Upper Bounds

♦ If S ⊆ P then
♦ x∈P is an upper bound of S if

∀y ∈S, y ≤ x

♦ x∈ P is the least upper bound (lub) of S if
♦ x is an upper bound of S, and
♦ x ≤ y for all upper bounds y of S

♦ ∨ - join, least upper bound, supremum (sup)

♦ ∨S is the least upper bound of S
♦ x ∨ y is the least upper bound of {x, y}

Th
eo

ry
 F

ou
nd

at
io

n:
 P

ar
tia

l O
rd

er
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/13

Lower Bounds

♦If S ⊆ P then
♦ x∈P is a lower bound of S if ∀y∈S, x ≤ y

♦ x∈P is the greatest lower bound (glb) of S if
♦ x is a lower bound of S, and
♦ y ≤ x for all lower bounds y of S

♦∧ - meet, greatest lower bound, infimum (inf)
♦ ∧ S is the greatest lower bound of S
♦ x ∧ y is the greatest lower bound of {x, y}

Th
eo

ry
 F

ou
nd

at
io

n:
 P

ar
tia

l O
rd

er
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/14

Coverings

♦Notation: x < y if x ≤ y and x≠y
♦ x is covered by y (y covers x) if

♦ x < y, and
♦ x ≤ z < y⇒ x = z

♦Conceptually, y covers x if there are no
elements between x and yTh

eo
ry

 F
ou

nd
at

io
n:

 P
ar

tia
l O

rd
er

s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/15

Dataflow Analysis:
Basic Idea

♦Information about a program represented
using values from an algebraic structure
called lattice. (We will call this set of values P.)

♦Analysis produces a lattice value for each
program point.

♦Two flavors of analyses:
♦Forward dataflow analyses.
♦Backward dataflow analyses.

D
at

af
lo

w
 A

na
ly

si
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/16

Hasse Diagram

♦We can visualize a partial order with a
Hasse Diagram.

♦For each element x we draw a circle:
♦If y covers x

♦Line from y to x
♦ y above x in diagram

y

x

Th
eo

ry
 F

ou
nd

at
io

n:
 P

ar
tia

l O
rd

er
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/17

Hasse Diagram: Example

P = {000, 001, 010, 011, 100, 101, 110, 111}
x ≤ y if (x bitwise_and y) = x
(standard boolean lattice, also called hypercube) 111

011
101

110

010001

000

100

Th
eo

ry
 F

ou
nd

at
io

n:
 P

ar
tia

l O
rd

er
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/18

Lattices

♦ If x ∧ y and x ∨ y exist for all x,y ∈ P,
then P is a lattice.

♦ If ∧S and ∨S exist for all S ⊆ P,
then P is a complete lattice.

♦ Theorem: All finite lattices are complete.
♦ Example of a lattice that is not complete

♦ Integers Z
♦ For any x,y ∈Z, x ∨ y = max(x,y), x ∧ y = min(x,y)

♦ But ∨Z and ∧Z do not exist
♦ Z ∪ {+∞, −∞} is a complete lattice

Th
eo

ry
 F

ou
nd

at
io

n:
 L

at
tic

es

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/19

Top and Bottom

♦Greatest element of P (if it exists) is top (|).
♦Least element of P (if it exists) is bottom (⊥).

Th
eo

ry
 F

ou
nd

at
io

n:
 L

at
tic

es

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/20

Connection between
≤, ∧, and ∨

The following 3 properties are equivalent:
♦ x ≤ y
♦ x ∨ y = y
♦ x ∧ y = x

♦ Will prove:
♦ x ≤ y ⇒ x ∨ y = y and x ∧ y = x
♦ x ∨ y = y ⇒ x ≤ y
♦ x ∧ y = x ⇒ x ≤ y

♦ By Transitivity,
♦ x ∨ y = y ⇒ x ∧ y = x
♦ x ∧ y = x ⇒ x ∨ y = y

Th
eo

ry
 F

ou
nd

at
io

n:
 P

ar
tia

l O
rd

er
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/21

Connecting Lemma Proofs (1)

♦ Proof of x ≤ y⇒ x ∨ y = y

♦ x ≤ y ⇒ y is an upper bound of {x,y}.
♦Any upper bound z of {x,y} must satisfy y ≤ z.
♦ So y is least upper bound of {x,y} and x ∨ y = y

♦ Proof of x ≤ y⇒ x ∧ y = x

♦ x ≤ y ⇒ x is a lower bound of {x,y}.
♦Any lower bound z of {x,y} must satisfy z ≤ x.
♦ So x is the greatest lower bound of {x,y},

that is x ∧ y = x

Th
eo

ry
 F

ou
nd

at
io

n:
 P

ar
tia

l O
rd

er
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/22

Connecting Lemma Proofs (2)

♦Proof of x ∨ y = y⇒ x ≤ y
♦ y is an upper bound of {x,y} ⇒ x ≤ y

♦Proof of x ∧ y = x⇒ x ≤ y
♦ x is a lower bound of {x,y} ⇒ x ≤ y

Chains

Th
eo

ry
 F

ou
nd

at
io

n:
 P

ar
tia

l O
rd

er
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/23

Lattices as Algebraic Structures

♦Have defined ∨ and ∧ in terms of ≤.
♦Now define ≤ in terms of ∨ and ∧:

♦Start with ∨ and ∧ as arbitrary algebraic
operations that satisfy associative,
commutative, idempotence,
and absorption laws.

♦Will define ≤ using ∨ and ∧.
♦Will show that ≤ is a partial order.

Chains

Th
eo

ry
 F

ou
nd

at
io

n:
 L

at
tic

es

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/24

Algebraic Properties of Lattices

Assume arbitrary operations ∨ and ∧ such that
♦ (x ∨ y) ∨ z = x ∨ (y ∨ z) (associativity of ∨)
♦ (x ∧ y) ∧ z = x ∧ (y ∧ z) (associativity of ∧)
♦ x ∨ y = y ∨ x (commutativity of ∨)
♦ x ∧ y = y ∧ x (commutativity of ∧)
♦ x ∨ x = x (idempotence of ∨)
♦ x ∧ x = x (idempotence of ∧)
♦ x ∨ (x ∧ y) = x (absorption of ∨ over ∧)
♦ x ∧ (x ∨ y) = x (absorption of ∧ over ∨)

Th
eo

ry
 F

ou
nd

at
io

n:
 L

at
tic

es

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/25

Connection Between
∧ and ∨

Theorem: x ∨ y = y if and only if x ∧ y = x
♦ Proof of x ∨ y = y ⇒ x = x ∧ y

x = x ∧ (x ∨ y) (by absorption)
= x ∧ y (by assumption)

♦ Proof of x ∧ y = x ⇒ y = x ∨ y
y = y ∨ (y ∧ x) (by absorption)

= y ∨ (x ∧ y) (by commutativity)
= y ∨ x (by assumption)
= x ∨ y (by commutativity)

Th
eo

ry
 F

ou
nd

at
io

n:
 L

at
tic

es

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/26

Properties of ≤

♦ Define x ≤ y if x ∨ y = y
♦ Proof of transitive property. Show that

x ∨ y = y and y ∨ z = z ⇒ x ∨ z = z
x ∨ z = x ∨ (y ∨ z) (by assumption)

= (x ∨ y) ∨ z (by associativity)
= y ∨ z (by assumption)
= z (by assumption)

Th
eo

ry
 F

ou
nd

at
io

n:
 L

at
tic

es

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/27

Properties of ≤

♦Proof of asymmetry property. Show that
x ∨ y = y and y ∨ x = x ⇒ x = y

x = y ∨ x (by assumption)
= x ∨ y (by commutativity)
= y (by assumption)

♦Proof of reflexivity property. Show that
x ∨ x = x

x ∨ x = x (by idempotence)

Th
eo

ry
 F

ou
nd

at
io

n:
 L

at
tic

es

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/28

Properties of ≤

♦Induced operation ≤ agrees with original
definitions of ∨ and ∧, i.e.,
♦x ∨ y = sup {x, y}
♦x ∧ y = inf {x, y}

Th
eo

ry
 F

ou
nd

at
io

n:
 L

at
tic

es

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/29

Proof of x ∨ y = sup {x, y}

♦Consider any upper bound u for x and y.
♦Given x ∨ u = u and y ∨ u = u,

show x ∨ y ≤ u,
i.e., (x ∨ y) ∨ u = u
u = x ∨ u (by assumption)

= x ∨ (y ∨ u) (by assumption)
= (x ∨ y) ∨ u (by associativity)

Th
eo

ry
 F

ou
nd

at
io

n:
 L

at
tic

es

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/30

Proof of x ∧ y = inf {x, y}

• Consider any lower bound l for x and y.
• Given x ∧ l = l and y ∧ l = l,

show l ≤ x ∧ y,
i.e., (x ∧ y) ∧ l = l
l = x ∧ l (by assumption)

= x ∧ (y ∧ l) (by assumption)
= (x ∧ y) ∧ l (by associativity)

Th
eo

ry
 F

ou
nd

at
io

n:
 L

at
tic

es

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/31

Chains

♦ A set S is a chain if ∀x,y∈S. y ≤ x or x ≤ y

♦ P has no infinite chains if every chain in P is finite
♦ P satisfies the ascending chain condition if

for all sequences x1 ≤ x2 ≤ … there exists n
such that xn = xn+1 = …
That is, all increasing sequences in P eventually
becomes constant.

Th
eo

ry
 F

ou
nd

at
io

n:
 C

ha
in

s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/32

Dataflow Analysis
(repetition)

♦ Information about a program represented using values
from a lattice (P). Analysis propagates values through
control flow graph, either forwards or backwards.

♦ For forward analysis:
♦ Each node has a transfer function ƒ,

♦ Input – value at program point before node.
♦Output – new value at program point after node.

♦ Values flow from program points after predecessor nodes to
program points before successor nodes.

♦ At join points, values are combined using a merge function.

D
at

af
lo

w
 A

na
ly

si
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/33

Transfer Functions

♦Assume a lattice P of abstract values.
♦Transfer function ƒ: P→P for each node in

control flow graph.
♦ƒ models the effect of the node on the

program information.

D
at

af
lo

w
 A

na
ly

si
s:

 T
ra

ns
fe

r F
un

ct
io

ns

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/34

Properties of Transfer Functions
Each dataflow analysis problem has a set F of

transfer functions ƒ:P→P
♦ Identity function i∈F
♦ Fmust be closed under composition:
∀ƒ,g∈F, the function h = λx.ƒ(g(x))∈F

♦ Each ƒ∈Fmust be monotone:x ≤ y⇒ ƒ(x) ≤ ƒ(y)
♦ Sometimes all ƒ∈F are distributive:

ƒ(x ∨ y) = ƒ(x) ∨ ƒ(y)
♦ Distributivity ⇒ monotonicity

D
at

af
lo

w
 A

na
ly

si
s:

 T
ra

ns
fe

r F
un

ct
io

ns

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/35

Distributivity Implies
Monotonicity

Proof:
♦Assume ƒ(x ∨ y) = ƒ(x) ∨ ƒ(y)
♦Show: x ∨ y = y⇒ ƒ(x) ∨ ƒ(y) = ƒ(y)

ƒ(y) = ƒ(x ∨ y) (by assumption)
= ƒ(x) ∨ ƒ(y) (by distributivity)

D
at

af
lo

w
 A

na
ly

si
s:

 T
ra

ns
fe

r F
un

ct
io

ns

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/36

Forward Dataflow Analysis
♦ Simulates forward execution of a program
♦ For each node n, we have

inn – value at program point before n
outn – value at program point after n
ƒn – transfer function for n (given inn, computes outn)

♦ Require that solutions satisfy
i. ∀n, outn = ƒn(inn)
ii. ∀n ≠ n0, inn = ∨ { outm | m ∈ pred(n) }
iii. inn0 = ⊥

D
at

af
lo

w
 A

na
ly

si
s:

Fo
rw

ar
d

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/37

Dataflow Equations

♦Result is a set of dataflow equations
outn := ƒn(inn)
inn := ∨ { outm | m ∈ pred(n) }

♦Conceptually separates analysis problem
from program.D

at
af

lo
w

 A
na

ly
si

s:
Fo

rw
ar

d

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/38

Worklist Algorithm for Solving
Forward Dataflow Equations

for each n∈N do outn := ƒn(⊥)
worklist := N
while worklist ≠ ∅ do:

remove a node n from worklist
inn := ∨ { outm | m ∈ pred(n) }
outn := ƒn(inn)
if outn changed then

worklist := worklist ∪ succ(n)

D
at

af
lo

w
 A

na
ly

si
s:

Fo
rw

ar
d

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/39

Correctness Argument
Why result satisfies dataflow equations?
♦Whenever we process a node n,

set outn := ƒn(inn)
Algorithm ensures that outn = ƒn(inn)

♦ Whenever outm changes, put succ(m) on worklist.
Consider any node n ∈ succ(m).
It will eventually come off the worklist and the
algorithm will set

inn := ∨ { outm | m ∈ pred(n) }
to ensure that inn = ∨ { outm | m ∈ pred(n) }

D
at

af
lo

w
 A

na
ly

si
s:

Fo
rw

ar
d

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/40

Termination Argument

Why does the algorithm terminate?
♦ Sequence of values taken on by inn or outn is a

chain. If values stop increasing, the worklist
empties and the algorithm terminates.

♦ If the lattice has the ascending chain property, the
algorithm terminates
♦Algorithm terminates for finite lattices.
♦ For lattices without the ascending chain property, we

must use a widening operator.

D
at

af
lo

w
 A

na
ly

si
s:

Fo
rw

ar
d

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/41

Widening Operators

♦ Detect lattice values that may be part of an
infinitely ascending chain.

♦ Artificially raise value to least upper bound of the
chain.

♦ Example:
♦ Lattice is set of all subsets of integers.
♦Widening operator might raise all sets of size n or

greater to TOP (the set of all integers).
♦Could be used to collect possible values taken on by a

variable during execution of the program.

D
at

af
lo

w
 A

na
ly

si
s:

Fo
rw

ar
d

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/42

Reaching Definitions

♦Concept of definition and use
♦z = x+y

♦ is a definition of z
♦ is a use of x and y

♦A definition (d) reaches a use (u) if the
value written by d may be read by u.

D
at

af
lo

w
 A

na
ly

si
s:

Fo
rw

ar
d

(R
ea

ch
in

g
D

ef
in

iti
on

s)

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/43

Reaching Definitions
s = 0;
a = 4;
i = 0;
k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return sD

at
af

lo
w

 A
na

ly
si

s:
Fo

rw
ar

d
(R

ea
ch

in
g

D
ef

in
iti

on
s)

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/44

Reaching Definitions Framework

♦ P = ℘ (the powerset) of the set of definitions in
the program (all subsets of the set of definitions).

♦ ∨ = ∪ (order is ⊆)
♦ ⊥ = ∅
♦ F = all functions ƒ of the form ƒ(x) = a ∪ (x-b)

♦ b is the set of definitions that the node kills.
♦ a is the set of definitions that the node generates.

General pattern for many transfer functions
♦ƒ(x) = GEN ∪ (x-KILL)

D
at

af
lo

w
 A

na
ly

si
s:

Fo
rw

ar
d

(R
ea

ch
in

g
D

ef
in

iti
on

s)

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/45

Does Reaching Definitions
Framework Satisfy Properties?

♦⊆ satisfies conditions for ≤
x ⊆ y and y ⊆ z ⇒ x ⊆ z (transitivity)
x ⊆ y and y ⊆ x ⇒ y = x (asymmetry)
x ⊆ x (reflexivity)

♦ F satisfies transfer function conditions
λx.∅ ∪ (x- ∅) = λx.x∈F (identity)
Will show ƒ(x ∪ y) = ƒ(x) ∪ ƒ(y) (distributivity)

ƒ(x) ∪ ƒ(y) = (a ∪ (x – b)) ∪ (a ∪ (y – b))
= a ∪ (x – b) ∪ (y – b)
= a ∪ ((x ∪ y) – b)
= ƒ(x ∪ y)

D
at

af
lo

w
 A

na
ly

si
s:

Fo
rw

ar
d

(R
ea

ch
in

g
D

ef
in

iti
on

s)

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/46

Does Reaching Definitions
Framework Satisfy Properties?

What about composition?
♦Given ƒ1(x) = a1 ∪ (x-b1) and ƒ2(x) = a2 ∪ (x-b2)
♦Show ƒ1(ƒ2(x)) can be expressed as a ∪ (x - b)

ƒ1(ƒ2(x)) = a1 ∪ ((a2 ∪ (x-b2)) - b1)
= a1 ∪ ((a2 - b1) ∪ ((x-b2) - b1))
= (a1 ∪ (a2 - b1)) ∪ ((x-b2) - b1))
= (a1 ∪ (a2 - b1)) ∪ (x-(b2 ∪ b1))

Let a = (a1 ∪ (a2 - b1)) and b = b2 ∪ b1
Then ƒ1(ƒ2(x)) = a ∪ (x – b)

D
at

af
lo

w
 A

na
ly

si
s:

Fo
rw

ar
d

(R
ea

ch
in

g
D

ef
in

iti
on

s)

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/47

General Result
All GEN/KILL transfer function frameworks

satisfy the properties:
♦Identity
♦Distributivity
♦Compositionality

D
at

af
lo

w
 A

na
ly

si
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/48

Available Expressions
Framework

♦ P =℘ (the powerset) of the set of all expressions
in the program (all subsets of set of expressions).

♦ ∨ = ∩ (order is ⊇)
♦ ⊥ = ℘ (but inn0 = ∅)
♦ F = all functions ƒ of the form

ƒ(x) = a ∪ (x-b).
♦ b is set of expressions that node kills.
♦ a is set of expressions that node generates.

♦ Another GEN/KILL analysisD
at

af
lo

w
 A

na
ly

si
s:

 F
or

w
ar

d
(A

va
ila

bl
e

Ex
pr

es
si

on
s)

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/49

Concept of Conservatism

♦ Reaching definitions use ∪ as join
♦ Optimizations must take into account all definitions that reach

along ANY path
♦ Available expressions use ∩ as join

♦ Optimization requires expression to reach along ALL paths
♦ Optimizations must conservatively take all possible

executions into account.
♦ Structure of analysis varies according to the way the

results of the analysis are to be used.

D
at

af
lo

w
 A

na
ly

si
s:

 F
or

w
ar

d
(A

va
ila

bl
e

Ex
pr

es
si

on
s)

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/50

Backward Dataflow Analysis
• Simulates execution of program backward

against the flow of control.
• For each node n, we have

inn – value at program point before n.
outn – value at program point after n.
ƒn – transfer function for n (given outn, computes inn).

• Require that solutions satisfy:
i. ∀n. inn = ƒn(outn)
ii. ∀n ∉ Nfinal. outn = ∨ { inm | m ∈ succ(n) }
iii. ∀n ∈ Nfinal . outn = ⊥

D
at

af
lo

w
 A

na
ly

si
s:

Ba
ck

w
ar

d

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/51

Worklist Algorithm for Solving
Backward Dataflow Equations

for each n ∈ N do inn := ƒn(⊥)
worklist := N
while worklist ≠ ∅ do

remove a node n from worklist
outn := ∨ { inm | m ∈ succ(n) }
inn := ƒn(outn)
if inn changed then

worklist := worklist ∪ pred(n)

D
at

af
lo

w
 A

na
ly

si
s:

Ba
ck

w
ar

d

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/52

Live Variables Analysis
Framework

♦ P = powerset of the set of all variables in the
program (all subsets of the set of variables).

♦ ∨ = ∪ (order is ⊆)
♦ ⊥ = ∅
♦ F = all functions ƒ of the form ƒ(x) = a ∪ (x-b)

♦ b is set of variables that the node kills.
♦ a is set of variables that the node reads.

D
at

af
lo

w
 A

na
ly

si
s:

 B
ac

kw
ar

d
(L

iv
e

V
ar

ia
bl

es
)

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/53

Meaning of Dataflow Results

♦ Connection between executions of program and
dataflow analysis results.

♦ Each execution generates a trajectory of states:
♦ s0;s1;…;sk,where each si∈S

♦ Map current state sk to
♦ Program point n where execution located.
♦Value x in dataflow lattice.

♦ Require x ≤ inn

D
at

af
lo

w
 A

na
ly

si
s:

Re
su

lts

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/54

Abstraction Function for
Forward Dataflow Analysis

♦Meaning of analysis results is given by an
abstraction function AF:S→P

♦Require that for all states s
AF(s) ≤ inn

where n is the program point where the
execution is located at in state s, and inn is
the abstract value before that point.

D
at

af
lo

w
 A

na
ly

si
s:

Re
su

lts

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/55

Sign analysis - compute sign of each variable v
♦ Base Lattice: flat lattice on {-,zero,+}

♦ Actual lattice records a value for each variable
♦ Example element: [a→+, b→zero, c→-]

Sign Analysis Example

- zero +

T

⊥

D
at

af
lo

w
 A

na
ly

si
s:

Ex
am

pl
e

(S
ig

n
A

na
ly

si
s)

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/56

Interpretation of Lattice Values

If value of v in lattice is:
♦⊥: no information about the sign of v.
♦-: variable v is negative.
♦zero: variable v is 0 .
♦+: variable v is positive.
♦T: v may be positive or negative or 0.

D
at

af
lo

w
 A

na
ly

si
s:

Ex
am

pl
e

(S
ig

n
A

na
ly

si
s)

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/57

Operation ⊗ on Lattice

TTzeroTTT

T+zero-++

zerozerozerozerozerozero

T-zero+--

T+zero-⊥⊥

T+zero-⊥⊗

D
at

af
lo

w
 A

na
ly

si
s:

Ex
am

pl
e

(S
ig

n
A

na
ly

si
s)

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/58

Transfer Functions

Defined by structural induction on the shape
of nodes:
♦If n of the form v = c

♦ ƒn(x) = x[v→ +] if c is positive
♦ ƒn(x) = x[v→zero] if c is 0
♦ ƒn(x) = x[v→ -] if c is negative

♦If n of the form v1 = v2*v3

♦ ƒn(x) = x[v1→x[v2] ⊗ x[v3]]

D
at

af
lo

w
 A

na
ly

si
s:

Ex
am

pl
e

(S
ig

n
A

na
ly

si
s)

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/59

Abstraction Function

♦ AF(s)[v] = sign of v
♦ AF([a→5, b→0, c→-2]) = [a→+, b→zero, c→-]

♦ Establishes meaning of the analysis results
♦ If analysis says a variable v has a given sign
♦ then v always has that sign in actual execution.

♦ Two sources of imprecision
♦ Abstraction Imprecision – concrete values (integers) abstracted as

lattice values (-,zero, and +);
♦ Control Flow Imprecision – one lattice value for all different flow

of control possibilities.D
at

af
lo

w
 A

na
ly

si
s:

Ex
am

pl
e

(S
ig

n
A

na
ly

si
s)

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/60

Imprecision Example

b = -1 b = 1

a = 1

[a→+, b→⊥, c→⊥]

c = a*b

Abstraction Imprecision:
[a→1] abstracted as [a→+]

Control Flow Imprecision:
[b→T] summarizes results of all executions.
In any execution state s, AF(s)[b]≠T

[a→+, b→⊥, c→⊥]

[a→+, b→-, c→⊥] [a→+, b→+, c→⊥]

[a→+, b→T, c→⊥]

[a→+, b→T, c→T]

[a→⊥, b→⊥, c→⊥]

D
at

af
lo

w
 A

na
ly

si
s:

Im
pr

ec
is

io
n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/61

General Sources of Imprecision
♦ Abstraction Imprecision

♦ Lattice values less precise than execution values.
♦Abstraction function throws away information.

♦ Control Flow Imprecision
♦Analysis result has a single lattice value to summarize results

of multiple concrete executions.
♦ Join operation ∨ moves up in lattice to combine values from

different execution paths.
♦ Typically if x ≤ y, then x is more precise than y.

D
at

af
lo

w
 A

na
ly

si
s:

Im
pr

ec
is

io
n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/62

Why Have Imprecision?

ANSWER: To make analysis tractable
♦ Conceptually infinite sets of values in execution.

♦ Typically abstracted by finite set of lattice values.
♦ Execution may visit infinite set of states.

♦Abstracted by computing joins of different paths.

D
at

af
lo

w
 A

na
ly

si
s:

Im
pr

ec
is

io
n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/63

Augmented Execution States

♦Abstraction functions for some analyses
require augmented execution states.
♦Reaching definitions: states are augmented

with the definition that created each value.
♦Available expressions: states are augmented

with expression for each value.

D
at

af
lo

w
 A

na
ly

si
s:

A
ug

m
en

te
d

St
at

es

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/64

Meet Over All Paths Solution

♦ What solution would be ideal for a forward
dataflow analysis problem?

♦ Consider a path p = n0, n1, …, nk, n to a node n
(note that for all i, ni ∈ pred(ni+1))

♦ The solution must take this path into account:
ƒp(⊥) = (ƒn k

(ƒn k-1
(…ƒn1

(ƒn0
(⊥)) …)) ≤ inn

♦ So the solution must have the property that
∨{ƒp(⊥) | p is a path to n} ≤ inn

and ideally
∨{ƒp(⊥) | p is a path to n} = inn

D
at

af
lo

w
 A

na
ly

si
s:

M
ee

t o
ve

r a
ll

pa
th

s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/65

Soundness Proof of Analysis
Algorithm

Property to prove:
For all paths p to n, ƒp(⊥) ≤ inn

♦ Proof is by induction on the length of p.
♦Uses monotonicity of transfer functions.
♦Uses following lemma.

Lemma:
The worklist algorithm produces a solution such that

if n ∈ pred(m) then outn ≤ inm
(That is, what you get out of a predecessor is more precise than what will go

in to the node, because precision may be lost by the join function.)

D
at

af
lo

w
 A

na
ly

si
s:

So
un

dn
es

s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/66

Proof

♦ Base case: p is of length 0
♦Then p = n0 and ƒp(⊥) = ⊥ = inn0

♦ Induction step:
♦ Assume theorem for all paths of length k.
♦ Show for an arbitrary path p of length k+1.D

at
af

lo
w

 A
na

ly
si

s:
So

un
dn

es
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/67

Induction Step Proof
♦ Given a path p = n0, …, nk, n show (ƒnk

(ƒnk-1
(… ƒn1

(ƒn0
(⊥)) …)) ≤ inn

By induction assumption:
(ƒnk-1

(… ƒn1(ƒn0(⊥)) …)) ≤ innk
Apply ƒnk

to both sides:
ƒnk

(ƒnk-1
(… ƒn1

(ƒn0
(⊥)) …) ? ƒnk

(innk
)

By monotonicity:
(ƒnk

(ƒnk-1
(… ƒn1

(ƒn0
(⊥)) …)) ≤ ƒnk

(innk
)

By definition of ƒnk
: ƒnk

(innk
) = outnk

(ƒnk
(ƒnk-1

(… ƒn1
(ƒn0

(⊥)) …)) ≤ outnk
By lemma: outnk

≤ inn

By transitivity:
(ƒnk

(ƒnk-1
(… ƒn1

(ƒn0
(⊥)) …)) ≤ inn

D
at

af
lo

w
 A

na
ly

si
s:

So
un

dn
es

s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/68

Distributivity

♦Distributivity preserves precision.
♦If framework is distributive, then the

worklist algorithm produces the meet over
paths solution:
For all n:

∨{ƒp (⊥) | p is a path to n} = inn

D
at

af
lo

w
 A

na
ly

si
s:

D
is

tr
ib

ut
iv

ity

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/69

Integer Constant Propagation (ICP)
♦ Flat lattice on integers

♦ Actual lattice records a value for each variable
♦ Example element: [a→3, b→2, c→5]

Lack of Distributivity Example

-1 10

T

⊥

-2 2 ……

D
at

af
lo

w
 A

na
ly

si
s:

D
is

tr
ib

ut
iv

ity
(E

xa
m

pl
e)

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/70

Transfer Functions
♦If n of the form v = c

♦ƒn(x) = x[v→c]
♦If n of the form v1 = v2+v3

♦ƒn(x) = x[v1→x[v2] + x[v3]]

D
at

af
lo

w
 A

na
ly

si
s:

D
is

tr
ib

ut
iv

ity
(E

xa
m

pl
e)

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/71

Lack of Distributivity Anomaly

a = 2
b = 3

a = 3
b = 2

c = a+b

D
at

af
lo

w
 A

na
ly

si
s:

D
is

tr
ib

ut
iv

ity
(E

xa
m

pl
e)

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/72

Lack of distributivity of ICP
♦Consider transfer function ƒ for c = a + b

(ƒ(x) = x[c→x[a] + x[b]])
♦ƒ([a→3, b→2]) ∨ ƒ([a→2, b→3]) =

[a→3, b→2] [c→ [a→3, b→2][a] + [a→3, b→2][b]] ∨
[a→2, b→3] [c→ [a→2, b→3][a] + [a→2, b→3][b]] =
[a→3, b→2] [c→ 3 + 2] ∨ [a→2, b→3] [c→ 2 + 3] =
[a→3, b→2] [c→5] ∨ [a→2, b→3] [c→5] =
[a→T, b→T, c→5]

♦ƒ([a→3, b→2]∨[a→2, b→3]) =
ƒ([a→T, b→T]) =
[a→T, b→T] [c→ [a→T, b→T][a] + [a→T, b→T][b]] =
[a→T, b→T, c→T]

D
at

af
lo

w
 A

na
ly

si
s:

D
is

tr
ib

ut
iv

ity
(E

xa
m

pl
e)

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/73

Lack of Distributivity Anomaly

a = 2
b = 3

a = 3
b = 2

[a→3, b→2][a→2, b→3]

[a→T, b→T]

c = a+b

[a→T, b→T, c→T]

Lack of Distributivity Imprecision:
[a→T, b→T, c→5] more precise.D

at
af

lo
w

 A
na

ly
si

s:
D

is
tr

ib
ut

iv
ity

(E
xa

m
pl

e)

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/74

Summary

♦Formal dataflow analysis framework
♦Lattices, partial orders.
♦Transfer functions, joins and splits.
♦Dataflow equations and fixed point solutions.

♦Connection with program
♦Abstraction function AF: S→ P
♦For any state s and program point n, AF(s) ≤ inn
♦Meet over paths solutions, distributivity.

Su
m

m
ar

y

Using Program Analysis
for Optimization

This lecture is primarily based on Konstantinos Sagonas set of slides
(Advanced Compiler Techniques, (2AD518)

at Uppsala University, January-February 2004).
Used with kind permission.

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/2

Analysis and Optimizations

♦ Program Analysis
♦ Discover properties of a program.

♦ Optimizations
♦ Use analysis results to transform the program.
♦ Goal: improve some aspect of the program

♦number of executed instructions, number of cycles
♦ cache hit rate
♦memory space (code or data)
♦power consumption

♦ Has to be safe: Keep the semantics of the program.

In
tr

od
uc

tio
n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/3

Control Flow Graph
int add(n, k) {

s = 0; a = 4; i = 0;
if (k == 0)

b = 1;
else

b = 2;
while (i < n) {

s = s + a*b;
i = i + 1;

}
return s;

}

s = 0; a = 4; i = 0;
k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

entry

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/4

Control Flow Graph

♦ Nodes represent computation.
♦ Each node is a Basic Block (BB).
♦ Basic Block is a sequence of instructions with:

♦No branches out of middle of basic block.
♦No branches into middle of basic block.
♦Basic blocks should be maximal.

♦ Execution of basic block starts with first instruction.
♦ Includes all instructions in basic block.

♦ Edges represent control flow.

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/5

Two Kinds of Variables

♦Temporaries (temps, a tmp):
♦ Introduced by the compiler.
♦Transfer values only within basic block.
♦ Introduced as part of instruction flattening.
♦ Introduced by optimizations/transformations.

♦Program variables (vars, a var):
♦Declared in original program.
♦May transfer values between basic blocks.

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/6

Basic Block Optimizations
(Local Optimizations)

♦ Common Sub-Expression
Elimination (CSE)
a=(x+y)+z; b=x+y;
t=x+y; a=t+z; b=t;

♦ Constant Propagation
x=5; b=x+y;
b=5+y;

♦ Algebraic Simplification
a=x*1;
a=x;

♦ Copy Propagation
a=x+y; b=a; c=b+z;
a=x+y; b=a; c=a+z;

♦ Dead Code Elimination
a=x+y; b=a; c=a+z;
a=x+y; c=a+z

♦ Strength Reduction
t=i*4;
t=i<<2;

Ba
si

c
Bl

oc
k

O
pt

im
iz

at
io

ns

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/7

Value Numbering
♦ Normalize BB so that all statements are of the form:

♦ var = var op var (where op is a binary operator)
♦ var = op var (where op is a unary operator)
♦ var = var

(I.E., no complex statements like x=a+b*c.)

♦ Simulate execution of basic block:
♦ Assign a virtual value to each variable.
♦ Assign a virtual value to each expression.
♦ Assign a temporary variable to hold value of each

computed expression.

BB
 O

pt
: V

al
ue

 N
um

be
ri

ng

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/8

Value Numbering for CSE

As we simulate execution of program,
generate a new version of program:
♦Each new value assigned to temporary
a=x+y; becomes
a=x+y; t1=a;

♦Temporary preserves value for use later in
program even if original variable rewritten
a=x+y; a=a+z; becomes
a=x+y; t1=a; a=a+z; t2=a;

BB
 O

pt
: V

al
ue

 N
um

be
ri

ng

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/9

CSE Example
♦ Original

a=x+y
b=a+z
b=b+y
c=a+z

♦ After CSE
a=x+y
t1=a
b=a+z
t2=b
b=b+y
t3=b
c=t2♦Issues:

♦CSE with different names:
a=x; b=x+y; c=a+y;

♦Excessive temp generation and use.

BB
 O

pt
: C

SE

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/10

b→v5b→v6

a=x+y
b=a+z
b=b+y
c=a+z

a=x+y
t1=a
b=a+z
t2=b
b=b+y
t3=b

x→v1
y→v2
a→v3
z→v4

c→v5

Original Basic
Block

New Basic
Block

Var to Val

v1+v2→v3
v3+v4→v5

Exp to Val
v1+v2→t1
v3+v4→t2

Exp to Tmp

c=t2

v5+v2→v6 v5+v2→t3

BB
 O

pt
: C

SE

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/11

b→v5 b→v6

a=x+y
b=a+z
b=b+y
c=a+z

a=x+y
t1=a
b=a+z
t2=b
b=b+y
t3=b

x→v1
y→v2
a→v3
z→v4

c→v5

Original Basic
Block

New Basic
Block

Var to Val

v1+v2→v3
v3+v4→v5

Exp to Val
v1+v2→t1
v3+v4→t2

Exp to Tmp

c=t2

v5+v2→v6 v5+v2→t3

BB
 O

pt
: C

SE

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/12

Problems

♦ Algorithm has a temporary for each value.
a=x+y; t1=a;

♦ Introduces
♦ lots of temporaries.
♦ lots of copy statements to temporaries.

♦ In many cases, temporaries and copy statements
are unnecessary.

♦ So we eliminate them with copy propagation and
dead code elimination.

BB
 O

pt
: C

SE

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/13

Copy Propagation (CP)
♦Once again, simulate execution of program
♦If possible, use the original variable instead of a

temporary
♦a=x+y; b=x+y;
♦After CSE becomes a=x+y; t1=a; b=t1;
♦After CP becomes a=x+y; b=a;

♦Key idea: determine when original variables are
NOT overwritten between computation of
stored value and use of stored value.

BB
 O

pt
: C

op
y

Pr
op

ag
at

io
n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/14

Copy Propagation Maps

♦Maintain two maps
♦ tmp to var: tells which variable to use instead

of a given temporary variable.
♦var to set: inverse of tmp to var. Tells which

temps are mapped to a given variable by tmp
to var.

BB
 O

pt
: C

op
y

Pr
op

ag
at

io
n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/15

Copy Propagation Example
♦ Original

a=x+y
b=a+z
c=x+y
a=b

♦ After CSE
a=x+y
t1=a
b=a+z
t2=b
c=t1
a=b

♦ After CSE and Copy
Propagation
a=x+y
t1=a
b=a+z
t2=b
c=a
a=b

BB
 O

pt
: C

op
y

Pr
op

ag
at

io
n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/16

Copy Propagation Example

a=x+y
t1=a
b=a+z
t2=b
c=t1
a=b

Basic Block
After CSE

a=x+y
t1=a
b=a+z
t2=b
c=a
a=b

Basic Block After
CSE and Copy Prop

tmp to var var to set
t1→a
t2→b

a→{t1}
b→{t2}

BB
 O

pt
: C

op
y

Pr
op

ag
at

io
n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/17

Copy Propagation Example

a=x+y
t1=a
b=a+z
t2=b
c=t1
a=b

Basic Block
After CSE

a=x+y
t1=a
b=a+z
t2=b
c=a
a=b

Basic Block After
CSE and Copy Prop

tmp to var var to set
t1→t1
t2→b

a→{}
b→{t2}

BB
 O

pt
: C

op
y

Pr
op

ag
at

io
n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/18

Dead Code Elimination

♦ Copy propagation keeps all temporaries.
♦ There may be temps that are never read.
♦ Dead Code Elimination removes them.

a=x+y
t1=a
b=a+z
t2=b
c=a
a=b

a=x+y
b=a+z
c=a
a=b

Basic block after
CSE and Copy Prop.

Basic block after
CSE, CP, &

Dead Code Elimination

BB
 O

pt
: D

ea
d

C
od

e
El

im
in

at
io

n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/19

Dead Code Elimination

♦Basic idea:
♦Process code in reverse execution order.
♦Maintain a set of variables that are needed later

in computation.
♦On encountering an assignment to a temporary

that is not needed, we remove the assignment.BB
 O

pt
: D

ea
d

C
od

e
El

im
in

at
io

n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/20

a=x+y
t1=a
b=a+z
t2=b
c=a
a=b

Basic Block After
CSE and Copy Prop

and Dead Code Elimination
Needed Set

{b}
{a,b}
{a,b}
{a,b,z}
{a,z}
{a,z}

BB
 O

pt
: D

ea
d

C
od

e
El

im
in

at
io

n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/21

Interesting Properties

♦ Analysis and optimization algorithms simulate
execution of the program.
♦ CSE and Copy Propagation go forward.
♦ Dead Code Elimination goes backwards.

♦ Optimizations are stacked.
♦ Group of basic transformations.
♦ Work together to get good result.
♦ Often, one transformation creates inefficient code that

is cleaned up by following transformations.

BB
 O

pt
: S

um
m

ar
y

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/22

Other Basic Block
Transformations

♦Constant Propagation.
♦Strength Reduction:

♦a*4; ⇒ a<<2;
♦3*a; ⇒ a+a+a;

♦Algebraic Simplification:
♦a*1; ⇒ a;
♦b+0; ⇒ b;

♦Unified transformation framework.

BB
 O

pt
: S

um
m

ar
y

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/23

Dataflow Analysis
(Global Analysis)

♦Used to determine properties of programs
that involve multiple basic blocks.

♦Typically used to enable transformations.
♦common sub-expression elimination.
♦constant and copy propagation.
♦dead code elimination.

♦Analysis and transformation often come in
pairs.

G
lo

ba
l O

pt
: I

nt
ro

du
ct

io
n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/24

♦Concept of definition and use
♦a=x+y

♦is a definition of a.
♦is a use of x and y.

♦A definition reaches a use if value written
by definition may be read by use.

Reaching Definitions
G

lo
ba

l O
pt

: R
ea

ch
in

g
D

ef
in

iti
on

s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/25

Reaching Definitions
s=0;
a=4;
i=0;
k==0

b=1; b=2;

i<n

s=s+a*b;
i=i+1; return s

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/26

Reaching Definitions and
Constant Propagation

♦Is a use of a variable a constant?
♦Check all reaching definitions.
♦ If all assign variable to same constant.
♦Then use is in fact a constant.

♦Can replace variable with constant.

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

&
 C

on
st

an
t P

ro
p

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/27

Is a constant in s=s+a*b?

s=0;
a=4;
i=0;
k==0

b=1; b=2;

i<n

s=s+a*b;
i=i+1; return s

Yes!
On all reaching

definitions
a=4

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

&
 C

on
st

an
t P

ro
p

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/28

Constant Propagation Transform

s=0;
a=4;
i=0;
k==0

b=1; b=2;

i<n

s=s+4*b;
i=i+1; return s

Yes!
a=4
in

s=s+a*b
Replace use of a

with 4.

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

&
 C

on
st

an
t P

ro
p

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/29

Is b constant in s=s+4*b?

s=0;
a=4;
i=0;
k==0

b=1; b=2;

i<n

s=s+4*b;
i=i+1; return s

No!
One reaching
definition with

b=1
One reaching
definition with

b=2

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

&
 C

on
st

an
t P

ro
p

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/30

Computing Reaching Definitions

♦Compute with sets of definitions:
♦Represent sets using bit vectors.
♦Each definition has a position in bit vector.

♦At each basic block, compute:
♦Definitions that reach start of block.
♦Definitions that reach end of block.

♦Do computation by simulating execution of
program until the fixed point is reached.

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/31

s1=0;
a2=4;
i3=0;
k==0

b4=1; b5=2;

i<n

s6=s+a*b;
i7=i+1; return s

0000000

1110000 1110000

1111111
1111111

1111111

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/32

Formalizing Analysis

♦ Each basic block has
♦ IN - set of definitions that reach beginning of block
♦ OUT - set of definitions that reach end of block
♦ GEN - set of definitions generated in block
♦ KILL - set of definitions killed in the block

♦ GEN[s6=s+a*b;i7=i+1;] = 0000011
♦ KILL[s6=s+a*b;i7=i+1;] = 1010000
♦ Compiler scans each basic block to derive GEN and

KILL sets.

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/33

s1=0;
a2=4;
i3=0;
k==0

b4=1; b5=2;

i<n

s6=s+a*b;
i7=i+1; return s

GEN[0] = 1110000
KILL[0] = 0000011

GEN[2] = 0000100
KILL[2] = 0001000

GEN[1] = 0001000
KILL[1] = 0000100

GEN[3] = 0000000
KILL[3] = 0000000

GEN[4] = 0000011
KILL[4] = 1010000

GEN[5] = 0000000
KILL[5] = 0000000

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/34

Dataflow Equations

♦IN[bi] = OUT[b1] ∪ ... ∪ OUT[bn]
where b1, ..., bn are predecessors of bi

♦OUT[bi] = (IN[bi] - KILL[bi]) ∪ GEN[bi]
♦IN[entry] = 0000000
♦Result: system of equations.G

lo
ba

l O
pt

: R
ea

ch
in

g
D

ef
in

iti
on

s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/35

s1=0;
a2=4;
i3=0;
k==0

b4=1; b5=2;

i<n

s6=s+a*b;
i7=i+1; return s

IN[0] = 0000000
GEN[0] = 1110000
KILL[0] = 0000011

OUT[0]=(IN[0] -KILL[0])∪GEN[0]=
0000000-0000011∪ 1110000=1110000

IN[1]=OUT[0]
GEN[1] = 0001000
KILL[1] = 0000100

OUT[1]=(IN[1]-0000100)∪0001000

IN[2]=OUT[0]
GEN[2] = 0000100
KILL[2] = 0001000

OUT[2]=(IN[2]-0001000)∪0000100

IN[3]=OUT[1] ∪ OUT[2]
GEN[3] = 0000000
KILL[3] = 0000000

OUT[3]=IN[3]

IN[4]=OUT[3]
GEN[4] = 0000011
KILL[4] = 1010000

OUT[4]=(IN[4]-1010000)∪0000011

IN[5]=OUT[3]
GEN[5] = 0000000
KILL[5] = 0000000

OUT[5]=IN[5]

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/36

Solving Equations
♦Use fix point algorithm.
♦Initialize with solution of

OUT[bi] = 0000000
♦Repeatedly apply equations:

♦ IN[bi] = OUT[b1] ∪ ... ∪ OUT[bn]
♦OUT[bi] = (IN[bi] - KILL[bi]) ∪ GEN[bi]

♦Until reach fixed point, i.e., until equation
application has no further effect.

♦Use a worklist to track which equation
applications may have further effect.

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/37

Reaching Definitions Algorithm
for all nodes n∈N

OUT[n] = ∅; // Or OUT[n] = GEN[n];
Changed = N; // N = all nodes in graph
while (Changed != ∅) // Until fixed point reached.

choose n∈Changed; // Node from worklist
Changed=Changed-{n}; // Remove from worklist
OldOut = OUT[n] // Remember old result
IN[n] = ∅; // Calculate IN as join
for all nodes p∈predecessors(n) // of predecessors.

IN[n]=IN[n]∪OUT[p];
OUT[n]=(IN[n]-KILL[n])∪GEN[n]; // Recalculate OUT
if (OUT[n] != OldOut) // If OUT[n] changed
for all nodes s∈successors(n)

Changed=Changed∪{s}; //Add succs to worklist

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/38

Questions

♦ Does the algorithm halt?
♦ yes, because transfer function is monotonic.
♦ if increase IN, increase OUT.
♦ in limit, all bits are 1.

♦ If bit is 1, is there always an execution in which
corresponding definition reaches basic block?

♦ If bit is 0, does the corresponding definition ever
reach basic block?

♦ Concept of conservative analysis.

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s,

su
m

m
ar

y

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/39

Available Expressions

♦ An expression x+y is available at a point p if
♦ every path from the initial node to p evaluates x+y

before reaching p,
♦ and there are no assignments to x or y after the

evaluation but before p.
♦ Available Expression information can be used to

do global (across basic blocks) CSE.
♦ If an expression is available at use, there is no

need to re-evaluate it.

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/40

Computing Available
Expressions

♦ Represent sets of expressions using bit vectors.
♦ Each expression corresponds to a bit.
♦ Run dataflow algorithm similar to reaching

definitions.
♦ Big difference:

♦ Definition reaches a basic block if it comes from ANY
predecessor in CFG.

♦ Expression is available at a basic block only if it is
available from ALL predecessors in CFG.

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/41

Expressions
1: x+y
2: i<n
3: i+c
4: x==0

0000

1001

1000

1000

1100 1100

a=x+y;
x==0

x=z;
b=x+y;

i<n

c=x+y;
i=i+c;

d=x+y

i=x+y;

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/42

Expressions
1: x+y
2: i<n
3: i+c
4: x==0

0000

1001

1000

1000

1100 1100

a=x+y;
t1=a;
x==0

x=z;
b=x+y;
t1=b;

i<n

c=t1;
i=i+c;

d=t1

i=t1;

Global CSE Transform

Must use same temp
for CSE in all blocks

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s &

 C
SE

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/43

Formalizing Analysis

♦ Each basic block has
IN - set of expressions that reach beginning of block.
OUT - set of expressions that reach end of block.
GEN - set of expressions generated in block.
KILL - set of expressions killed in the block.

♦ GEN[x=z; b=x+y] = 1000
♦ KILL[x=z; b=x+y] = 1001
♦ Compiler scans each basic block to derive GEN and

KILL sets.

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/44

Dataflow Equations

♦IN[bi] = OUT[b1]∩ ... ∩ OUT[bn]
♦where b1, ..., bn are predecessors of bi

♦OUT[bi] = (IN[bi] - KILL[bi]) ∪ GEN[bi]
♦IN[entry] = 0000
♦Result: system of equations.

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/45

Solving Equations

♦Use fix point algorithm.
♦IN[entry]=0000
♦Initialize with solution of

OUT[bi] = 1111
♦Repeatedly apply equations:

♦ IN[bi] = OUT[b1] ∩ ... ∩ OUT[bn]
♦OUT[bi] = (IN[bi] - KILL[bi]) ∪ GEN[bi]

♦Use a worklist to track which equation
applications may have further effect.

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/46

Available Expressions Algorithm
for all nodes n∈N // E is set of all expressions.

OUT[n] = E; // OUT[n] =E -KILL[n];
Changed = N; // N = all nodes in graph
while (Changed != ∅)

choose n∈Changed;
Changed=Changed-{n};
IN[n] = E ;
OldOut = OUT[n]
for all nodes p∈predecessors(n)

IN[n]=IN[n]∩OUT[p];
OUT[n]=(IN[n]-KILL[n])∪GEN[n];
if (OUT[n] != OldOut)
for all nodes s∈successors(n) Changed=Changed∪{s};

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/47

Questions

♦ Does algorithm always halt?
♦ If expression is available in some execution, is it

always marked as available in analysis?
♦ If expression is not available in some execution,

can it be marked as available in analysis?
♦ In what sense is the algorithm conservative?

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s,

su
m

m
ar

y

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/48

Duality In Two Algorithms

♦ Reaching definitions
♦ Confluence operation is set union.
♦ OUT[b] initialized to empty set.

♦ Available expressions
♦ Confluence operation is set intersection.
♦ OUT[b] initialized to set of available expressions.

♦ General framework for dataflow algorithms.
♦ Build parameterized dataflow analyzer once, use

for all dataflow problems.

G
lo

ba
l O

pt
: D

ua
lit

y

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/49

Liveness Analysis

♦ A variable v is live at point p if
♦ v is used along some path starting at p, and
♦ no definition of v along the path before the use.

♦ When is a variable v dead at point p?
♦ No use of v on any path from p to exit node, or
♦ If all paths from p, redefine v before using v.G

lo
ba

l O
pt

: L
iv

en
es

s
A

na
ly

si
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/50

What Use is Liveness
Information?

♦ Register allocation.
♦ If a variable is dead, we can reassign its register.

♦ Dead code elimination.
♦ Eliminate assignments to variables not read later.
♦ But must not eliminate last assignment to variable (such as

instance variable) visible outside CFG.
♦ Can eliminate other dead assignments.
♦ Handle by making all externally visible variables live on

exit from CFG.

G
lo

ba
l O

pt
: L

iv
en

es
s

A
na

ly
si

s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/51

Conceptual Idea of Analysis

♦Simulate execution.
♦But start from exit and go backwards in

CFG.
♦Compute liveness information from end to

beginning of basic blocks.G
lo

ba
l O

pt
: L

iv
en

es
s

A
na

ly
si

s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/52

Liveness Example

a=x+y;
t=a;
c=a+x;
x==0

b=t+z;

c=y+1;

1100100

1110000

♦Assume a,b,c
visible outside
function. They are
live on exit.

♦Assume x,y,z,t
are not visible.

♦Represent liveness
using a bit vector:
order is abcxyzt.

1100111

G
lo

ba
l O

pt
: L

iv
en

es
s

A
na

ly
si

s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/53

Using Liveness Information for
Dead Code Elimination

a=x+y;
t=a;
c=a+x;
x==0

b=t+z;

c=y+1;

1100100

1110000

♦Assume a,b,c
visible outside
function. They are
live on exit.

♦Assume x,y,z,t
are not visible.

♦Represent liveness
using a bit vector:
order is abcxyzt.

1100111

G
lo

ba
l O

pt
: L

iv
en

es
s

A
na

ly
si

s &
 D

ea
d

C
od

e
El

im
in

at
io

n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/54

Formalizing Analysis
♦ Each basic block has

IN - set of variables live at start of block.
OUT - set of variables live at end of block.
USE - set of variables with upwards exposed uses in block.

(GEN)
DEF - set of variables defined in block. (KILL)

♦ USE[x=z;x=x+1;y=1;] = {z} (x not in USE)
♦ DEF[x=z;x=x+1;y=1;] = {x, y}
♦ Compiler scans each basic block to derive USE and

DEF sets.

G
lo

ba
l O

pt
: L

iv
en

es
s

A
na

ly
si

s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/55

Algorithm
OUT[Exit] = ∅;
IN[Exit] = USE[n];
for all nodes n∈N-{Exit}

IN[n] = ∅;
Changed = N-{Exit};
while (Changed != ∅)

choose n ∈ Changed;
Changed = Changed-{n};
OldIn=IN[n]
OUT[n] = ∅;
for all nodes s ∈ successors(n) OUT[n] = OUT[n] ∪ IN[p];
IN[n] = USE[n] ∪ (OUT[n] - DEF[n]);
if (IN[n] != OldIn)

for all nodes p ∈ predecessors(n) Changed=Changed∪{p};

G
lo

ba
l O

pt
: L

iv
en

es
s

A
na

ly
si

s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/56

Similar to Other Dataflow
Algorithms

♦Backwards analysis, not forwards.
♦Still have transfer functions.
♦Still have confluence operators.
♦Can generalize framework to work for both

forwards and backwards analyses.G
lo

ba
l O

pt
: L

iv
en

es
s

A
na

ly
si

s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/57

Analysis Information Inside
Basic Blocks

♦One detail:
♦ Given dataflow information at IN and OUT of node.
♦ Also need to compute information at each statement of

basic block.
♦ Simple propagation algorithm usually works fine.
♦ Can be viewed as restricted case of dataflow analysis.

G
lo

ba
l O

pt
 &

 B
Bs

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/58

Summary

♦ Basic blocks and basic block optimizations.
♦ Copy and constant propagation.
♦ Common sub-expression elimination.
♦ Dead code elimination.

♦ Dataflow Analysis
♦ Control flow graph.
♦ IN[b], OUT[b], transfer functions, join points.

♦ Pairs of analyses and transformations:
♦ Reaching definitions/constant propagation.
♦ Available expressions/common sub-expression elimination.
♦ Liveness analysis/Dead code elimination.

Su
m

m
ar

y

Building SSA Form

This lecture is primarily based on Konstantinos Sagonas set of slides
(Advanced Compiler Techniques, (2AD518)

at Uppsala University, January-February 2004).
Used with kind permission.

(In turn based on Keith Cooper’s slides)

2
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

What is SSA?

SSA-form:
♦ Each name is defined exactly once.
♦ Each use refers to exactly one name.

What’s hard?
♦ Straight-line code is trivial.
♦ Splits in the CFG are trivial.
♦ Joins in the CFG are hard.

Building SSA Form:
♦ Insert Φ-functions at birth points.
♦ Rename all values for uniqueness.

x←17-4

x←a+b

x←y-z

x←13

z←x*q

s←w-x

In
tr

od
uc

tio
n

3
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

Birth Points (a notion due to Tarjan)
Consider the flow of values in this example

The value x appears everywhere.
It takes on several values.
• Here, x can be 13, y-z, or 17-4.
• Here, it can also be a+b.

If each value has its own name …
• Need a way to merge these

distinct values.
• Values are “born” at merge points.

x←17-4

x←a+b

x←y-z

x←13

z←x*q

s←w-x

SS
A

: B
ir

th
 P

oi
nt

s

4
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

Consider the flow of values in this example

New value for x here
17 - 4 or y - z

New value for x here
13 or (17 - 4 or y - z)

New value for x here
a+b or ((13 or (17-4 or y-z))

Birth Points (cont)

x←17-4

x←a+b

x←y-z

x←13

z←x*q

s←w-x

SS
A

: B
ir

th
 P

oi
nt

s

5
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

Consider the flow of values in this example
x←17-4

x←a+b

x←y-z

x←13

z←x*q

s←w-x

These are all birth points for values

• All birth points are join points
• Not all join points are birth points
• Birth points are value-specific …

Birth Points (cont)
SS

A
: B

ir
th

 P
oi

nt
s

6
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

Static Single Assignment Form

SSA-form:
♦ Each name is defined exactly once.
♦ Each use refers to exactly one name.

What’s hard?
♦ Straight-line code is trivial.
♦ Splits in the CFG are trivial.
♦ Joins in the CFG are hard.

Building SSA Form:
♦ Insert Φ-functions at birth points.
♦ Rename all values for uniqueness.

A Φ-function is a special kind
of copy that selects one of
its parameters.

The choice of parameter is
governed by the CFG edge
along which control reached
the current block.

However, real machines do
not implement a Φ-function
in hardware.

y1 ← ... y2 ← ...

y3 ← Φ(y1,y2)

SS
A

: Φ
-fu

nc
tio

ns

7
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

SSA Construction Algorithm
(High-level sketch)

1.Insert Φ-functions.
2.Rename values.

… that’s all ...

… of course, there is some bookkeeping to be done ...

SS
A

: C
on

st
ru

ct
io

n

8
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

SSA Construction Algorithm
(Less high-level)

1.Insert Φ-functions at every join for every name.
2.Solve reaching definitions.
3.Rename each use to the def that reaches it.

(will be unique)SS
A

: C
on

st
ru

ct
io

n

9
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

Reaching Definitions
The equations
REACHES(N0) = Ø
REACHES(N) = ∪P∈ preds(N) DEFOUT(P) ∪ (REACHES(P) ∩ SURVIVED(P))

♦ REACHES(N) is the set of definitions that reach block N
♦ DEFOUT(N) is the set of definitions in N that reach the end of N
♦ SURVIVED(N) is the set of definitions not obscured by a new def in N

Computing REACHES(N)
♦ Use any data-flow method (i.e., the iterative method)
♦ This particular problem has a very-fast solution (Zadeck)

F.K. Zadeck, “Incremental data-flow analysis in a structured
program editor,” Proceedings of the SIGPLAN 84 Conf. on
Compiler Construction, June, 1984, pages 132-143.

Domain is |DEFINITIONS|, same as
number of operations

SS
A

: C
on

st
ru

ct
io

n
–

Re
ac

hi
ng

 D
ef

in
iti

on
s

10
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

SSA Construction Algorithm
(Less high-level)

1. Insert Φ-functions at every join for every name.
2. Solve reaching definitions.
3. Rename each use to the def that reaches it. (will be unique)

What’s wrong with this approach?
♦ Too many Φ-functions. (precision)
♦ Too many Φ-functions. (space)
♦ Too many Φ-functions. (time)
♦ Need to relate edges to Φ-functions parameters. (bookkeeping)

To do better, we need a more complex approach.

Builds maximal SSA

SS
A

: C
on

st
ru

ct
io

n
–

Pr
ob

le
m

s

11
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

SSA Construction Algorithm
(Less high-level)

1. Insert Φ-functions
a.) calculate dominance frontiers
b.) find global names

for each name, build a list of blocks that define it
c.) insert Φ-functions

∀ global name n
∀ block B in which n is defined

∀ blockD in B’s dominance frontier
insert a Φ-function for n in D
add D to n’s list of defining blocks{Creates the iterated

dominance frontier

This adds to
the worklist !

Use a checklist to avoid putting blocks on the worklist twice;
keep another checklist to avoid inserting the same Φ-function twice.

Compute list of blocks where each name
is assigned & use as a worklist

Moderately complex

SS
A

: C
on

st
ru

ct
io

n
–

A
lg

or
ith

m
, S

te
p

1

12
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

SSA Construction Algorithm
(Less high-level)

2. Rename variables in a pre-order walk over dominator tree
(use an array of stacks, one stack per global name)

Staring with the root block, B
a.) generate unique names for each Φ-function

and push them on the appropriate stacks
b.) rewrite each operation in the block

i. Rewrite uses of global names with the current version
(from the stack)

ii. Rewrite definition by inventing & pushing new name
c.) fill in Φ-function parameters of successor blocks
d.) recurse on B ’s children in the dominator tree
e.) <on exit from block B > pop names generated in B from stacks

1 counter per
name for
subscripts

Need the end-of-
block name for
this path

Reset the state

SS
A

: C
on

st
ru

ct
io

n
–

A
lg

or
ith

m
, S

te
p

2

13
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

Aside on Terminology:
Dominators

Definitions
X dominates Y if and only if every path from the entry of the

control-flow graph to the node for Y includes X
♦ By definition, X dominates X
♦ We associate a set of dominators (Dom) with each node
♦ |Dom(x)| ≥ 1

Immediate dominators
♦ For any node X, there must be aY in Dom(X) closest to X
♦ We call this Y the immediate dominator of X
♦ As a matter of notation, we write this as IDom(X)

Te
rm

in
ol

og
y:

 D
om

in
at

or
s

14
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

Dominators (cont)
Dominators have many uses in program analysis & transformation:
♦ Finding loops.

♦ Building SSA form.

♦ Making code motion decisions.

A

B C G

FED

Dominator tree

Block Dom IDom
A A –
B A,B A
C A,C A
D A,C,D C
E A,C,E C
F A,C,F C
G A,G A

Dominator sets

m0 ← a + b
n0 ← a + b

A

p0 ← c + d
r0 ← c + d

B

r2 ← φ(r0,r1)
y0 ← a + b
z0 ← c + d

G

q0 ← a + b
r1 ← c + d

C

e0 ← b + 18
s0 ← a + b
u0 ← e + f

D e1 ← a + 17
t0 ← c + d
u1 ← e + f

E

e3 ← φ(e0,e1)
u2 ← φ(u0,u1)
v0 ← a + b
w0 ← c + d
x0 ← e + f

F

Let’s look at how to compute dominators…

D
om

in
at

or
s

15
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

SSA Construction Algorithm
(Low-level detail)

Computing Dominance
♦ First step in Φ-function insertion computes dominance.
♦ A node N dominates M iff N is on every path from N0 to M

♦ Every node dominates itself
♦ N ’s immediate dominator is its closest dominator, IDOM(N)†

DOM(N0) = {N0 }
DOM(N) = {N} ∪ (∩P∈ preds(N) DOM(P))

Computing DOM
♦ These equations form a rapid data-flow framework
♦ Iterative algorithm will solve them in d(G) + 3 passes

♦ Each pass does |N| unions & |E| intersections,
♦ E is O(N 2) ⇒ O(N 2) work

†IDOM(N) ≠ N, unless N is N0 , by convention.

Initially, DOM(n) = N, ∀ n≠n0

d(G) is the loop-connectedness of the graph w.r.t a DFST
•Maximal number of back edges in an acyclic path.
•Several studies suggest that, in practice, d(G) is small. (<3)
•For most CFGs, d(G) is independent of the specific DFST.

SS
A

: C
on

st
ru

ct
io

n
–1

.a
 C

om
pu

te
 D

om
in

an
ce

 F
ro

nt
ie

rs

16
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

Example

B1

B2 B3

B4 B5

B6

B7

B0

Control Flow Graph
Progress of iterative solution for DOM

Results of iterative solution for DOM & IDOM

Iter-
ation 0 1 2 3 4 5 6 7

0 0 N N N N N N N
1 0 0,1 0,1,2 0,1,3 0,1,3,4 0,1,3,5 0,1,3,6 0,1,7
2 0 0,1 0,1,2 0,1,3 0,1,3,4 0,1,3,5 0,1,3,6 0,1,7

DOM(n)

0 1 2 3 4 5 6 7
DOM 0 0,1 0,1,2 0,1,3 0,1,3,4 0,1,3,5 0,1,3,6 0,1,7
IDOM 0 0 1 1 3 3 3 1

SS
A

: C
on

st
ru

ct
io

n
–1

.a
 C

om
pu

te
 D

om
in

an
ce

 F
ro

nt
ie

rs

17
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

Example
Dominance Tree

There are asymptotically faster algorithms.

With the right data structures, the iterative
algorithm can be made faster.

See Cooper, Harvey, and Kennedy.

B1

B2 B3

B4 B5

B6

B7

B0
Progress of iterative solution for DOM

Results of iterative solution for DOM & IDOM

Iter-
ation 0 1 2 3 4 5 6 7

0 0 N N N N N N N
1 0 0,1 0,1,2 0,1,3 0,1,3,4 0,1,3,5 0,1,3,6 0,1,7
2 0 0,1 0,1,2 0,1,3 0,1,3,4 0,1,3,5 0,1,3,6 0,1,7

DOM(n)

0 1 2 3 4 5 6 7
DOM 0 0,1 0,1,2 0,1,3 0,1,3,4 0,1,3,5 0,1,3,6 0,1,7
IDOM 0 0 1 1 3 3 3 1

SS
A

: C
on

st
ru

ct
io

n
–1

.a
 C

om
pu

te
 D

om
in

an
ce

 F
ro

nt
ie

rs

18
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

B1

B2 B3

B4 B5

B6

B7

B0

Example
Dominance Frontiers Dominance Frontiers & Φ-Function Insertion

• A definition at N forces a Φ-function at M iff
N ∉ DOM(M) but N ∈ DOM(P) for some P ∈ preds(M)

• DF(N) is the fringe just beyond the region that N
dominates.

0 1 2 3 4 5 6 7
DOM 0 0,1 0,1,2 0,1,3 0,1,3,4 0,1,3,5 0,1,3,6 0,1,7
DF – – 7 7 6 6 7 1

• ← in B1 forces a Φ-function in DF(B1) = Ø (halt)

x← ...

x← Φ(...)
• DF(B4) is {B6}, so ← in B4 forces a Φ-function in B6

x← Φ(...) • ← in B6 forces a Φ-function in DF(B6) = {B7}

x← Φ(...)

• ← in B7 forces a Φ-function in DF(B7) = {B1}

For each assignment, we insert the Φ-functions

SS
A

: C
on

st
ru

ct
io

n
–1

.c
 in

se
rt

 Φ
-fu

nc
tio

ns

19
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

Example
Computing Dominance Frontiers
• Only join points are in DF(N) for some N

• Leads to a simple, intuitive algorithm for computing
dominance frontiers

For each join point M (i.e., |preds(M)| > 1)
For each CFG predecessor of M

Run up to IDOM(M) in the dominator tree, adding
M to DF(N) for each N between M and IDOM(M)

• For some applications, we need post-dominance, the
post-dominator tree, and reverse dominance
frontiers, RDF(N)

> Just dominance on the reverse CFG

> Reverse the edges & add unique exit node

• We will use these in dead code elimination

0 1 2 3 4 5 6 7
DOM 0 0,1 0,1,2 0,1,3 0,1,3,4 0,1,3,5 0,1,3,6 0,1,7
DF – – 7 7 6 6 7 1

B1

B2 B3

B4 B5

B6

B7

B0

Dominance Frontiers

SS
A

: C
on

st
ru

ct
io

n
–1

.a
 C

om
pu

te
 D

om
in

an
ce

 F
ro

nt
ie

rs

20
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

SSA Construction Algorithm
(Reminder)

1. Insert Φ-functions at every join for every name
a.) calculate dominance frontiers
b.) find global names

for each name, build a list of blocks that define it
c.) insert Φ-functions

∀ global name n
∀ block B in which n is defined

∀ blockD in B’s dominance frontier
insert a Φ-function for n in D
add D to n’s list of defining blocks

Needs a little more detail

SS
A

: C
on

st
ru

ct
io

n
–1

.b
 fi

nd
 g

lo
ba

l n
am

es

21
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

SSA Construction Algorithm

Finding global names
♦ Different between two forms of SSA
♦ Minimal uses all names
♦ Semi-pruned SSA uses names that are live on entry to some block

♦ Shrinks name space & number of Φ-functions
♦ Pays for itself in compile-time speed

♦ For each “global name”, need a list of blocks where it is defined
♦ Drives Φ-function insertion
♦ B defines x implies a Φ-function for x in every C ∈ DF(B)

Pruned SSA adds a test to see if x is live at insertion point

Otherwise, we do not
need a Φ-function

SS
A

: C
on

st
ru

ct
io

n
–1

.b
 fi

nd
 g

lo
ba

l n
am

es

With all the Φ-functions

• Lots of new ops

• Renaming is next

Assume a, b, c, & d
defined before B0 Example

Excluding
local names

avoids Φ’s for
y & z

a ← Φ(a,a)
b ← Φ(b,b)
c ← Φ(c,c)
d ← Φ(d,d)
y ← a+b
z ← c+d
i ← i+1

B7

i > 100
i ← •••B0

b ← •••
c ← •••
d ← •••

B2

a ← Φ(a,a)
b ← Φ(b,b)
c ← Φ(c,c)
d ← Φ(d,d)
i ← Φ(i,i)
a ← •••
c ← •••

B1

a ← •••
d ← •••

B3

d ← •••
B4 c ← •••

B5

d ← Φ(d,d)
c ← Φ(c,c)
b ← •••

B6

i > 100

23
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

SSA Construction Algorithm
(Less high-level)

2. Rename variables in a pre-order walk over dominator tree
(use an array of stacks, one stack per global name)

Staring with the root block, B
a.) generate unique names for each Φ-function

and push them on the appropriate stacks
b.) rewrite each operation in the block

i. Rewrite uses of global names with the current version
(from the stack)

ii. Rewrite definition by inventing & pushing new name
c.) fill in Φ-function parameters of successor blocks
d.) recurse on B’s children in the dominator tree
e.) <on exit from block B > pop names generated in B from stacks

SS
A

: C
on

st
ru

ct
io

n
–2

 R
en

am
e

va
ri

ab
le

s

24
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

SSA Construction Algorithm
(Less high-level)

NewName(v)
i ← counter[v]
counter[v] ← counter[v] + 1
push vi onto stack[v]
return vi

Rename(B)
for each Φ-function in B, x ← Φ(…)

rename x as NewName(x)

for each operation “x←y op z” in B
rewrite y as top(stack[y])
rewrite z as top(stack[z])
rewrite x as NewName(x)

for each successor of B in the CFG
rewrite appropriate Φ parameters

for each successor S of B in dom. tree
Rename(S)

for each operation “x←y op z” in B
pop(stack[x])

Adding all the details ...

for each global name i
counter[i] ← 0
stack[i] ← Ø

call Rename(B0)

SS
A

: C
on

st
ru

ct
io

n
–2

 R
en

am
e

va
ri

ab
le

s

25
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

Counters
Stacks

1 1 1 1 0

a

a0 b0 c0 d0

Before processing B0

b c d i

Assume a, b, c, & d
defined before B0

i has not been defined

a ← Φ(a,a)
b ← Φ(b,b)
c ← Φ(c,c)
d ← Φ(d,d)
y ← a+b
z ← c+d
i ← i+1

B7

i > 100
i ← •••B0

b ← •••
c ← •••
d ← •••

B2

a ← Φ(a,a)
b ← Φ(b,b)
c ← Φ(c,c)
d ← Φ(d,d)
i ← Φ(i,i)
a ← •••
c ← •••

B1

a ← •••
d ← •••

B3

d ← •••
B4 c ← •••

B5

d ← Φ(d,d)
c ← Φ(c,c)
b ← •••

B6

i > 100

Example
SS

A
: C

on
st

ru
ct

io
n

–2
 R

en
am

e
va

ri
ab

le
s

26
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

Counters
Stacks

1 1 1 1 1

a

a0 b0 c0 d0

b c d i

a ← Φ(a,a)
b ← Φ(b,b)
c ← Φ(c,c)
d ← Φ(d,d)
y ← a+b
z ← c+d
i ← i+1

B7

i > 100
i0 ← •••B0

b ← •••
c ← •••
d ← •••

B2

a ← Φ(a0,a)
b ← Φ(b0,b)
c ← Φ(c0,c)
d ← Φ(d0,d)
i ← Φ(i0,i)
a ← •••
c ← •••

B1

a ← •••
d ← •••

B3

d ← •••
B4 c ← •••

B5

d ← Φ(d,d)
c ← Φ(c,c)
b ← •••

B6

i > 100

Example
End of B0

i0

SS
A

: C
on

st
ru

ct
io

n
–2

 R
en

am
e

va
ri

ab
le

s

27
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

Counters
Stacks

3 2 3 2 2

a

a0 b0 c0 d0

b c d i

a ← Φ(a,a)
b ← Φ(b,b)
c ← Φ(c,c)
d ← Φ(d,d)
y ← a+b
z ← c+d
i ← i+1

B7

i > 100
i0 ← •••B0

b ← •••
c ← •••
d ← •••

B2

a1 ← Φ(a0,a)
b1 ← Φ(b0,b)
c1 ← Φ(c0,c)
d1 ← Φ(d0,d)
i1 ← Φ(i0,i)
a2 ← •••
c2 ← •••

B1

a ← •••
d ← •••

B3

d ← •••
B4 c ← •••

B5

d ← Φ(d,d)
c ← Φ(c,c)
b ← •••

B6

i > 100

Example
End of B1

i0

a1 b1 c1 d1 i1

a2 c2

SS
A

: C
on

st
ru

ct
io

n
–2

 R
en

am
e

va
ri

ab
le

s

28
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

Counters
Stacks

3 3 4 3 2

a

a0 b0 c0 d0

b c d i

a ← Φ(a2,a)
b ← Φ(b2,b)
c ← Φ(c3,c)
d ← Φ(d2,d)
y ← a+b
z ← c+d
i ← i+1

B7

i > 100
i0 ← •••B0

b2 ← •••
c3 ← •••
d2 ← •••

B2

a1 ← Φ(a0,a)
b1 ← Φ(b0,b)
c1 ← Φ(c0,c)
d1 ← Φ(d0,d)
i1 ← Φ(i0,i)
a2 ← •••
c2 ← •••

B1

a ← •••
d ← •••

B3

d ← •••
B4 c ← •••

B5

d ← Φ(d,d)
c ← Φ(c,c)
b ← •••

B6

i > 100

Example
End of B2

i0

a1 b1 c1 d1 i1

a2 c2b2 d2

c3

SS
A

: C
on

st
ru

ct
io

n
–2

 R
en

am
e

va
ri

ab
le

s

29
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

Counters
Stacks

3 3 4 3 2

a

a0 b0 c0 d0

b c d i

a ← Φ(a2,a)
b ← Φ(b2,b)
c ← Φ(c3,c)
d ← Φ(d2,d)
y ← a+b
z ← c+d
i ← i+1

B7

i > 100
i0 ← •••B0

b2 ← •••
c3 ← •••
d2 ← •••

B2

a1 ← Φ(a0,a)
b1 ← Φ(b0,b)
c1 ← Φ(c0,c)
d1 ← Φ(d0,d)
i1 ← Φ(i0,i)
a2 ← •••
c2 ← •••

B1

a ← •••
d ← •••

B3

d ← •••
B4 c ← •••

B5

d ← Φ(d,d)
c ← Φ(c,c)
b ← •••

B6

i > 100

Example
Before starting B3

i0

a1 b1 c1 d1 i1

a2 c2

SS
A

: C
on

st
ru

ct
io

n
–2

 R
en

am
e

va
ri

ab
le

s

30
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

Counters
Stacks

4 3 4 4 2

a

a0 b0 c0 d0

b c d i

a ← Φ(a2,a)
b ← Φ(b2,b)
c ← Φ(c3,c)
d ← Φ(d2,d)
y ← a+b
z ← c+d
i ← i+1

B7

i > 100
i0 ← •••B0

b2 ← •••
c3 ← •••
d2 ← •••

B2

a1 ← Φ(a0,a)
b1 ← Φ(b0,b)
c1 ← Φ(c0,c)
d1 ← Φ(d0,d)
i1 ← Φ(i0,i)
a2 ← •••
c2 ← •••

B1

a3 ← •••
d3 ← •••

B3

d ← •••
B4 c ← •••

B5

d ← Φ(d,d)
c ← Φ(c,c)
b ← •••

B6

i > 100

Example
End of B3

i0

a1 b1 c1 d1 i1

a2 c2

a3

d3

SS
A

: C
on

st
ru

ct
io

n
–2

 R
en

am
e

va
ri

ab
le

s

31
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

Counters
Stacks

4 3 4 5 2

a

a0 b0 c0 d0

b c d i

a ← Φ(a2,a)
b ← Φ(b2,b)
c ← Φ(c3,c)
d ← Φ(d2,d)
y ← a+b
z ← c+d
i ← i+1

B7

i > 100
i0 ← •••B0

b2 ← •••
c3 ← •••
d2 ← •••

B2

a1 ← Φ(a0,a)
b1 ← Φ(b0,b)
c1 ← Φ(c0,c)
d1 ← Φ(d0,d)
i1 ← Φ(i0,i)
a2 ← •••
c2 ← •••

B1

a3 ← •••
d3 ← •••

B3

d4 ← •••
B4 c ← •••

B5

d ← Φ(d4,d)
c ← Φ(c2,c)
b ← •••

B6

i > 100

Example
End of B4

i0

a1 b1 c1 d1 i1

a2 c2

a3

d3

d4

SS
A

: C
on

st
ru

ct
io

n
–2

 R
en

am
e

va
ri

ab
le

s

32
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

Counters
Stacks

4 3 5 5 2

a

a0 b0 c0 d0

b c d i

a ← Φ(a2,a)
b ← Φ(b2,b)
c ← Φ(c3,c)
d ← Φ(d2,d)
y ← a+b
z ← c+d
i ← i+1

B7

i > 100
i0 ← •••B0

b2 ← •••
c3 ← •••
d2 ← •••

B2

a1 ← Φ(a0,a)
b1 ← Φ(b0,b)
c1 ← Φ(c0,c)
d1 ← Φ(d0,d)
i1 ← Φ(i0,i)
a2 ← •••
c2 ← •••

B1

a3 ← •••
d3 ← •••

B3

d4 ← •••
B4 c4 ← •••

B5

d ← Φ(d4,d3)
c ← Φ(c2,c4)
b ← •••

B6

i > 100

Example
End of B5

i0

a1 b1 c1 d1 i1

a2 c2

a3

d3

c4

SS
A

: C
on

st
ru

ct
io

n
–2

 R
en

am
e

va
ri

ab
le

s

33
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

Counters
Stacks

4 4 6 6 2

a

a0 b0 c0 d0

b c d i

a ← Φ(a2,a3)
b ← Φ(b2,b3)
c ← Φ(c3,c5)
d ← Φ(d2,d5)
y ← a+b
z ← c+d
i ← i+1

B7

i > 100
i0 ← •••B0

b2 ← •••
c3 ← •••
d2 ← •••

B2

a1 ← Φ(a0,a)
b1 ← Φ(b0,b)
c1 ← Φ(c0,c)
d1 ← Φ(d0,d)
i1 ← Φ(i0,i)
a2 ← •••
c2 ← •••

B1

a3 ← •••
d3 ← •••

B3

d4 ← •••
B4 c4 ← •••

B5

d5 ← Φ(d4,d3)
c5 ← Φ(c2,c4)
b3 ← •••

B6

i > 100

Example
End of B6

i0

a1 b1 c1 d1 i1

a2 c2

a3

d3

c5 d5

b3

SS
A

: C
on

st
ru

ct
io

n
–2

 R
en

am
e

va
ri

ab
le

s

34
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

Counters
Stacks

4 4 6 6 2

a

a0 b0 c0 d0

b c d i

a ← Φ(a2,a3)
b ← Φ(b2,b3)
c ← Φ(c3,c5)
d ← Φ(d2,d5)
y ← a+b
z ← c+d
i ← i+1

B7

i > 100
i0 ← •••B0

b2 ← •••
c3 ← •••
d2 ← •••

B2

a1 ← Φ(a0,a)
b1 ← Φ(b0,b)
c1 ← Φ(c0,c)
d1 ← Φ(d0,d)
i1 ← Φ(i0,i)
a2 ← •••
c2 ← •••

B1

a3 ← •••
d3 ← •••

B3

d4 ← •••
B4 c4 ← •••

B5

d5 ← Φ(d4,d3)
c5 ← Φ(c2,c4)
b3 ← •••

B6

i > 100

Example
Before B7

i0

a1 b1 c1 d1 i1

a2 c2

SS
A

: C
on

st
ru

ct
io

n
–2

 R
en

am
e

va
ri

ab
le

s

35
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

Counters
Stacks

5 5 7 7 3

a

a0 b0 c0 d0

b c d i

a4 ← Φ(a2,a3)
b4 ← Φ(b2,b3)
c6 ← Φ(c3,c5)
d6 ← Φ(d2,d5)
y ← a4+b4
z ← c6+d6
i2 ← i1+1

B7

i > 100
i0 ← •••B0

b2 ← •••
c3 ← •••
d2 ← •••

B2

a1 ← Φ(a0,a4)
b1 ← Φ(b0,b4)
c1 ← Φ(c0,c6)
d1 ← Φ(d0,d6)
i1 ← Φ(i0,i2)
a2 ← •••
c2 ← •••

B1

a3 ← •••
d3 ← •••

B3

d4 ← •••
B4 c4 ← •••

B5

d5 ← Φ(d4,d3)
c5 ← Φ(c2,c4)
b3 ← •••

B6

i > 100

Example
End of B7

i0

a1 b1 c1 d1 i1

a2 c2

a4

b4

c6

d6 i2

SS
A

: C
on

st
ru

ct
io

n
–2

 R
en

am
e

va
ri

ab
le

s

36
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

Counters
Stacks

a4 ← Φ(a2,a3)
b4 ← Φ(b2,b3)
c6 ← Φ(c3,c5)
d6 ← Φ(d2,d5)
y ← a4+b4
z ← c6+d6
i2 ← i1+1

B7

i > 100
i0 ← •••B0

b2 ← •••
c3 ← •••
d2 ← •••

B2

a1 ← Φ(a0,a4)
b1 ← Φ(b0,b4)
c1 ← Φ(c0,c6)
d1 ← Φ(d0,d6)
i1 ← Φ(i0,i2)
a2 ← •••
c2 ← •••

B1

a3 ← •••
d3 ← •••

B3

d4 ← •••
B4 c4 ← •••

B5

d5 ← Φ(d4,d3)
c5 ← Φ(c2,c4)
b3 ← •••

B6

i > 100

Example
After renaming

• Semi-pruned SSA form

• We’re done …

Semi-pruned ⇒ only names
live in 2 or more blocks are
“global names”.

SS
A

: C
on

st
ru

ct
io

n
–2

 R
en

am
e

va
ri

ab
le

s

37
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

SSA Construction Algorithm
(Pruned SSA)

What’s this “pruned SSA” stuff?
♦ Minimal SSA still contains extraneous Φ-functions.
♦ Inserts some Φ-functions where they are dead.
♦ Would like to avoid inserting them.

Two ideas
♦ Semi-pruned SSA: discard names used in only one block.

♦ Significant reduction in total number of Φ-functions.
♦ Needs only local liveness information. (cheap to compute)

♦ Pruned SSA: only insert Φ-functions where their value is live.
♦ Inserts even fewer Φ-functions, but costs more to do.
♦ Requires global live variable analysis. (more expensive)

In practice, both are simple modifications to step 1.

SS
A

: C
on

st
ru

ct
io

n
–

C
on

cl
us

io
n

38
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

SSA Construction Algorithm

We can improve the stack management.
♦ Push at most one name per stack per block. (save push & pop)
♦ Thread names together by block.
♦ To pop names for block B, use B’s thread.

This is a good use for a scoped hash table.
♦ Significant reductions in pops and pushes.
♦ Makes a minor difference in SSA construction time.
♦ Scoped table is a clean, clear way to handle the problem.

SS
A

: C
on

st
ru

ct
io

n
–

Im
pr

ov
em

en
ts

39
Advanced Compiler Techniques

http://lamp.epfl.ch/teaching/advancedCompiler/

SSA Deconstruction

At some point, we need executable code.
♦ Few machines implement Φ operations.
♦ Need to fix up the flow of values.

Basic idea.
♦ Insert copies Φ-function pred’s.
♦ Simple algorithm.

♦ Works in most cases.
♦ Adds lots of copies.

♦ Most of them coalesce away.

X17← Φ(x10,x11)
... ← x17

... ...

... ← x17

X17 ← x10 X17 ← x11

SS
A

: D
ec

on
st

ru
ct

io
n

Dead Code Elimination &
Constant Propagation

on SSA form

This lecture is primarily based on Konstantinos Sagonas set of slides
(Advanced Compiler Techniques, (2AD518)

at Uppsala University, January-February 2004).
Used with kind permission.

(In turn based on Keith Cooper’s slides)

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/2

Dead Code Elimination Using
SSA

Dead code elimination
♦ Conceptually similar to mark-sweep garbage collection:

♦ Mark useful operations.
♦ Everything not marked is useless.

♦ Need an efficient way to find and to mark useful operations.
♦ Start with critical operations.
♦ Work back up SSA edges to find their antecedents.

♦ Operations defined as critical:
♦ I/O statements,
♦ linkage code (entry & exit blocks),
♦ return values,
♦ calls to other procedures.

Algorithm will use post-dominators & reverse dominance frontiers.

D
ea

d
C

od
e

El
im

in
at

io
n

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/3

Dead Code Elimination Using
SSA

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Notes:

• Eliminates some branches.

• Reconnects dead branches to the
remaining live code.

• Find useful post-dominator by
walking post-dominator tree.

> Entry & exit nodes are useful

D
ea

d
C

od
e

El
im

in
at

io
n

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/4

Dead Code Elimination Using
SSA

Handling Branches
♦ When is a branch useful?

♦ When another useful operation depends on its existence

♦ j control dependent on i ⇒ one path from i leads to j, one doesn’t
♦ This is the reverse dominance frontier of j (RDF(j))

Algorithm uses RDF(n) to mark branches as live

In the CFG, j is control dependent on i if

1. ∃ a non-null path p from i to j such that j post-
dominates every node on p after i

2. j does not strictly post-dominate i

D
ea

d
C

od
e

El
im

in
at

io
n

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/5

Dead Code Elimination Using
SSA

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

Skip
Example

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/6

Dead Code Elimination Using
SSA

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
17

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/7

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
17

i=17

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/8

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList

i=17

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/9

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
12

i=17

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/10

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
12

i=17

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/11

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
12

i=12

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/12

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList

i=12

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/13

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList

i=12

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/14

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
15

i=12

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/15

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
15

i=12

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/16

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
15

i=15

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/17

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList

i=15

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/18

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList

i=15

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/19

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
2

i=15

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/20

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
2,14

i=2

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/21

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
14

i=2

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/22

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
14

i=14

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/23

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList

i=14

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/24

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
13

i=13

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/25

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList

i=13

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/26

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
3

i=13

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/27

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
3,10

i=13

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/28

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
3,10,16

i=13

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/29

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
3,10,16

i=3

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/30

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
10,16

i=10

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/31

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
16

i=10

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/32

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
16

i=10

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/33

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
16,4

i=16

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/34

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
4

i=4

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/35

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
1

i=4

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/36

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
1

i=1

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/37

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList

i=

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/38

Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

i=1

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/39

Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

i=1

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/40

Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

i=2...4

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/41

Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

i=5

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/42

Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

i=5

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/43

Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

i=5

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/44

Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

i=6

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/45

Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

i=6

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/46

Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:goto

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

i=6

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/47

Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:goto

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

i=7

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/48

Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:goto

8:b4=x+3;

a,b1,c1,n

i=8

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/49

Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y;

6:goto

a,b1,c1,n

i=9

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/50

Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

10:i2=y;

6:goto

a,b1,c1,n

i=10

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/51

Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

10:i2=y;

6:goto

a,b1,c1,n

i=11

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/52

Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using
SSA

D
ea

d
C

od
e

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

10:i2=y;

6:goto

a,b1,c1,n

i=12...17

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/53

Dead Code Elimination Using
SSA

What’s left?
♦ Algorithm eliminates useless definitions & some useless branches
♦ Algorithm leaves behind empty blocks & extraneous control-flow

Two more issues
♦ Simplifying control-flow
♦ Eliminating unreachable blocks
Both are CFG transformations (no need for SSA)

Algorithm from: Cytron, Ferrante, Rosen,
Wegman, & Zadeck, Efficiently Computing
Static Single Assignment Form and the
Control Dependence Graph, ACM TOPLAS 13(4),
October 1991

with a correction due to Rob Shillner

D
ea

d
C

od
e

El
im

in
at

io
n

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/54

Constant Propagation

Safety
♦ Proves that name always has known value
♦ Specializes code around that value

♦ Moves some computations to compile time (⇒ code motion)
♦ Exposes some unreachable blocks (⇒ dead code)

Opportunity
♦ Value ≠ ⊥ signifies an opportunity

Profitability
♦ Compile-time evaluation is cheaper than run-time evaluation
♦ Branch removal may lead to block coalescing

♦ If not, it still avoids the test & makes branch predictable

C
on

st
an

t P
ro

pa
ga

tio
n

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/55

∀ expression, e
Value(e) ←

WorkList ← Ø

∀ SSA edge s = <u,v>
if Value(u) ≠ TOP then

add s to WorkList

while (WorkList ≠ Ø)
remove s = <u,v> from WorkList
let o be the operation that uses v

if Value(o) ≠ BOT then
t ← result of evaluating o

if t ≠ Value(o) then
∀ SSA edge <o,x>

add <o,x> to WorkList

{ TOP if its value is unknown

ci if its value is known (the constant ci)
BOT if its value is known to vary

Evaluating a Φ-node:
Φ(x1,x2,x3, … xn) is

Value(x1) ∧Value(x2) Value(x3)
∧ ... ∧ Value(xn)

Where

TOP ∧ x = x ∀ x
ci ∧ cj = ci if ci = cj

ci ∧ cj = BOT if ci ≠ cj

BOT ∧ x = BOT ∀ x

Same result, fewer ∧ operations

Performs ∧ only at Φ nodes

i.e., o is “a←b op v” or “a ←v op b”

Sparse Constant Propagation
Using SSA

C
on

st
an

t P
ro

pa
ga

tio
n

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/56

Sparse Constant Propagation
Using SSA

How long does this algorithm take to halt?
♦ Initialization is two passes

♦ |ops| + 2 x |ops| edges
♦ Value(x) can take on 3 values

♦ TOP, ci, BOT
♦ Each use can be on WorkList twice
♦ 2 x |args| = 4 x |ops| evaluations, WorkList pushes & pops

This is an optimistic algorithm:
♦ Initialize all values to TOP, unless they are known constants
♦ Every value becomes BOT or ci, unless its use is uninitialized

TOP

BOT

ci cj ck cl cm cn
......

C
on

st
an

t P
ro

pa
ga

tio
n

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/57

Sparse Conditional Constant
Propagation

Optimism Optimism

• This version of the algorithm is
an optimistic formulation

• Initializes values to TOP

• Prior version used ⊥ (implicit)

i0 ← 12
while (…)
i1 ← Φ(i0,i3)
x ← i1 * 17
j ← i1
i2 ← …
…

i3 ← j

C
on

di
tio

na
l C

on
st

an
t P

ro
pa

ga
tio

n

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/58

Sparse Conditional Constant
Propagation

Optimism Optimism

• This version of the algorithm is
an optimistic formulation

• Initializes values to TOP

• Prior version used ⊥ (implicit)

i0 ← 12
while (…)
i1 ← Φ(i0,i3)
x ← i1 * 17
j ← i1
i2 ← …
…

i3 ← j

C
on

di
tio

na
l C

on
st

an
t P

ro
pa

ga
tio

n

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/59

Sparse Conditional Constant
Propagation

Optimism
Clear
that i is
always
12 at
def of x

Optimism

• This version of the algorithm is
an optimistic formulation

• Initializes values to TOP

• Prior version used ⊥ (implicit)

i0 ← 12
while (…)
i1 ← Φ(i0,i3)
x ← i1 * 17
j ← i1
i2 ← …
…

i3 ← j

C
on

di
tio

na
l C

on
st

an
t P

ro
pa

ga
tio

n

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/60

12

⊥

⊥

⊥
⊥

Pessimistic
initializations

Leads to:
i1 ≡ 12 ∧ ⊥ ≡ ⊥
x ≡ ⊥ * 17 ≡ ⊥
j ≡ ⊥
i3 ≡ ⊥

Sparse Conditional Constant
Propagation

Optimism Optimism

• This version of the algorithm is
an optimistic formulation

• Initializes values to TOP

• Prior version used ⊥ (implicit)

⊥

i0 ← 12
while (…)
i1 ← Φ(i0,i3)
x ← i1 * 17
j ← i1
i2 ← …
…

i3 ← j

C
on

di
tio

na
l C

on
st

an
t P

ro
pa

ga
tio

n

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/61

Optimism
12

TOP

TOP

TOP

TOP

TOP

Optimistic
initializations

Leads to:
i1 ≡ 12 ∧ TOP ≡ 12
x ≡ 12 * 17 ≡ 204
j ≡ 12
i3 ≡ 12
i1 ≡ 12 ∧ 12 ≡ 12

Sparse Conditional Constant
Propagation

In general, optimism helps inside loops.

M.N. Wegman & F.K. Zadeck, Constant propagation with conditional
branches, ACM TOPLAS, 13(2), April 1991, pages 181–210.

Optimism

• This version of the algorithm is
an optimistic formulation

• Initializes values to TOP

• Prior version used ⊥ (implicit)

i0 ← 12
while (…)
i1 ← Φ(i0,i3)
x ← i1 * 17
j ← i1
i2 ← …
…

i3 ← j

C
on

di
tio

na
l C

on
st

an
t P

ro
pa

ga
tio

n

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/62

Sparse Conditional Constant
Propagation

What happens when it propagates a value into a branch?
♦ TOP ⇒ we gain no knowledge.
♦ BOT ⇒ either path can execute.
♦ TRUE or FALSE ⇒ only one path can execute.

Working this into the algorithm.
♦ Use two worklists: SSAWorkList & CFGWorkList:

♦ SSAWorkList determines values.
♦ CFGWorkList governs reachability.

♦ Don’t propagate into operation until its block is reachable.

}But, the algorithm
does not use this ...

C
on

di
tio

na
l C

on
st

an
t P

ro
pa

ga
tio

n

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/63

Sparse Conditional Constant
Propagation

SSAWorkList ← Ø
CFGWorkList ← n0

∀ block b
clear b’s mark
∀ expression e in b

Value(e) ← TOP

Initialization Step

To evaluate a branch

if arg is BOT then
put both targets on CFGWorklist

else if arg is TRUE then
put TRUE target on CFGWorkList

else if arg is FALSE then
put FALSE target on CFGWorkList

To evaluate a jump
place its target on CFGWorkList

while ((CFGWorkList ∪ SSAWorkList) ≠ Ø)

while(CFGWorkList ≠ Ø)
remove b from CFGWorkList
mark b
evaluate each Φ-function in b
evaluate each op in b, in order

while(SSAWorkList ≠ Ø)
remove s = <u,v> from SSAWorkList

let o be the operation that contains v

t ← result of evaluating o

if t ≠ Value(o) then
Value(o) ← t
∀ SSA edge <o,x>

if x is marked, then
add <o,x> to SSAWorkList

Propagation Step

C
on

di
tio

na
l C

on
st

an
t P

ro
pa

ga
tio

n

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/64

Sparse Conditional Constant
Propagation

There are some subtle points:
♦ Branch conditions should not be TOP when evaluated.

♦ Indicates an upwards-exposed use. (no initial value - undefined)
♦ Hard to envision compiler producing such code.

♦ Initialize all operations to TOP.
♦ Block processing will fill in the non-top initial values.
♦ Unreachable paths contribute TOP to Φ-functions.

♦ Code shows CFG edges first, then SSA edges.
♦ Can intermix them in arbitrary order. (correctness)
♦ Taking CFG edges first may help with speed. (minor effect)

C
on

di
tio

na
l C

on
st

an
t P

ro
pa

ga
tio

n

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/65

Sparse Conditional Constant
Propagation

More subtle points:
♦ TOP * BOT → TOP

♦ If TOP becomes 0, then 0 * BOT → 0.
♦ This prevents non-monotonic behavior for the result value.
♦ Uses of the result value might go irretrievably to 0.
♦ Similar effects with any operation that has a “zero”.

♦ Some values reveal simplifications, rather than constants
♦ BOT * ci → BOT, but might turn into shifts & adds (ci = 2, BOT ≥ 0)
♦ Removes commutativity. (reassociation)
♦ BOT**2 → BOT * BOT. (vs. series or call to library)

♦ cbr TRUE → L1,L2 becomes br → L1
♦ Method discovers this; it must rewrite the code, too!

C
on

di
tio

na
l C

on
st

an
t P

ro
pa

ga
tio

n

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/66

Sparse Conditional Constant
Propagation

Unreachable Code Optimism

• Initialization to TOP is still
important.

• Unreachable code keeps TOP.

• ∧ with TOP has desired result.

i←17
if (i>0) then
j1←10

else
j2←20

j3←Φ(j1, j2)
k←j3*17

C
on

di
tio

na
l C

on
st

an
t P

ro
pa

ga
tio

n

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/67

i←17
if (i>0) then
j1←10

else
j2←20

j3←Φ(j1, j2)
k←j3*17

Sparse Conditional Constant
Propagation

Unreachable Code Optimism

• Initialization to TOP is still
important.

• Unreachable code keeps TOP.

• ∧ with TOP has desired result.

All paths
execute

10

20

⊥
⊥

17

C
on

di
tio

na
l C

on
st

an
t P

ro
pa

ga
tio

n

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/68

With SCC
marking
blocks

TOP

170

17

TOP

TOP

i←17
if (i>0) then
j1←10

else
j2←20

j3←Φ(j1, j2)
k←j3*17

Sparse Conditional Constant
Propagation

Unreachable Code Optimism

• Initialization to TOP is still
important.

• Unreachable code keeps TOP.

• ∧ with TOP has desired result.

C
on

di
tio

na
l C

on
st

an
t P

ro
pa

ga
tio

n

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/69

With SCC
marking
blocks

TOP

170

17

TOP

TOP

i←17
if (i>0) then
j1←10

else
j2←20

j3←Φ(j1, j2)
k←j3*17

Sparse Conditional Constant
Propagation

Unreachable Code

Cannot get this any other way:

• DEAD code cannot test (i > 0).

• DEAD marks j2 as useful.

Optimism

• Initialization to TOP is still
important.

• Unreachable code keeps TOP.

• ∧ with TOP has desired result.
10

10

C
on

di
tio

na
l C

on
st

an
t P

ro
pa

ga
tio

n

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/70

With SCC
marking
blocks

TOP

170

17

TOP

TOP

i←17
if (i>0) then
j1←10

else
j2←20

j3←Φ(j1, j2)
k←j3*17

Sparse Conditional Constant
Propagation

Unreachable Code Optimism

• Initialization to TOP is still
important.

• Unreachable code keeps TOP.

• ∧ with TOP has desired result.

In general, combining two optimizations can lead to answers that
cannot be produced by any combination of running them separately.
This algorithm is one example of that general principle.
Combining register allocation & instruction scheduling is another ...

10

10

C
on

di
tio

na
l C

on
st

an
t P

ro
pa

ga
tio

n

Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/71

Using SSA Form for
Optimizations

In general, using SSA conversion leads to:
♦ Cleaner formulations.
♦ Better results.
♦ Faster algorithms.

We’ve seen two SSA-based algorithms.
♦ Dead-code elimination.
♦ Sparse conditional constant propagation.

Su
m

m
ar

y:
 U

si
ng

 S
SA

 fo
r O

pt
im

iz
at

io
n

Partial Redundancy
Elimination

This lecture is primarily based on Konstantinos Sagonas set of slides
(Advanced Compiler Techniques, (2AD518)

at Uppsala University, January-February 2004).
Used with kind permission.

(In turn based on Keith Cooper’s slides)

Advanced Compiler Techniques 21.04.04 10:32:14
http://lamp.epfl.ch/teaching/advancedCompiler/2

Common-Subexpression
Elimination

An occurrence of an expression in a program is a common subexpression if there is
another occurrence of the expression whose evaluation always precedes this one
in execution order and if the operands of the expression remain unchanged
between the two evaluations.

Local Common Subexpression Elimination (CSE) keeps track of the set of available
expressions within a basic block and replaces instances of them by references to
new temporaries that keep their value.

…
a=(x+y)+z;
b=a-1;
c=x+y;
…

Before CSE

…
t=x+y;
a=t+z;
b=a-1;
c=t;
…

After CSE

Re
pe

tit
io

n:
 C

SE

Advanced Compiler Techniques 21.04.04 10:32:14
http://lamp.epfl.ch/teaching/advancedCompiler/3

Available Expressions

♦ An expression x+y is available at a program point p if
♦ every path from the initial node to p evaluates x+y before

reaching p,
♦ and there are no assignments to x or y after the evaluation but

before p.

♦ Available Expression information can be used to do
global (across basic blocks) CSE.

♦ If an expression is available at the point of its use,
there is no need to re-evaluate it.

Re
pe

tit
io

n:
 A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques 21.04.04 10:32:14
http://lamp.epfl.ch/teaching/advancedCompiler/4

Computing Available
Expressions

♦ Represent sets of expressions using bit
vectors

♦ Each expression corresponds to a bit
♦ Run dataflow algorithm similar to reaching

definitions
♦ Notice that:

♦ A definition reaches a basic block if it comes from
ANY predecessor in CFG.

♦ An expression is available at a basic block only if it
is available from ALL block’s predecessors in the
CFG.

Re
pe

tit
io

n:
 A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques 21.04.04 10:32:14
http://lamp.epfl.ch/teaching/advancedCompiler/5

Expressions
1: x+y
2: i<n
3: i+c
4: x==0

0000

1001

1000

1000

1100 1100

a=x+y;
x==0

x=z;
b=x+y;

i<n

c=x+y;
i=i+c;

d=x+y

i=x+y;

Re
pe

tit
io

n:
 A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques 21.04.04 10:32:14
http://lamp.epfl.ch/teaching/advancedCompiler/6

Expressions
1: x+y
2: i<n
3: i+c
4: x==0

0000

1001

1000

1000

1100 1100

a=x+y;
t1=a;
x==0

x=z;
b=x+y;
t1=b;

i<n

c=t1;
i=i+c;

d=t1

i=t1;

Global CSE Transform

Must use same temp
for CSE in all blocks

Re
pe

tit
io

n:
 A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques 21.04.04 10:32:14
http://lamp.epfl.ch/teaching/advancedCompiler/7

Not all occurrences
of b+c are redundant!

Some occurrences of
b+c are redundant

Redundant Expressions
An expression is redundant at a point p if, on every

path to p
1. It is evaluated before reaching p, and
2. None of its constituent values is redefined before p

Example

a←b+c

a←b+c b←b+1
a←b+c

a←b+c
a←b+c
a←b+c

Re
du

nd
an

t E
xp

re
ss

io
ns

Advanced Compiler Techniques 21.04.04 10:32:14
http://lamp.epfl.ch/teaching/advancedCompiler/8

b←b+1
a←b+c a←b+c

a←b+c

Inserting a copy of “a←b+c” after the definition
of b can make it redundant.

Partially Redundant
Expressions

An expression is partially redundant at p if it is redundant along
some, but not all, paths reaching p.

Example

b←b+1 a←b+c

a←b+cPa
rt

ia
lly

 R
ed

un
da

nt
 E

xp
re

ss
io

ns

Advanced Compiler Techniques 21.04.04 10:32:14
http://lamp.epfl.ch/teaching/advancedCompiler/9

Another example:

Loop invariant expressions are partially redundant.
♦ Partial redundancy elimination performs code motion.
♦ Major part of the work is figuring out where to insert operations.

Loop Invariant Expressions

x←y*z

a←b+c
b + c is partially
redundant here

x←y*z
a←b+c

a←b+c

Pa
rt

ia
lly

 R
ed

un
da

nt
 E

xp
re

ss
io

ns

Memory Management

Advanced Compiler Techniques
2004

Erik Stenman
EPFL

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/2

Memory Management

♦ The computer memory is a limited resource so the
memory use of programs has to be managed in some way.

♦ The memory management is usually performed by a
runtime system with help from the compiler.
♦ The runtime system is a set of system procedures linked to the

program.
♦ For C programs it can be as simple as a small library for

interacting with the operating system.
♦ For Erlang programs the runtime system implements almost all

the functionality normally provided by the OS.

M
em

or
y

M
an

ag
em

en
t

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/3

Memory Management

♦ In a language such as C there are three
ways to allocate memory:

1. Static allocation. The size of memory needed
by global variables (and code) is decided at
compile time.

2. Stack allocation. Activation records are
allocated on the stack at function calls.

3. Heap allocation. Dynamically allocated by the
programmer by the use of malloc.

M
em

or
y

M
an

ag
em

en
t

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/4

Memory Organization

♦A typical layout of the
memory of a C
program looks like:

Stack

Heap (dynamic)

Uninitialized static data
(Global variables)

Constant static data

Code

M
em

or
y

M
an

ag
em

en
t

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/5

Dynamic Memory Management

♦ Heap allocation is necessary for data that lives longer than
the function which created it, and which is passed by
reference, e.g., lists in misc.

♦ Two design questions for the heap:
♦ How is space for data allocated on the heap?
♦ How and when is the space deallocated?

♦ Considerations in memory management design:
♦ Space leaks & dangling pointers.
♦ The cost for allocation and deallocation.
♦ Space overhead of the memory manager.
♦ Fragmentation.

D
yn

am
ic

 M
em

or
y

M
an

ag
em

en
t

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/6

Fragmentation

♦ The memory management system should try to avoid
fragmentation, i.e. when the free memory is broken up into
several small blocks instead of few large blocks.

♦ In a fragmented system memory allocation may fail
because there is no free block that is large enough even
though the total free memory would be large enough.

♦ We distinguish between:
♦ Internal fragmentation – the allocated block is larger than the

requested size (the waste is in the allocated data).
♦ External fragmentation – all free blocks are too small (the waste is

in the layout of the free data).

M
em

or
y

M
an

ag
em

en
t:

Fr
ag

m
en

ta
tio

n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/7

Memory Allocation

♦ The use of a free-list is a common scheme.
♦ The system keeps a list of unused memory blocks.
♦ To allocate memory the free-list is searched to find a block

which is large enough.
♦ The block is removed from the free-list and used to store

the data. If the block is larger than the need, it is split and
the unused part is returned to the free-list (to avoid internal
fragmentation).

♦ When the memory is freed it is returned to the free-list.
Adjacent memory blocks can be merged (or coalesced)
into larger blocks (to avoid external fragmentation).

M
em

or
y

M
an

ag
em

en
t:

A
llo

ca
tio

n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/8

Free-list

♦ The free-list can be stored in the
free memory since it is not used for
anything else. (We assume, or ensure,
that each memory block is at least two
words).

33

44

22
Free list:

This can be
stored as a
static global
variable.

M
em

or
y

M
an

ag
em

en
t:

A
llo

ca
tio

n

In use
Free

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/9

Free-list

♦ Note that we need to know the size of a block
when it is deallocated. This means that even
allocated blocks need to have a size field in them.

♦ Thus the space overhead will be at least one word
per allocated data object. (It might also be
advantageous to keep the link.)

♦ The cost (time) of allocation/deallocation is
proportional to the search through the free-list.

M
em

or
y

M
an

ag
em

en
t:

A
llo

ca
tio

n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/10

Free-list

♦There are many different ways to
implement the details of the free-list
algorithm:
♦Search method: first-fit, best-fit, next-fit.
♦Links: single, double.
♦Layout: one list, one list per block size, tree,

buddy.

M
em

or
y

M
an

ag
em

en
t:

A
llo

ca
tio

n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/11

Deallocation

♦Deallocation can either be explicit or
implicit.

♦Explicit deallocation is used in e.g., Pascal
(new/dispose), C (malloc/free), and C++
(new/delete).

♦Implicit deallocation is used in e.g., Lisp,
Prolog, Erlang, ML, and Java.

M
em

or
y

M
an

ag
em

en
t:

D
ea

llo
ca

tio
n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/12

Explicit Deallocation

♦Explicit deallocation has a number of
problems:
♦ If done too soon it leads to dangling pointers.
♦ If done too late (or not at all) it leads to space

leaks.
♦ In some cases it is almost impossible to do it at

the right time. Consider a library routine to
append two mutable lists:
c = append(a,b);

M
em

or
y

M
an

ag
em

en
t:

D
ea

llo
ca

tio
n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/13

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
printList(b);

22

33

44

55

66

NILNIL

Explicit Deallocation

11

M
em

or
y

M
an

ag
em

en
t:

D
ea

llo
ca

tio
n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/14

Explicit Deallocation

♦ The programmer
now has to ensure
that a, b, and c are
all deallocated at the
same time. A mistake
would lead to
dangling pointers.

♦ If b is in use long
after a, and c, then
we will keep a live
too long. A space
leak.

list a = new List(1,2,3);
list b = new List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
printList(b);
free(c);M

em
or

y
M

an
ag

em
en

t:
D

ea
llo

ca
tio

n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/15

Implicit Deallocation

♦ With implicit deallocation the programmer does not
have to worry about when to deallocate memory.

♦ The runtime system will dynamically decide when
it is safe to do this.

♦ In some cases, and systems, the compiler can also
add static dealloctions to the program.

♦ The most commonly used automatic deallocation
method is called garbage collection (GC).

♦ There are other methods such as region based
allocation and deallocation.

M
em

or
y

M
an

ag
em

en
t:

D
ea

llo
ca

tio
n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/16

Garbage Collection (GC)

♦ Garbage collection is a common name for a set of
techniques to deallocate heap memory that is
unreachable by the program.

♦ There are several different base algorithms:
reference counting, mark & sweep, copying.

♦ We can also distinguish between how the GC
interferes or interacts with the program:
disruptive, incremental, real-time, concurrent.

G
ar

ba
ge

 C
ol

le
ct

io
n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/17

The Reachability Graph

♦ The data reachable by the program form a
directed graph, where the edges are pointers.

♦ The roots of this graph can be in:
1. global variables,
2. registers,
3. local variables & formal parameters on the stack.

♦ Objects are reachable iff there is a path of edges
that leads to them from some root. Hence, the
compiler must tell the GC where the roots are.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 T
he

 re
ac

ha
bi

lit
y

gr
ap

h

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/18

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

The Reachability Graph

22

33

44

55

66

NILNIL

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 T
he

 re
ac

ha
bi

lit
y

gr
ap

h

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/19

roots: b

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

The Reachability Graph

22

33

44

55

66

NILNIL

11

The goal with the GC is to
deallocate these:

G
ar

ba
ge

 C
ol

le
ct

io
n:

 T
he

 re
ac

ha
bi

lit
y

gr
ap

h

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/20

Reference Counting

♦ Idea: Keep track of how many references there are
to each object.

♦ If there are 0 references deallocate the object.
♦ The compiler must add code to maintain the reference

count (refcount).
♦ Set the count to 1 when created.
♦ For an assignment x = y:

♦ if (x != null) x.refcount—;
♦ if (y!=null) y.refcount++;

♦ When a stack frame is deallocated decrease the refcount of each object
pointed to from the frame.

♦ When refcount reaches 0 deallocate the object and decrease refcount of
each child.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/21

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

44

55

66

NILNIL

22

11

11

11

22

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/22

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

44

55

66

NILNIL

11

11

11

11

22

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/23

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

44

55

66

NILNIL

11

11

11

11

22

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/24

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

44

55

66

NILNIL

00

11

11

11

22

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/25

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

44

55

66

NILNIL

00

11

00

11

22

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/26

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

44

55

66

NILNIL

00

11

00

00

22

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/27

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

44

55

66

NILNIL

00

11

00

00

11

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/28

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

44

55

66

NILNIL

00

11

00

00

11

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/29

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b;

44

55

66

NILNIL

11

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/30

Reference Count

♦ Advantages of reference count:
♦ Rather easy to implement.
♦ Storage reclaimed immediately.

♦ Disadvantages of reference count:
♦ Space overhead: 1 word per object.
♦ Keeping track of the reference counts is very

expensive. (Each simple pointer copy becomes several
instructions.)

♦ There is one more problem…

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/31

list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

11

11

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

NILNIL

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/32

list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

22

11

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/33

list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

33

11

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/34

list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

22

11

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/35

list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

11

11

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/36

Reference Count

♦ Big disadvantage with reference count:
♦ The refcount of cyclic structures never reaches zero!

♦ There are ways to solve this, but they are very
complicated.

♦ Due to this fact reference count is very seldom used
in practice. There is one nice use, as we shall see later…

♦ In a pure language or a language without destructive updates there
are no cyclic structures, making reference counting a viable option.G

ar
ba

ge
 C

ol
le

ct
io

n:
 R

ef
er

en
ce

 c
ou

nt
in

g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/37

Mark & Sweep

♦ A mark & sweep GC is made up of two
phases:

1. First all reachable objects are marked.
2. Then the heap is swept clean of dead objects.

♦ The mark phase is done by a depth first
search through the reachability graph
starting from the roots.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/38

Depth First Mark Algorithm

mark(x) {
if(! marked(x)) {

setMark(x);
for each field f of x

mark(*f)
}

}

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/39

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Mark

22

33

44

55

66

NILNIL

11

mark(b)

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/40

The Sweep

♦ The Sweep phase goes through the whole heap
from start to finish and adds unmarked objects to
the free-list.

p = heapStart;
while (p<heapEnd) {
if(marked(*p)) clearMark(*p);
else free(p);
p += size(*p);

}

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/41

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

22

33

44

55

66

NILNIL

11

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/42

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

22

33

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/43

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

22

33

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/44

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

33

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/45

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

33

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/46

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/47

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/48

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/49

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/50

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/51

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/52

Cost of Mark & Sweep

♦ The mark phase takes time proportional to the amount of
reachable data (RR).

♦ The sweep phase takes time proportional to the size of the
heap (HH).

♦ The work done by the GC is to recover HH-RR words of
memory.

♦ Them amortized cost of GC (overhead/allocated word) is:
c1RR + c2HH

HH-RR
♦ If RR ≈ HH the cost is very high. The cost goes down as the

number of dead words increases.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/53

Mark & Sweep

♦ Where do we store the mark bits?
♦ We will discuss data representation a bit more at the end of the

lecture. With some representations there will always be a tag or a
header word in each heap object where the mark bit can be stored.

♦ They can be stored in a separate bitmap table:
♦ If we have a 32-bit architecture and the smallest heap

object is 2 words. (The three least significant bits == 0)
♦ Then we can have 536,870,911 objects and need

67,108,863 bytes to store these bits.
♦ This might seem to be a lot, but it is only 1.562% of the

total heap.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/54

Tuning Mark & Sweep

♦There is one problem with the mark phase:
♦While doing the depth first search we need to

keep track of other paths to search.
♦ If this is done with recursive calls we will need

one allocation record for each level we descend
in the reachability graph.

♦Solutions: Explicit stack or pointer reversal.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/55

Mark & Sweep

♦Advantages with mark & sweep:
♦Can reclaim cyclic structures.
♦Standard version is easy to implement.
♦Can have relatively low space overhead.

♦Disadvantages:
♦Fragmentation can become a problem.
♦Allocation from a free-list can be costly.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/56

Copying Collector

♦The idea of a copying garbage collector is to
divide the memory space in two parts.

♦Allocation is done linearly in one part
(from-space).

♦When that part is full all reachable objects
are copied to the other part (to-space).

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/57

Before GC

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

22

33

44

55

66

NILNIL

11

from-space to-space

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/58

After GC

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

22

33

44

55

66

NILNIL

11

to-space from-space

44

55

66

NILNIL

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/59

Forwarding Pointers

♦Given a pointer p that point to from-space
make it point to to-space:
♦ If p points to a from-space record that contains

a pointer to to-space, then *p is a forwarding-
pointer that indicates where the copy is. Set
p=*p.

♦ If *p has not been copied, copy *p to location
next, *p=next, p=next, next+=size(*p).

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/60

Cheney’s Copying Collector

♦ Cheney’s algorithm uses breadth-first to traverse
the live data.

♦ The algorithm is non-recursive, requires no extra
space or time consuming tricks (such as pointer
reversal), and it is very simple to implement.

♦ The disadvantage is that breadth-first does not
give as good locality of references as depth-first.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/61

Cheney’s Copying Collector

♦ The algorithm:
1. Forward all roots.
2. Use the area between scan and next as a queue for copied

records whose children has yet not been forwarded.
scan = next = start of to-space
for each root r { r = forward(r); }
while scan < next {
for each field f of *scan
scan->f = forward(scan->f)

scan += size(*scan)
}

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/62

Before GC

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

22

33

44

55

66

NILNIL

11

from-space to-space

scan
next

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/63

Forward Roots

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

22

33

55

66

NILNIL

11

from-space to-space

scan

next

44

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/64

Scanning

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

22

33

66

NILNIL

11

from-space to-space

scan

next

44

55

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/65

Scanning

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

22

33

NILNIL

11

from-space to-space

scan

next

44

55

66

NILNILG
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/66

Scanning

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

22

33

NILNIL

11

from-space to-space

scan

next

44

55

66

NILNILG
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/67

Scanning

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

22

33

NILNIL

11

from-space to-space

44

55

66

NILNILG
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/68

Cost of Copying GC

♦ The GC takes time proportional to the amount of
reachable data (RR).

♦ The work done by the GC is to recover HH/2 /2 - RR words of
memory.

♦ The amortized cost of GC (overhead/allocated word) is:
c1RR

((HH/2) - RR
♦ If HH is much larger than R R then the cost approaches zero.then the cost approaches zero.
♦ The GC is often self-tuning so that HH = 4RR giving a GC

cost of c1 per allocated word.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/69

Copying GC

♦ Advantages of copying GC:
♦ Can handle cyclic structures.
♦ Very easy to implement.
♦ Extremely fast allocation (no free-list) just a check and heap

pointer increment.
♦ Automatic compaction: no fragmentation.
♦ Only visits live data – time only proportional to live data.

♦ Disadvantages of copying GC:
♦ Double the space overhead since two heaps are needed.
♦ Long lived live data might be copied several times.
♦ Copying all the live data might lead to long stop times.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/70

Generational GC

♦ Empirical observation: most objects die young.
The longer an object lives the higher the
probability it will survive the next GC.

♦ The benefit of GC is highest for young objects.
♦ Idea: Keep young objects in a small space which

is GC more often than the whole heap.
♦ With such a generational GC each collection takes

less time and yields proportionally more space.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 G
en

er
at

io
na

l

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/71

Generational GC

♦ In a generational GC we want to collect the
younger generation without having to look at
older generations.

♦ But we have to consider all pointers from older
generations to younger generations as roots.
♦ (In a language without destructive updates this is not a

problem, since there are no such pointers.)
♦ These inter-generational references must be

remembered (e.g., by keeping a remembered set).
The compiler has to ensure that all store
operations in an older generation are checked.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 G
en

er
at

io
na

l

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/72

Cost of Generational GC

♦ It is common for the youngest generation to have less than
10% live data.

♦ With a copying collector HH//RR =10 in this generation.
♦ The amortized cost of a minor collection is:

c1RR
(10 (10 RR) - RR

♦ Performing a major collection can be very expensive.
♦ Maintaining the remembered set also takes time. If a

programs does many updates of old objects with pointers
to new objects a generational GC can be more expensive
than a non-generational GC.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 G
en

er
at

io
na

l

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/73

Incremental GC

♦ An incremental (or concurrent) GC keeps the stop-
times down by interleaving GC with program
execution.
♦ The collector tries to free memory while the program,

called the mutator changes the reachability graph.
♦ An incremental GC only operates at request from

the mutator.
♦ A concurrent GC can operate in between any two

mutator instructions.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 In
cr

em
en

ta
l

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/74

Data Layout

♦ The compiler and the runtime system have to agree on a data layout.
The GC needs to know the size of records, and which fields of a
record contains pointers to other records.

♦ In statically typed or OO languages, each record can start with a
header word that points to a description of the type or class.

♦ In many functional languages the set of data types can not be
extended; for such languages one can use a tagging scheme where
unused bits in a pointer indicate what data type it points to.

♦ Another approach is to not give any information to the collector about
which fields are pointers. The collector must then make a conservative
guess, and treat all words that looks like pointers to the heap as such.
Since it is unsafe to change such pointers a conservative collector has to
be non-moving.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 D
at

a
la

yo
ut

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/75

The Root Set

♦ The set of registers and stack slots that contain
live data can be described by a pointer map (stack
map).

♦ For each pointer that is live after a function call
the pointer map identifies its register or stack slot.

♦ The return address can be used as a key in a hash
map to find the pointer map.

♦ To mark/forward the roots the GC starts at the
top of the stack and scans downwards frame by
frame. (In a generational collector the stack scan
can also be made generational.)

G
ar

ba
ge

 C
ol

le
ct

io
n:

 T
he

 ro
ot

 s
et

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/76

Finalizers

♦ Some languages (notably OO) have finalizers, that is, some code that
should be executed before some data is deallocated.

♦ This is, e.g., useful to make sure that an object frees all resources
(open files, locks, etc) before dying.

♦ With a copying collector the handling of finalizers becomes more
difficult. Such a GC does not normally visit the dead data. So all
finalizers have to be remembered and after GC a check has to be done
to see if any freed data triggers a finalizer.

♦ A mark & sweep collector does not have this problem, but just as with
a copying collector it might take a long time after the last use before
garbage is actually collected.

♦ If one wants to ensure that a finalizer is executed as soon as the object
dies then one has to use reference counting.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 F
in

al
iz

er
s

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/77

Summary

♦Manual allocation is unsafe and should not
be used. (It also comes at a cost,
maintaining a free-list is not for free.)

♦Garbage collection solves the problem of
automatic memory management.

♦In most cases a generational copying
collector will be the most efficient solution.

Lazy Code Motion

This lecture is primarily based on Konstantinos Sagonas set of slides
(Advanced Compiler Techniques, (2AD518)

at Uppsala University, January-February 2004).
Used with kind permission.

(In turn based on Keith Cooper’s slides)

Advanced Compiler Techniques 23.04.04 09:45:19
http://lamp.epfl.ch/teaching/advancedCompiler/2

Lazy Code Motion

The concept
♦ Solve data-flow problems that reveal limits of code motion
♦ Compute INSERT & DELETE sets from solutions
♦ Linear pass over the code to rewrite it (using INSERT & DELETE)

The history
♦ Partial redundancy elimination (Morel & Renvoise, CACM, 1979)
♦ Improvements by Drechsler & Stadel, Joshi & Dhamdhere, Chow,

Knoop, Ruthing & Steffen, Dhamdhere, Sorkin, …
♦ All versions of PRE optimize placement

♦ Guarantee that no path is lengthened
♦ LCM was invented by Knoop et al. in PLDI, 1992
♦ We will look at a variation by Drechsler & Stadel

SIGPLAN Notices,
28(5), May, 1993

La
zy

 C
od

e
M

ot
io

n

Advanced Compiler Techniques 23.04.04 09:45:19
http://lamp.epfl.ch/teaching/advancedCompiler/3

Lazy Code Motion

The intuitions
♦ Compute available expressions
♦ Compute anticipable expressions
♦ These lead to an earliest placement for each expression
♦ Push expressions down the CFG until it changes behavior

Assumptions
♦ Uses a lexical notion of identity (not value identity)
♦ Code is in an Intermediate Representation with unlimited name space
♦ Consistent, disciplined use of names

♦ Identical expressions define the same name
♦ No other expression defines that name }Avoids copies

Result serves as proxy

La
zy

 C
od

e
M

ot
io

n

Advanced Compiler Techniques 23.04.04 09:45:19
http://lamp.epfl.ch/teaching/advancedCompiler/4

Lazy Code Motion

The Name Space
♦ ri+rj→rk, always (hash to find k)
♦ We can refer to ri+rj byrk (bit-vector sets)
♦ Variables must be set by copies

♦ No consistent definition for a variable
♦ Break the rule for this case, but require rsource < rdestination

♦ To achieve this, assign register names to variables first

Without this name space
♦ LCM must insert copies to preserve redundant values
♦ LCM must compute its own map of expressions to unique ids

La
zy

 C
od

e
M

ot
io

n

Advanced Compiler Techniques 23.04.04 09:45:19
http://lamp.epfl.ch/teaching/advancedCompiler/5

Lazy Code Motion: Running
Example

B1:
r1←1
r2←r1
r3←r0+@m
r4←r3
r5←(r1< r2)
if r5 then B2 else B3

B2:
r20←r17*r18
r21←r19+r20
r8←r21
r6←r2+1
r2←r6
r7←(r2>r4)
if r7 then B3 else B2

B3: ...

Variables:
r2,r4,r8

Expressions:
r1,r3,r5,r6,r7,r20,r21

B1

B2

B3

La
zy

 C
od

e
M

ot
io

n

Advanced Compiler Techniques 23.04.04 09:45:19
http://lamp.epfl.ch/teaching/advancedCompiler/6

Lazy Code Motion

Predicates (computed by Local Analysis)
♦ DEEXPR(b) contains expressions defined in b that survive to the

end of b.
e ∈ DEEXPR(b) ⇒ evaluating e at the end of b produces the same
value for e as evaluating it in its original position.

♦ UEEXPR(b) contains expressions defined in b that have upward
exposed arguments (both args).

e ∈ UEEXPR(b) ⇒ evaluating e at the start of b produces the same
value for e as evaluating it in its original position.

♦ KILLEDEXPR(b) contains those expressions whose arguments are
(re)defined in b.

e ∈ KILLEDEXPR(b) ⇒ evaluating e at the start of b does not produce
the same result as evaluating it at its end.

La
zy

 C
od

e
M

ot
io

n

Advanced Compiler Techniques 23.04.04 09:45:19
http://lamp.epfl.ch/teaching/advancedCompiler/7

B1:
r1←1
r2←r1
r3←r0+@m
r4←r3
r5←(r1< r2)
if r5 then B2 else B3

B2:
r20←r17*r18
r21←r19+r20
r8←r21
r6←r2+1
r2←r6
r7←(r2>r4)
if r7 then B3 else B2

B3: ...

Lazy Code Motion: Running
Example

B1 B2 B3
DEEXPR r1, r3, r5 r7, r20, r21
UEEXPR r1, r3 r6, r20
KILLEDEXPR r5, r6, r7 r5, r6, r7, r21

Variables:
r2,r4,r8

Expressions:
r1,r3,r5,r6,r7,r20,r21

La
zy

 C
od

e
M

ot
io

n

Advanced Compiler Techniques 23.04.04 09:45:19
http://lamp.epfl.ch/teaching/advancedCompiler/8

Lazy Code Motion
Availability

Initialize AVAILIN(n) to the set of all names, except at n0
Set AVAILIN(n0) to Ø
Interpreting AVAIL

♦ e ∈ AVAILOUT(b) ⇔ evaluating e at end of b produces the same value
for e. AVAILOUT tells the compiler how far forward e can move the
evaluation of e, ignoring any uses of e.

♦ This differs from the way we talk about AVAIL in global redundancy
elimination.

AVAILIN(n) = ∩m∈ preds(n) AVAILOUT(m), n ≠ n0

AVAILOUT(m) = DEEXPR(m) ∪ (AVAILIN(m) ∩ KILLEDEXPR(m))

La
zy

 C
od

e
M

ot
io

n

Advanced Compiler Techniques 23.04.04 09:45:19
http://lamp.epfl.ch/teaching/advancedCompiler/9

Lazy Code Motion

Initialize ANTOUT(n) to the set of all names, except at exit blocks
Set ANTOUT(n) to Ø, for each exit block n
Interpreting ANTOUT

♦ e ∈ ANTIN(b) ⇔ evaluating e at start of b produces the same value for
e. ANTIN tells the compiler how far backward e can move

♦ This view shows that anticipability is, in some sense, the inverse of
availability (& explains the new interpretation of AVAIL).

ANTOUT(n) = ∩m∈ succs(n) ANTIN(m), n not an exit block

ANTIN(m) = UEEXPR(m) ∪ (ANTOUT(m) ∩ KILLEDEXPR(m))

Anticipability

La
zy

 C
od

e
M

ot
io

n

Advanced Compiler Techniques 23.04.04 09:45:19
http://lamp.epfl.ch/teaching/advancedCompiler/10

Lazy Code Motion

EARLIEST is a predicate
♦ Computed for edges rather than nodes (placement)
♦ e ∈ EARLIEST(i,j) if

♦ It can move to head of j,
♦ It is not available at the end of i, and

♦ either it cannot move to the head of i (KILLEDEXPR(i))

♦ or another edge leaving i prevents its placement in i (ANTOUT(i))

EARLIEST(i,j) = ANTIN(j) ∩ AVAILOUT(i) ∩ (KILLEDEXPR(i) ∪ ANTOUT(i))

EARLIEST(n0,j) = ANTIN(j) ∩ AVAILOUT(n0)

Earliest placement

La
zy

 C
od

e
M

ot
io

n

Advanced Compiler Techniques 23.04.04 09:45:19
http://lamp.epfl.ch/teaching/advancedCompiler/11

Lazy Code Motion

Initialize LATERIN(n0) to Ø
x ∈ LATERIN(k) ⇔ every path that reaches k has x ∈ EARLIEST(m) for

some block m, and the path from m to k is x-clear & does not
evaluate x.
⇒ the compiler can move x through k without losing any benefit.

x ∈ LATER(i,j) ⇔ <i,j> is its earliest placement, or it can be moved
forward from i (LATER(i)) and placement at entry to i does not
anticipate a use in i (moving it across the edge exposes that use).

LATERIN(j) = ∩ i ∈ preds(j) LATER(i,j), j ≠ n0

LATER(i,j) = EARLIEST(i,j) ∪ (LATERIN(i) ∩ UEEXPR(i))

Later (than earliest) placement

La
zy

 C
od

e
M

ot
io

n

Advanced Compiler Techniques 23.04.04 09:45:19
http://lamp.epfl.ch/teaching/advancedCompiler/12

Lazy Code Motion
Rewriting the code

INSERT & DELETE are predicates
Compiler uses them to guide the rewrite step
♦ x ∈ INSERT(i,j) ⇒ insert x at start of i, end of j, or

new block
♦ x ∈ DELETE(k) ⇒ delete first evaluation of x in k

INSERT(i,j) = LATER(i,j) ∩ LATERIN(j)

DELETE(k) = UEEXPR(k) ∩ LATERIN(k), k ≠ n0

If local redundancy elimination has already been
performed, only one copy of x exists. Otherwise,
remove all upward exposed copies of x.

La
zy

 C
od

e
M

ot
io

n

Advanced Compiler Techniques 23.04.04 09:45:19
http://lamp.epfl.ch/teaching/advancedCompiler/13

Lazy Code Motion

Edge placement
♦ x ∈ INSERT(i,j)

Three cases
♦ |succs(i)| = 1 ⇒ insert x at end of i.
♦ |succs(i)| > 1 but |preds(j)| = 1 ⇒ insert x at start of j.
♦ |succs(i)| > 1 and |preds(j)| > 1 ⇒ create new block in <i,j> for x.

Bi

Bj

|succs(i)| = 1

x

|preds(j)| = 1

Bi

Bj Bk
x

|succs(i) > 1

|preds(j)| > 1

Bi

Bj Bk

Bh

x

La
zy

 C
od

e
M

ot
io

n

Advanced Compiler Techniques 23.04.04 09:45:19
http://lamp.epfl.ch/teaching/advancedCompiler/14

Lazy Code Motion Example
B1:r1←1

r2←r1
r3←r0+@m
r4←r3
r5←(r1<r2)
if r5 then B2 else B3

B2:r20←r17*r18
r21←r19+r20
r8←r21
r6←r2+1
r2←r6
r7←(r2>r4)
if r7 then B3 else B2

B3:...

B1

B2

B3

1,2 1,3 2,2 2,3

EARLIEST r20, r21 { } { } { }

Example is too small to show off LATER

INSERT(1,2) = { r20, r21 }

DELETE(2) = { r20 , r21 }

B1 B2 B3
DEEXPR r1, r3, r5 r7, r20, r21
UEEXPR r1, r3 r6, r20
KILLEDEXPR r5, r6, r7 r5, r6, r7,r21

B1 B2 B3
AVAILIN { } r1, r3 r1, r3
AVAILOUT r1, r3, r5 r1, r3, r7, r20, r21 …
ANTIN r1, r3 r6, r20 { }
ANTOUT { } { } { }

La
zy

 C
od

e
M

ot
io

n

Register Allocation

This lecture is primarily based on Konstantinos Sagonas set of slides
(Advanced Compiler Techniques, (2AD518)

at Uppsala University, January-February 2004).
Used with kind permission.

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/2

Register Allocation
♦What is register allocation?
♦Different types of register allocators.
♦Webs.
♦Interference Graphs.
♦Graph coloring.
♦Spilling.
♦Live-Range Splitting.
♦More optimizations.

O
ve

rv
ie

w

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/3

Storing values between defs and
uses

♦Program computes with values
♦value definitions (where computed)
♦value uses (where read to compute new values)

♦Values must be stored between def and use
First Option:

♦store each value in memory at definition
♦retrieve from memory at each use

Second Option:
♦store each value in register at definition
♦retrieve value from register at each use

W
ha

t i
s r

eg
is

te
r a

llo
ca

tio
n?

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/4

Issues

♦ On a typical RISC architecture:
♦ All computation takes place in registers.
♦ Load instructions and store instructions transfer

values between memory and registers.
♦ Add two numbers; values in memory:

load r1, 4(sp)
load r2, 8(sp)
add r3,r1,r2
store r3, 12(sp)

W
ha

t i
s r

eg
is

te
r a

llo
ca

tio
n?

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/5

Issues

♦ On a typical RISC architecture
♦ All computation takes place in registers
♦ Load instructions and store instructions transfer

values between memory and registers
♦ Add two numbers; values in registers:

add r3,r1,r2

W
ha

t i
s r

eg
is

te
r a

llo
ca

tio
n?

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/6

Issues
♦ Fewer instructions when using registers.

♦ Most instructions are register-to-register.
♦ Additional instructions for memory accesses.

♦ Registers are faster than memory.
♦ Wider gap in faster, newer processors.
♦ Factor of about 4 bandwidth, factor of about 3 latency.
♦ Could be bigger depending on program characteristics.

♦ But only a small number of registers available.
♦ Usually 32 integer and 32 floating-point registers.
♦ Some of those registers have fixed users (r0, ra, sp, fp).

W
ha

t i
s r

eg
is

te
r a

llo
ca

tio
n?

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/7

Register Allocation

♦ Deciding which values to store in a limited
number of registers.

♦ Register allocation has a direct impact on
performance.
♦ Affects almost every statement of the program.
♦ Eliminates expensive memory instructions.
♦ # of instructions goes down due to direct

manipulation of registers (no need for load and store
instructions).

♦ This is probably the optimization with the most
impact!

W
ha

t i
s r

eg
is

te
r a

llo
ca

tio
n?

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/8

What can be put in a register?

♦ Values stored in compiler-generated temps.
♦ Language-level values:

♦ Values stored in local scalar variables.
♦ Big constants.
♦ Values stored in array elements and object fields

♦ Issue: alias analysis

♦ Register set depends on the data-type:
♦ floating-point values in floating point registers.
♦ integer and pointer values in integer registers.

W
ha

t i
s r

eg
is

te
r a

llo
ca

tio
n?

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/9

Allocation vs Assignment?

♦We sometimes distinguishes between
register allocation and register
assignment.

♦Register allocation deals with the problem
to decide which values to store in
registers and which to spill to memory.

♦Register assignment decides which value
goes into which register.

W
ha

t i
s r

eg
is

te
r a

llo
ca

tio
n?

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/10

Different Types of Register
Allocation

♦Local Register allocation.
♦Tree-based approaches:

♦Sethi-Ullman numbering.
♦Basic Block.

♦Global Register allocation.
♦Linear Scan.
♦Graph Coloring.

♦Inter-procedural allocation.

Ty
pe

s
of

 re
gi

st
er

 a
llo

ca
tio

n

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/11

Web-Based Register Allocation

♦ Determine live ranges for each value (web).
♦ Determine overlapping ranges (interference).
♦ Compute the benefit of keeping each web in a

register (spill cost).
♦ Decide which webs get a register (allocation).
♦ Split webs if needed (spilling and splitting).
♦ Assign hard registers to webs (assignment).
♦ Generate code including spills (code gen.).

W
eb

s

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/12

Webs
♦Starting Point: def-use chains (DU chains).

♦Connects definition to all reachable uses.
♦Conditions for putting defs and uses into

same web:
♦Def and all reachable uses must be in same web.
♦All defs that reach same use must be in same web.

♦Use a union-find algorithm.

W
eb

s

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/13

Example
def y

def x
use y

def x
def y

use x
def x

use x

use x
use y

s1

s2

s3

s4

W
eb

s

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/14

Webs

♦ Web is unit of register allocation.
♦ If web allocated to a given register R:

♦ All definitions computed into R.
♦ All uses read from R.

♦ If web allocated to a memory location M:
♦ All definitions computed into M.
♦ All uses read from M.

♦ Issue: instructions compute only from registers.
♦ Reserve some registers to hold memory values.

W
eb

s

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/15

Convex Sets and Live Ranges
♦Concept of convex set.
♦A set S is convex if

♦a, b ∈ S and c is on a path from a to b
implies c ∈ S

♦Concept of live range of a web.
♦Minimal convex set of instructions that includes

all defs and uses in web.
♦ Intuitively, region in which web’s value is live.

In
te

rf
er

en
ce

 G
ra

ph
s

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/16

Interference

♦Two webs interfere if their live ranges
overlap (have a nonempty intersection).

♦If two webs interfere, values must be
stored in different registers or memory
locations.

♦If two webs do not interfere, can store
values in same register or memory
location.

In
te

rf
er

en
ce

 G
ra

ph
s

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/17

Example
def y

use x
def x

use x

s1

s2

s3

s4

Webs s1 and s2 interfere
Webs s2 and s3 interfere

In
te

rf
er

en
ce

 G
ra

ph
s

use x
use y

def x
def y

def x
use y

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/18

Interference Graph

Representation of webs and their interference:
♦Nodes are the webs
♦An edge exists between two nodes if they interfere:

s1 s2

s3 s4

In
te

rf
er

en
ce

 G
ra

ph
s

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/19

Example
def y

use x
def x

use x

s1

s2

s3

s4

Webs s1 and s2 interfere
Webs s2 and s3 interfere

In
te

rf
er

en
ce

 G
ra

ph
s

use x
use y

def x
def y

def x
use y

s1 s2

s3 s4

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/20

Register Allocation Using
Graph Coloring

♦Each web is allocated to a register.
♦Each node gets a register (color).

♦If two webs interfere they cannot use the
same register.
♦ If two nodes have an edge between them, they

cannot have the same color.
s1 s2

s3 s4

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/21

Graph Coloring

♦Assign a color to each node in the graph.
♦Two nodes connected to same edge must

have different colors.
♦Classic problem in graph theory.
♦NP complete.

♦But good heuristics exist for register
allocation.

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/22

Graph Coloring Example

1 Color

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/23

Graph Coloring Example

2 Colors

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/24

Graph Coloring Example

Still 2 Colors

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/25

Graph Coloring Example

3 Colors

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/26

Heuristics for Register Coloring

♦ Coloring a graph with N colors.
♦ If degree < N (degree of a node = # of edges):

♦ Node can always be colored.
♦ After coloring the rest of the nodes, there is at least

one color left to color the current node.
♦ If degree >= N:

♦ Still may be colorable with N colors. (If some
neighbors are colored with the same color.)

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/27

Heuristics for Register Coloring

♦ Remove nodes that have degree < N.
♦ Push the removed nodes onto a stack.

♦ When all the nodes have degree >= N:
♦ Find a node to spill (no color for that node).
♦ Push that node into the stack.

♦ When empty, start to color:
♦ Pop a node from stack back.
♦ Assign it a color that is different from its connected

nodes (if possible).

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/28

Coloring Example

s1 s2

s3 s4

s0

N = 3

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/29

Coloring Example

s1 s2

s3 s4

s0

N = 3

s4

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/30

Coloring Example

s1 s2

s3 s4

s0

N = 3

s4
s2

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/31

Coloring Example

s1 s2

s3 s4

s0

N = 3

s4
s2
s1

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/32

Coloring Example

s1 s2

s3 s4

s0

N = 3

s4
s2
s1
s3G

ra
ph

s
C

ol
or

in
g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/33

Coloring Example

s1 s2

s3 s4

s0

N = 3

s4
s2
s1
s3G

ra
ph

s
C

ol
or

in
g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/34

Coloring Example

s1 s2

s3 s4

s0

N = 3

s4
s2
s1
s3G

ra
ph

s
C

ol
or

in
g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/35

Coloring Example

s1 s2

s3 s4

s0

N = 3

s4
s2
s1

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/36

Coloring Example

s1 s2

s3 s4

s0

N = 3

s4
s2
s1

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/37

Coloring Example

s1 s2

s3 s4

s0

N = 3

s4
s2

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/38

Coloring Example

s1 s2

s3 s4

s0

N = 3

s4
s2

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/39

Coloring Example

s1 s2

s3 s4

s0

N = 3

s4

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/40

Coloring Example

s1 s2

s3 s4

s0

N = 3

s4

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/41

Coloring Example

s1 s2

s3 s4

s0

N = 3

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/42

Coloring Example

s1 s2

s3 s4

s0

N = 3

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/43

Another Coloring Example

s1 s2

s3 s4

s0

N = 3

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/44

Another Coloring Example

s1 s2

s3 s4

s0

N = 3

s4

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/45

Another Coloring Example

s1 s2

s3 s4

s0

N = 3

s4
s1

s1: Possible Spill

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/46

Another Coloring Example

s1 s2

s3 s4

s0

N = 3

s4
s1
s3

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/47

Another Coloring Example

s1 s2

s3 s4

s0

N = 3

s4
s1
s3
s2G

ra
ph

s
C

ol
or

in
g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/48

Another Coloring Example

s1 s2

s3 s4

s0

s4
s1
s3

N = 3

s2G
ra

ph
s

C
ol

or
in

g

s0

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/49

Another Coloring Example

s1 s2

s3 s4

s0

N = 3

s4
s1
s3
s2G

ra
ph

s
C

ol
or

in
g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/50

Another Coloring Example

s1 s2

s3 s4

s0

N = 3

s4
s1
s3

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/51

Another Coloring Example

s1 s2

s3 s4

s0

N = 3

s4
s1
s3

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/52

Another Coloring Example

s1 s2

s3 s4

s0

N = 3

s4
s1

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/53

Another Coloring Example

s1 s2

s3 s4

s0

N = 3

s4
s1

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/54

Another Coloring Example

s1 s2

s3 s4

s0

N = 3

s4

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/55

Another Coloring Example

s1 s2

s3 s4

s0

N = 3

s4

s1: Actual Spill

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/56

Another Coloring Example

s1 s2

s3 s4

s0

N = 3

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/57

Another Coloring Example

s1 s2

s3 s4

s0

N = 3

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/58

When Coloring Heuristics
Fail...

Option 1:
♦Pick a web and allocate value in memory.
♦All defs go to memory, all uses come from

memory.
Option 2:

♦Split the web into multiple webs.

♦In either case, will retry the coloring.

G
ra

ph
s

C
ol

or
in

g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/59

Which web to spill?

♦One with interference degree >= N.
♦One with minimal spill cost (cost of

placing value in memory rather than in
register).

♦What is spill cost?
♦Cost of extra load and store instructions.

Sp
ill

in
g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/60

Ideal and Useful Spill Costs
♦ Ideal spill cost - dynamic cost of extra load and store

instructions. Can’t expect to compute this.
♦ Don’t know which way branches resolve.
♦ Don’t know how many times loops execute.
♦ Actual cost may be different for different executions.

♦ Solution: Use a static approximation.
♦ profiling can give instruction execution frequencies.
♦ or use heuristics based on structure of control flow graph.

Sp
ill

in
g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/61

One Way to Compute Spill
Cost

♦ Goal: give priority to values used in loops.
♦ So assume loops execute 10 (or 8) times.
♦ Spill cost =

♦ sum over all def sites of cost of a store instruction
times 8 to the loop nesting depth power, plus

♦ sum over all use sites of cost of a load instruction
times 8 to the loop nesting depth power.

♦ Choose the web with the lowest spill cost.

Sp
ill

in
g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/62

Spill Cost Example

def x
def y

use y
def y

use x
use y

Spill Cost For x
storeCost+loadCost

Spill Cost For y
9*storeCost+9*loadCost

With 1 Register, Which
Variable Gets Spilled?

Sp
ill

in
g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/63

Splitting Rather Than Spilling

♦Split the web:
♦Split a web into multiple webs so that there

will be less interference in the interference
graph making it N-colorable.

♦Spill the value to memory and load it back at
the points where the web is split.

Li
ve

-r
an

ge
 s

pl
itt

in
g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/64

Live-Range Splitting Example
def z
use z

def x
def y
use x
use x
use y

use z

x y z

x y

z

2 colorable?
NO!

Li
ve

-r
an

ge
 s

pl
itt

in
g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/65

Live-Range Splitting Example
def z
use z

def x
def y
use x
use x
use y

use z

x y z

x y

z2

z1

2 colorable?
YES!

r1
r2

r1

r1

Li
ve

-r
an

ge
 s

pl
itt

in
g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/66

Live-Range Splitting Example
def z
use z
store z

def x
def y
use x
use x
use y

load z
use z

x y z

r1
r2

r1

r1

x y

z2

z1

2 colorable?
YES!

Li
ve

-r
an

ge
 s

pl
itt

in
g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/67

Live-Range Splitting Heuristic

♦ Identify a program point where the graph is
not N-colorable (point where # of webs > N).
♦ Pick a web that is not used for the largest enclosing

block around that point of the program.
♦ Split that web at the corresponding edge.
♦ Redo the interference graph.
♦ Try to re-color the graph.

Li
ve

-r
an

ge
 s

pl
itt

in
g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/68

Cost and Benefit of Splitting
♦ Cost of splitting a node:

♦ Proportional to number of times split edge has to be
crossed dynamically.

♦ Estimate by its loop nesting.
♦ Benefit:

♦ Increase colorability of the nodes the split web interferes
with.

♦ Can be approximate by its degree in the interference
graph.

♦ Greedy heuristic:
♦ Pick the live-range with the highest benefit-to-cost ration

to spill.

Li
ve

-r
an

ge
 s

pl
itt

in
g

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/69

Further Optimizations

♦Register coalescing.
♦Register targeting (pre-coloring).
♦Pre-splitting of webs.
♦Interprocedural register allocation.

O
pt

im
iz

at
io

ns

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/70

Register Coalescing

♦ Find register copy instructions sj = si.

♦ If sj and si do not interfere, combine their webs.
♦ Pros:

♦ Similar to copy propagation.
♦ Reduce the number of instructions.

♦ Cons:
♦ May increase the degree of the combined node.
♦ A colorable graph may become non-colorable.

O
pt

im
iz

at
io

ns

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/71

Register Targeting
(pre-coloring)

♦Some variables need to be in special
registers at a given time:
♦First n arguments to a function.
♦The return value.

♦Pre-color those webs and bind them to
the right register.

♦Will eliminate unnecessary copy
instructions.

O
pt

im
iz

at
io

ns

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/72

Pre-splitting of the webs

♦ Some live ranges have very large “dead”
regions.
♦ Large region where the variable is unused.

♦ Break-up the live ranges:
♦ Need to pay a small cost in spilling.
♦ But the graph will be very easy to color.

♦ Can find strategic locations to break-up:
♦ At a call site (need to spill anyway).
♦ Around a large loop nest (reserve registers for

values used in the loop).

O
pt

im
iz

at
io

ns

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/73

Interprocedural Register
Allocation

♦ Saving registers across procedure boundaries is
expensive.
♦ especially for programs with many small functions.

♦ Calling convention is too general and inefficient.
♦ Customize calling convention per function by

doing interprocedural register allocation.

O
pt

im
iz

at
io

ns

Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/74

Summary

♦ The goal of register allocation is to speed up
the program by keeping values in registers.

♦Usually gives a big impact on performance.
♦ The most commonly used method is some

form of heuristic graph coloring.
♦ There exists many other methods.

Su
m

m
ar

y

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Instruction Scheduling

This lecture is primarily based on Konstantinos Sagonas set of slides
(Advanced Compiler Techniques, (2AD518)

at Uppsala University, January-February 2004).
Used with kind permission.

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Outline
♦ Modern architectures.
♦ Delay slots.
♦ Introduction to instruction scheduling.
♦ List scheduling.
♦ Resource constraints.
♦ Interaction with register allocation.
♦ Scheduling across basic blocks.
♦ Trace scheduling.
♦ Scheduling for loops.
♦ Loop unrolling.
♦ Software pipelining.

O
ve

rv
ie

w

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Simple Machine Model

♦Instructions are executed in sequence.
♦Fetch, decode, execute, store results.
♦One instruction at a time.

♦For branch instructions, start fetching from
a different location if needed.
♦Check branch condition.
♦Next instruction may come from a new location

given by the branch instruction.

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 M

ac
hi

ne
 M

od
el

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Simple Execution Model
5 Stage pipe-line:

Fetch: get the next instruction.
Decode: figure out what that instruction is.
Execute: perform ALU operation.

address calculation in a memory op
Memory: do the memory access in a mem. op.
Write Back: write the results back.

fetch decode execute memory write back

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 M

ac
hi

ne
 M

od
el

Cycle: 1 2 3 4 5

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Execution Models

IF DE EXE MEM WB

IF DE EXE MEM WB

Inst 1

Inst 2

time (cycles)
Model 1

IF DE EXE MEM WB

IF DE EXE MEM WB

IF DE EXE MEM WB

IF DE EXE MEM WB

IF DE EXE MEM WB

Inst 1

Inst 2

Inst 3

Inst 4

Inst 5

Model 2

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 M

ac
hi

ne
 M

od
el

One instruction finish every 5 cycles.

One instruction finish every cycle.

Cycle: 1 2 3 4 5 6 7 8 9 10

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Handling Branch Instructions
Problem: We do not know the location of the

next instruction until later.
♦after DE in jump instructions
♦after EXE in conditional branch instructions

Branch

???

???

Inst

What to do with the middle 2 instructions?

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 D

el
ay

 s
lo

ts

IF DE EXE MEM WB

IF DE EXE MEM WB

IF DE EXE MEM WB

IF DE EXE MEM WB

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Handling Branch Instructions
What to do with the middle 2 instructions?
1. Stall the pipeline in case of a branch until we

know the address of the next instruction:
♦ wasted cycles

Branch

Next inst

IF DE EXE MEM WB

IF
Empty

DE
Empty

EXE
Empty

MEM
Empty

WB
Empty

IF
Empty

DE
Empty

EXE
Empty

MEM
Empty

WB
Empty

IF DE EXE MEM WB

Cycle: 1 2 3 4 5 6 7 8

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 D

el
ay

 s
lo

ts
 -

Br
an

ch
es

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Handling Branch Instructions
What to do with the middle 2 instructions?
2. Delay the action of the branch

♦ Make branch affect only after two instructions
♦ Following two instructions after the branch get

executed regardless of the branch

Branch

Next seq inst

Next seq inst

Branch target inst

IF DE EXE MEM WB

IF DE EXE MEM WB

IF DE EXE MEM WB

IF DE EXE MEM WB

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 D

el
ay

 s
lo

ts
 -

Br
an

ch
es

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Branch Delay Slot(s)

MIPS has a branch delay slot
♦ The instruction after a conditional branch gets executed

even if the code branches to target
♦ Fetching from the branch target takes place only after

that

ble r3, foo

Branch delay slot

What instruction to put in the branch delay
slot?

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 D

el
ay

 s
lo

ts
 -

Br
an

ch
es

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Filling the Branch Delay Slot

Simple Solution: Put a no-op.

Wasted instruction, just like a stall.

nop

ble r3, lbl

Branch delay slotIn
st

ru
ct

io
n

Sc
he

du
lin

g:
 D

el
ay

 s
lo

ts
 -

Br
an

ch
es

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Filling the Branch Delay Slot

♦Moved instruction executes iff branch executes.
♦Get the instruction from the same basic block as the

branch.
♦Don’t move a branch instruction!

♦Instruction need to be moved over the branch.
♦Branch does not depend on the result of the inst.

prev_instr

prev_instr

Move an instruction from above the branch.

ble r3, lbl

Branch delay slot

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 D

el
ay

 s
lo

ts
 -

Br
an

ch
es

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

ble r3, lbl
Branch delay slot

lbl:

dom_instr

dom_instr

Filling the Branch Delay Slot

Move an instruction dominated by the
branch instruction.

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 D

el
ay

 s
lo

ts
 -

Br
an

ch
es

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

ble r3, lbl
instr Branch delay slot

lbl:
instr

Filling the Branch Delay Slot
Move an instruction from the branch target.

♦ Instruction dominated by target.
♦ No other ways to reach target (if so, take care of them).
♦ If conditional branch, instruction should not have a lasting

effect if the branch is not taken.

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 D

el
ay

 s
lo

ts
 -

Br
an

ch
es

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Load Delay Slots

Problem: Results of the loads are not
available until end of MEM stage

If the value of the load is used…what to do??

IF DE EXE MEM WB

IF DE EXE MEM WB

Load

Use of load

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 D

el
ay

 s
lo

ts
 -

Lo
ad

s

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Load Delay Slots
If the value of the load is used…what to do?
Always stall one cycle.
♦ Stall one cycle if next instruction uses the value.

♦ Need hardware to do this.
♦ Have a delay slot for load.

♦ The new value is only available after two instructions.
♦ If next inst. uses the register, it will get the old value.

IF DE EXE MEM WB

IF DE EXE MEM WB

IF DE EXE MEM WB

Load

???

Use of load

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 D

el
ay

 s
lo

ts
 -

Lo
ad

s

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

r2 = *(r1 + 4)
r3 = *(r1 + 8)
r4 = r2 + r3
r5 = r2 - 1
goto L1

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 D

el
ay

 s
lo

ts
 –

Ex
am

pl
e

of
 fi

lli
ng

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

r2 = *(r1 + 4)
r3 = *(r1 + 8)
noop
r4 = r2 + r3
r5 = r2 - 1
goto L1
noop

Assume 1 cycle delay on branches
and 1 cycle latency for loads

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 D

el
ay

 s
lo

ts
 –

Ex
am

pl
e

of
 fi

lli
ng

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

r2 = *(r1 + 4)
r3 = *(r1 + 8)
noop
r4 = r2 + r3
r5 = r2 - 1
goto L1
noop

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 D

el
ay

 s
lo

ts
 –

Ex
am

pl
e

of
 fi

lli
ng

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

r2 = *(r1 + 4)
r3 = *(r1 + 8)
r5 = r2 - 1
r4 = r2 + r3

goto L1
noop

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 D

el
ay

 s
lo

ts
 –

Ex
am

pl
e

of
 fi

lli
ng

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

r2 = *(r1 + 4)
r3 = *(r1 + 8)
r5 = r2 - 1

goto L1
r4 = r2 + r3

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 D

el
ay

 s
lo

ts
 –

Ex
am

pl
e

of
 fi

lli
ng

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

r2 = *(r1 + 4)
r3 = *(r1 + 8)
r5 = r2 - 1
goto L1
r4 = r2 + r3

Final code after delay slot filling

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 D

el
ay

 s
lo

ts
 –

Ex
am

pl
e

of
 fi

lli
ng

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

From a Simple Machine Model
to a Real Machine Model

♦ Many pipeline stages.
♦ MIPS R4000 has 8 stages.

♦ Different instructions take different amount of
time to execute.
♦ mult 10 cycles
♦ div 69 cycles
♦ ddiv 133 cycles

♦ Hardware to stall the pipeline if an instruction
uses a result that is not ready.

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 In

tr
od

uc
tio

n

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Real Machine Model cont.

♦Most modern processors have multiple
execution units (superscalar).
♦ If the instruction sequence is correct, multiple

operations will take place in the same cycles.
♦Even more important to have the right

instruction sequence.In
st

ru
ct

io
n

Sc
he

du
lin

g:
 In

tr
od

uc
tio

n

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Instruction Scheduling

Goal: Reorder instructions so that pipeline
stalls are minimized.

Constraints on Instruction Scheduling:
♦Data dependencies.
♦Control dependencies .
♦Resource constraints.

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 In

tr
od

uc
tio

n

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Data Dependencies

♦ If two instructions access the same variable, they
can be dependent.

♦ Kinds of dependencies:
♦ True: write → read. (Read After Write, RAW)

♦ Anti: read → write. (Write After Read, WAR)

♦ Anti (Output): write → write. (Write After Write, WAW)

♦ What to do if two instructions are dependent?
♦ The order of execution cannot be reversed.
♦ Reduce the possibilities for scheduling.

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 D

at
a

D
ep

en
de

nc
ie

s

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Computing Data Dependencies

♦ For basic blocks, compute dependencies by
walking through the instructions.

♦ Identifying register dependencies is simple.
♦ is it the same register?

♦ For memory accesses.
♦ simple: base + offset1 ?= base + offset2
♦ data dependence analysis: a[2i] ?= a[2i+1]
♦ interprocedural analysis: global ?= parameter
♦ pointer alias analysis: p1 ?= p

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 D

at
a

D
ep

en
de

nc
ie

s

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

♦ Using a dependence DAG, one per basic block.
♦ Nodes are instructions, edges represent dependencies.

Representing Dependencies

3

1 2

4

2 2 2

1: r2 = *(r1 + 4)
2: r3 = *(r1 + 8)
3: r4 = r2 + r3
4: r5 = r2 - 1

Edge is labeled with latency:
v(i → j) = delay required between initiation times of

i and j minus the execution time required by i.

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 D

at
a

D
ep

en
de

nc
ie

s

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

1: r2 = *(r1 + 4)
2: r3 = *(r2 + 4)
3: r4 = r2 + r3
4: r5 = r2 - 1

3

1 2

4

2 2
2

2

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 D

at
a

D
ep

en
de

nc
ie

s

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Another Example

1: r2 = *(r1 + 4)
2: *(r1 + 4) = r3
3: r3 = r2 + r3
4: r5 = r2 - 1

3

1 2

4

2 2
1

1

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 D

at
a

D
ep

en
de

nc
ie

s

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Control Dependencies and
Resource Constraints

♦For now, let’s only worry about basic
blocks.

♦For now, let’s look at simple pipelines.

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 C

on
tr

ol
 D

ep
en

de
nc

ie
s

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: MULC r6,r6,100
5: ST r7,4(r6)
6: DIVC r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

1 2 3 4 st st 5 6 st st st 7 8 9

14 cycles!

Results available in
1 cycle
1 cycle
1 cycle
3 cycles

4 cycles
1 cycle
3 cycles

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 C

on
tr

ol
 D

ep
en

de
nc

ie
s

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

List Scheduling Algorithm
♦Idea:

♦Do a topological sort of the dependence DAG.
♦Consider when an instruction can be scheduled

without causing a stall.
♦Schedule the instruction if it causes no stall and all

its predecessors are already scheduled.
♦Optimal list scheduling is NP-complete.

♦Use heuristics when necessary.

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

List Scheduling Algorithm
♦Create a dependence DAG of a basic block.
♦Topological Sort.

READY = nodes with no predecessors.
Loop until READY is empty.

Schedule each node in READY when no stalling
READY += nodes whose predecessors have all been
scheduled.In

st
ru

ct
io

n
Sc

he
du

lin
g:

 L
is

t s
ch

ed
ul

in
g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Heuristics for selection

Heuristics for selecting from the READY list:
1. pick the node with the longest path to a leaf

in the dependence graph.
2. pick a node with the most immediate

successors.
3. pick a node that can go to a less busy pipeline

(in a superscalar implementation).In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Heuristics for selection

Pick the node with the longest path to a leaf
in the dependence graph

Algorithm (for node x)
♦ If x has no successors dx = 0
♦dx = MAX(dy + cxy) for all successors y of x.

Use reverse breadth-first visiting order

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Heuristics for selection

Pick a node with the most immediate
successors.

Algorithm (for node x):
♦ fx = number of successors of x

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example
Results available in

1: LA r1,array 1 cycle
2: LD r2,4(r1) 1 cycle
3: AND r3,r3,0x00FF 1 cycle
4: MULC r6,r6,100 3 cycles
5: ST r7,4(r6)
6: DIVC r5,r5,100 4 cycles
7: ADD r4,r2,r5 1 cycle
8: MUL r5,r2,r4 3 cycles
9: ST r4,0(r1)

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: MULC r6,r6,100
5: ST r7,4(r6)
6: DIVC r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

1

6

8

2

7

9

1

1

3

4

1

4

5

3
3

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example
1

6

8

2

7

9

1

1

3

4

1

4

5

3
3

d=0 d=0

d=0

d=0 d=3

d=3

d=7d=4

d=5
f=1f=0

f=0f=1f=1

f=1

f=2

f=0 f=0

READY = { }

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

READY = { }
1, 3, 4, 6
6, 1, 4, 3

1

6

8

2

7

9

1

1

3

4

1

4

5

3
3

d=0 d=0

d=0

d=0 d=3

d=3

d=7d=4

d=5
f=1f=0

f=0f=1f=1

f=1

f=2

f=0 f=0

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

READY = { 6, 1, 4, 3 }

6

1

6

8

2

7

9

1

1

3

4

1

4

5

3
3

d=0 d=0

d=0

d=0 d=3

d=3

d=7d=4

d=5
f=1f=0

f=0f=1f=1

f=1

f=2

f=0 f=07

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

READY = { 1, 4, 3 }

6 1

1

1

6

8

2

7

9

1

1

3 1

4

5

3
3

d=0 d=0

d=0

d=0 d=3

d=3

d=4

d=5
f=1f=0

f=0f=1

f=1

f=2

f=0 f=07

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

READY = { 4, 3 }

6 1

2
1

6

8

2

7

9

1

3 1

4

5

3
3

d=0 d=0

d=0

d=0 d=3

d=3

d=4

f=1f=0

f=0f=1

f=2

f=0 f=07

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

READY = { 2, 4, 3 }

6 1

2

1

6

8

2

7

9

1

3 1

4

5

3
3

d=0 d=0

d=0

d=0 d=3

d=3

d=4

f=1f=0

f=0f=1

f=2

f=0 f=07

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

READY = { 2, 4, 3 }

6 1 2

1

6

8

2

7

9

1

3 1

4

5

3
3

d=0 d=0

d=0

d=0 d=3

d=3

d=4

f=1f=0

f=0f=1

f=2

f=0 f=07

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

READY = { 4, 3 }

6 1 2

7
1

6

8

2

7

9

3 1

4

5

3
3

d=0 d=0

d=0

d=0 d=3

d=3

f=1f=0

f=0

f=2

f=0 f=07

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

7

Example

READY = { 7, 4, 3 }

6 1 2

7

1

6

8

2

7

9

3 1

4

5

3
3

d=0 d=0

d=0

d=0 d=3

d=3

f=1f=0

f=0

f=2

f=0 f=0

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

READY = { 7, 4, 3 }

6 1 2 4

1

6

8

2

7

9

3 1

4

5

3
3

d=0 d=0

d=0

d=0 d=3

d=3

f=1f=0

f=0

f=2

f=0 f=07 5

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

READY = { 7, 3 }

6 1 2 4

5
1

6

8

2

7

9

3 1

4

5

3

d=0 d=0

d=0

d=0

d=3

f=0

f=0

f=2

f=0 f=07 5

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

READY = { 7, 3, 5 }

6 1 2 4

7

1

6

8

2

7

9

3 1

4

5

3

d=0 d=0

d=0

d=0

d=3

f=0

f=0

f=2

f=0 f=07 5

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

READY = { 7, 3, 5 }

6 1 2 4 7

1

6

8

2

7

9

3 1

4

5

3

d=0 d=0

d=0

d=0

d=3

f=0

f=0

f=2

f=0 f=05 8

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

READY = { 3, 5 }

6 1 2 4 7

8, 9
1

6

8

2

7

9

4

5

3

d=0 d=0

d=0

d=0
f=0

f=0

f=0 f=05 8

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

READY = { 3, 5, 8, 9 }

6 1 2 4 7 3

3

1

6

8

2

7

9

4

5

3

d=0 d=0

d=0

d=0
f=0

f=0

f=0 f=05 8

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

READY = { 5, 8, 9 }

6 1 2 4 7 3

5

1

6

8

2

7

9

4

5

3

d=0 d=0

d=0
f=0

f=0 f=05 8

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

READY = { 5, 8, 9 }

6 1 2 4 7 3 5

1

6

8

2

7

9

4

5

3

d=0 d=0

d=0
f=0

f=0 f=08

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

READY = { 8, 9 }

6 1 2 4 7 3 5

8

1

6

8

2

7

9

4

5

3

d=0 d=0
f=0 f=08

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

READY = { 8, 9 }

6 1 2 4 7 3 5 8

1

6

8

2

7

9

4

5

3

d=0 d=0
f=0 f=0

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

READY = { 9 }

6 1 2 4 7 3 5 8

9

1

6

8

2

7

9

4

5

3

d=0
f=0

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

READY = { 9 }

6 1 2 4 7 3 5 8 9

1

6

8

2

7

9

4

5

3

d=0
f=0

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

READY = { }

6 1 2 4 7 3 5 8 9

1

6

8

2

7

9

4

5

3

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example
Results available in

1: LA r1,array 1 cycle
2: LD r2,4(r1) 1 cycle
3: AND r3,r3,0x00FF 1 cycle
4: MULC r6,r6,100 3 cycles
5: ST r7,4(r6)
6: DIVC r5,r5,100 4 cycles
7: ADD r4,r2,r5 1 cycle
8: MUL r5,r2,r4 3 cycles
9: ST r4,0(r1)

9 cycles
6 1 2 4 7 3 5 8 9

1 2 3 4 st st 5 6 st st st 7 8 9
14 cycles

vs.

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g
-E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Resource Constraints

♦Modern machines have many resource
constraints.

♦Superscalar architectures:
♦can run few parallel operations.
♦but have constraints.

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 R

es
ou

rc
e

C
on

st
ra

in
ts

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Resource Constraints of a
Superscalar Processor

Example:
♦1 integer operation, e.g.,

ALUop dest, src1, src2# in 1 clock cycle
In parallel with
♦1 memory operation, e.g.,

LD dst, addr # in 2 clock cycles
ST src, addr # in 1 clock cycle

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 R

es
ou

rc
e

C
on

st
ra

in
ts

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

List Scheduling Algorithm with
Resource Constraints

♦Represent the superscalar architecture as
multiple pipelines.
♦Each pipeline represents some resource.

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 R

es
ou

rc
e

C
on

st
ra

in
ts

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

List Scheduling Algorithm with
Resource Constraints

♦Represent the superscalar architecture as
multiple pipelines
♦Each pipeline represents some resource

♦Example:
♦One single cycle ALU unit.
♦One two-cycle pipelined memory unit.

ALUop

MEM 1

MEM 2

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 R

es
ou

rc
e

C
on

st
ra

in
ts

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

List Scheduling Algorithm with
Resource Constraints

♦Create a dependence DAG of a basic block.
♦Topological Sort

READY = nodes with no predecessors
Loop until READY is empty

Let n ∈ READY be the node with the highest
priority
Schedule n in the earliest slot

that satisfies precedence + resource constraints
Update READY

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 R

es
ou

rc
e

C
on

st
ra

in
ts

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

1

6

8

2

7

9

1

2

1

1

1

4

5

2
3

Example
(Slightly different from previous example.)

1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

ALUop

MEM 1

MEM 2

READY = { 1, 6, 4, 3 } d=0 d=0

d=0

d=0 d=2

d=1

d=2d=3

d=4
f=1f=0

f=0f=1f=1

f=1

f=2

f=0 f=01

1In
st

ru
ct

io
n

Sc
he

du
lin

g:
 S

up
er

sc
al

ar
 E

xa
m

pl
e

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

ALUop

MEM 1

MEM 2

2

1

READY = { 6, 4, 3 }

1

6

8

2

7

9

1

2

1

1

1

4

5

2
3

d=0 d=0

d=0

d=0 d=2

d=1

d=2d=3

f=1f=0

f=0f=1f=1

f=2

f=0 f=0

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 R

es
ou

rc
e

C
on

st
ra

in
ts

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

ALUop

MEM 1

MEM 2

READY = { 2, 6, 4, 3 }

1

2

2
2

1

6

8

2

7

9

1

2

1

1

1

4

5

2
3

d=0 d=0

d=0

d=0 d=2

d=1

d=2d=3

f=1f=0

f=0f=1f=1

f=2

f=0 f=0

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 R

es
ou

rc
e

C
on

st
ra

in
ts

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

1 6 ALUop

MEM 1

2 MEM 2

READY = { 6, 4, 3 }

2

6

1

6

8

2

7

9

1

2

1

1

1

4

5

2
3

d=0 d=0

d=0

d=0 d=2

d=1

d=2

f=1f=0

f=0f=1

f=2

f=0 f=0

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 R

es
ou

rc
e

C
on

st
ra

in
ts

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

1 6 ALUop

MEM 1

2 MEM 2

READY = { 4, 3 } 7

2

1

6

8

2

7

9

1

2

1

1

1

4

5

2
3

d=0 d=0

d=0

d=0 d=2

d=1

f=1f=0

f=0

f=2

f=0 f=0

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 R

es
ou

rc
e

C
on

st
ra

in
ts

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

1 6 ALUop

MEM 1 4
4 2 MEM 2

READY = { 4, 7, 3 }

2

4

1

6

8

2

7

9

1

2

1

1

1

4

5

2
3

d=0 d=0

d=0

d=0 d=2

d=1

f=1f=0

f=0

f=2

f=0 f=0

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 R

es
ou

rc
e

C
on

st
ra

in
ts

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

1 6 ALUop

4MEM 1

4 2 MEM 2

READY = { 7, 3 } 5

2

1

6

8

2

7

9

1

2

1

1

1

4

5

2
3

d=0 d=0

d=0

d=0

d=1

f=0

f=0

f=2

f=0 f=0

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 R

es
ou

rc
e

C
on

st
ra

in
ts

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

1 6 7ALUop

4MEM 1

4 2 MEM 2

READY = { 7, 3, 5 }

2

7

1

6

8

2

7

9

1

2

1

1

1

4

5

2
3

d=0 d=0

d=0

d=0

d=1

f=0

f=0

f=2

f=0 f=0

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 R

es
ou

rc
e

C
on

st
ra

in
ts

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

1 6 ALUop

4MEM 1

4 2 MEM 2

READY = { 3, 5 } 8, 9

2
7

1

6

8

2

7

9

1

2

1

1

1

4

5

2
3

d=0 d=0

d=0

d=0
f=0

f=0

f=0 f=0

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 R

es
ou

rc
e

C
on

st
ra

in
ts

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

7

Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

1 6 ALUop

4MEM 1

4 2 MEM 2

READY = { 3, 5, 8, 9 }

2

3

3

1

6

8

2

7

9

1

2

1

1

1

4

5

2
3

d=0 d=0

d=0

d=0
f=0

f=0

f=0 f=0

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 R

es
ou

rc
e

C
on

st
ra

in
ts

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

1 6 3 7ALUop

4MEM 1

4 2 MEM 2

READY = { 5, 8, 9 }

2

5

5

1

6

8

2

7

9

1

2

1

1

1

4

5

2
3

d=0 d=0

d=0
f=0

f=0 f=0

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 R

es
ou

rc
e

C
on

st
ra

in
ts

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

1 6 3 7ALUop

4 5 MEM 1

4 2 MEM 2

READY = { 8, 9 }

2
8

8

1

6

8

2

7

9

1

2

1

1

1

4

5

2
3

d=0 d=0
f=0 f=0

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 R

es
ou

rc
e

C
on

st
ra

in
ts

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

1 6 3 7 8 ALUop

4 5 MEM 1

4 2 MEM 2

READY = { 9 }

2 9

9

1

6

8

2

7

9

1

2

1

1

1

4

5

2
3

d=0
f=0

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 R

es
ou

rc
e

C
on

st
ra

in
ts

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

1 6 3 7 8 ALUop

4 5 9 MEM 1

4 2 MEM 2

READY = { }

2

1

6

8

2

7

9

1

2

1

1

1

4

5

2
3

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 R

es
ou

rc
e

C
on

st
ra

in
ts

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Register Allocation
and Instruction Scheduling

♦If register allocation is performed before
instruction scheduling:
♦ the choices for scheduling are restricted.

In
st

ru
ct

io
n

Sc
he

du
lin

g
&

 R
eg

is
te

r A
llo

ca
tio

n

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

1: LD r2,0(r1)
2: ADD r3,r3,r2
3: LD r2,4(r5)
4: ADD r6,r6,r2

1

4

2

3

3

1

3

1

2 4ALUop

1 3MEM 1

1 3MEM 2

In
st

ru
ct

io
n

Sc
he

du
lin

g
&

 R
eg

is
te

r A
llo

ca
tio

n

1

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

1: LD r2,0(r1)
2: ADD r3,r3,r2
3: LD r2,4(r5)
4: ADD r6,r6,r2

False dependencies
(Anti-dependencies)

How about using a different register?

1

4

2

3

3

1

3

1 1

In
st

ru
ct

io
n

Sc
he

du
lin

g
&

 R
eg

is
te

r A
llo

ca
tio

n

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

1: LD r2,0(r1)
2: ADD r3,r3,r2
3: LD r4,4(r5)
4: ADD r6,r6,r4

1

4

2

3

3

3

2 4ALUop

1 3MEM 1

1 3MEM 2

1

4

2

3

3

3

In
st

ru
ct

io
n

Sc
he

du
lin

g
&

 R
eg

is
te

r A
llo

ca
tio

n

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Register Allocation
and Instruction Scheduling

♦If register allocation is performed before
instruction scheduling:
♦ the choices for scheduling are restricted.

♦If instruction scheduling is performed
before register allocation:
♦ register allocation may spill registers.
♦will change the carefully done schedule!!!

In
st

ru
ct

io
n

Sc
he

du
lin

g
&

 R
eg

is
te

r A
llo

ca
tio

n

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Scheduling across basic blocks

♦Number of instructions in a basic block is
small.
♦Cannot keep a multiple units with long

pipelines busy by just scheduling within a
basic block.

♦Need to handle control dependencies.
♦Scheduling constraints across basic blocks.
♦Scheduling policy.

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 A

cr
os

s
ba

si
c

bl
oc

ks

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Moving across basic blocks

Downward to adjacent basic block

A

B C

A path to B that does not execute A?

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 A

cr
os

s
ba

si
c

bl
oc

ks

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Moving across basic blocks

Upward to adjacent basic block

A

B C

A path from C that does not reach A?In
st

ru
ct

io
n

Sc
he

du
lin

g:
 A

cr
os

s
ba

si
c

bl
oc

ks

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Control Dependencies

if (. . .)
a = b op c

if (. . .)
d = *(a1)

Constraints in moving instructions across basic blocks

if (c != 0)
a = b / c

Not allowed if e.g.
if(valid_address(a1))

d = *(a1)

Not allowed if e.g.

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 A

cr
os

s
ba

si
c

bl
oc

ks

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Outline
♦ Modern architectures
♦ Delay slots
♦ Introduction to instruction scheduling
♦ List scheduling
♦ Resource constraints
♦ Interaction with register allocation
♦ Scheduling across basic blocks
♦ Trace scheduling
♦ Scheduling for loops
♦ Loop unrolling
♦ Software pipelining

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Trace Scheduling

♦Find the most common trace of basic
blocks.
♦Use profile information.

♦Combine the basic blocks in the trace and
schedule them as one block.

♦Create compensating (clean-up) code if the
execution goes off-trace.

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 T

ra
ce

 S
ch

ed
ul

in
g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Trace Scheduling

D

B C

A

H

F G

E

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 T

ra
ce

 S
ch

ed
ul

in
g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Trace Scheduling

D

B C

A

H

F G

E

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 T

ra
ce

 S
ch

ed
ul

in
g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Trace Scheduling

D

B

A

H

G

E

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 T

ra
ce

 S
ch

ed
ul

in
g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Trace Scheduling

D

B

A

H

G

E

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 T

ra
ce

 S
ch

ed
ul

in
g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Trace Scheduling

D

B

A

H

G

E

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 T

ra
ce

 S
ch

ed
ul

in
g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Large Basic Blocks via
Code Duplication

♦ Creating large extended basic blocks by
duplication.

♦ Schedule the larger blocks.

D

B C

A

E

B C

A

D

E

D

E

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 C

od
e

D
up

lic
at

io
n

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Scheduling for Loops

♦Loop bodies are typically small.
♦But a lot of time is spend in loops due to

their iterative nature.
♦Need better ways to schedule loops.

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

oo
p

Sc
he

du
lin

g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Loop Example

Machine:
♦One load/store unit

♦load 2 cycles
♦store 2 cycles

♦Two arithmetic units
♦add 2 cycles
♦branch 2 cycles (no delay slot)
♦multiply 3 cycles

♦Both units are pipelined (initiate one op each
cycle)

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

oo
p

Sc
he

du
lin

g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Loop Example

Source Code
for i = 1 to N

A[i] = A[i] * b

Assembly Code
loop:

ld r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ble r2, r5, loop

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

oo
p

Sc
he

du
lin

g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Loop Example

Assembly Code
loop:

ld r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ble r2, r5, loop

Schedule (9 cycles per iteration)
 st

 st
mul ble

mul ble
mul

add
add

Mem

ALU1

ALU2

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

oo
p

Sc
he

du
lin

g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Loop Unrolling

Oldest compiler trick of the trade:
Unroll the loop body a few times

Pros:
♦ Creates a much larger basic block for the body.
♦ Eliminates few loop bounds checks.

Cons:
♦ Much larger program.
♦ Setup code (# of iterations < unroll factor).
♦ Beginning and end of the schedule can still have

unused slots.

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

oo
p

Sc
he

du
lin

g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Loop Example

Schedule (8 cycles per iteration)
ld st ld st

ld st ld st
mul mul ble

mul mul ble
mul mul

add add
add add

loop:
ld r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ble r2, r5, loop

loop:
ld r6,(r2)
mul r6, r6, r3
st r6,(r2)
add r2, r2, 4
ld r6,(r2)
mul r6, r6, r3
st r6,(r2)
add r2, r2, 4
ble r2, r5, loop

Mem

ALU1

ALU2

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

oo
p

Sc
he

du
lin

g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Loop Unrolling

♦Rename registers.
♦Use different registers in different iterations.

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

oo
p

Sc
he

du
lin

g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Loop Example

loop:
ld r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ld r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ble r2, r5, loop

loop:
ld r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ld r7, (r2)
mul r7, r7, r3
st r7, (r2)
add r2, r2, 4
ble r2, r5, loop

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

oo
p

Sc
he

du
lin

g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Loop Unrolling

♦Rename registers.
♦Use different registers in different iterations.

♦Eliminate unnecessary dependencies.
♦again, use more registers to eliminate true, anti

and output dependencies.
♦eliminate dependent-chains of calculations

when possible.

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

oo
p

Sc
he

du
lin

g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Loop Example

loop:
ld r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ld r7, (r2)
mul r7, r7, r3
st r7, (r2)
add r2, r2, 4
ble r2, r5, loop

loop:
ld r6, (r1)
mul r6, r6, r3
st r6, (r1)
add r2, r1, 4
ld r7, (r2)
mul r7, r7, r3
st r7, (r2)
add r1, r2, 4
ble r1, r5, loop

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

oo
p

Sc
he

du
lin

g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Loop Example

loop:
ld r6, (r1)
mul r6, r6, r3
st r6, (r1)
add r2, r1, 4
ld r7, (r2)
mul r7, r7, r3
st r7, (r2)
add r1, r2, 4
ble r1, r5, loop

loop:
ld r6, (r1)
mul r6, r6, r3
st r6, (r1)
add r2, r1, 4
ld r7, (r2)
mul r7, r7, r3
st r7, (r2)
add r1, r2, 4
ble r1, r5, loop

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

oo
p

Sc
he

du
lin

g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Loop Example

loop:
ld r6, (r1)
mul r6, r6, r3
st r6, (r1)
add r2, r1, 4
ld r7, (r2)
mul r7, r7, r3
st r7, (r2)
add r1, r2, 4
ble r1, r5, loop

loop:
ld r6, (r1)
mul r6, r6, r3
st r6, (r1)
add r2, r1, 4
ld r7, (r2)
mul r7, r7, r3
st r7, (r2)
add r1, r1, 8
ble r1, r5, loop

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

oo
p

Sc
he

du
lin

g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Loop Example
loop:

ld r6, (r1)
mul r6, r6, r3
st r6, (r1)
add r2, r1, 4
ld r7, (r2)
mul r7, r7, r3
st r7, (r2)
add r1, r1, 8
ble r1, r5, loop

Schedule (4.5 cycles per iteration)
ld ld st st

ld ld st st
mul mul ble

mul mul ble
mul mul

add add
add add

Mem

ALU1

ALU2

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 L

oo
p

Sc
he

du
lin

g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Software Pipelining

♦Try to overlap multiple iterations so that
the slots will be filled.

♦Find the steady-state window so that:
♦all the instructions of the loop body is

executed.
♦but from different iterations.

In
st

ru
ct

io
n

Sc
he

du
lin

g:
 S

of
tw

ar
e

Pi
pe

lin
in

g

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Loop Example
Assembly Code

loop:
ld r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ble r2, r5, loop

Schedule
ld6ld5

ld5
mul5

ld4
ld4

mul4
mul4

mul4

ld st
ld st

mul ble
mul ble

mul
add

add

ld1 st1
ld1 st1

mul1 ble1
mul1 ble1

mul1
add1

add1

ld2 st2
ld2 st2

mul2 ble2
mul2 ble2

mul2
add2

add2

ld3 st3
ld3 st3

mul3
mul3

mul3
add3

add3

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Loop Example
ld3 st1
st ld3
mul2 ble

mul2
mul1

add1
add

Assembly Code
loop:
ld r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ble r2, r5, loop

Schedule (2 cycles per iteration)

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Loop Example
4 iterations are overlapped.

♦values of r3 and r5 don’t change

♦4 regs for &A[i] (r2)
♦each addr. incremented by 4*4

♦4 regs to keep value A[i] (r6)

♦Same registers can be reused
after 4 of these blocks
generate code for 4 blocks,
otherwise need to move .

ld3 st1
st ld3
mul2 ble

mul2
mul1

add1
add

loop:
ld r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ble r2, r5, loop

Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Software Pipelining

♦ Optimal use of resources.
♦ Need a lot of registers.

♦ Values in multiple iterations need to be kept.
♦ Issues in dependencies.

♦ Executing a store instruction in an iteration before
branch instruction is executed for a previous iteration
(writing when it should not have).

♦ Loads and stores are issued out-of-order (need to
figure-out dependencies before doing this).

♦ Code generation issues.
♦ Generate pre-amble and post-amble code.
♦ Multiple blocks so no register copy is needed.

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/

Optimization Techniques

Advanced Compiler Techniques
2004

Erik Stenman
EPFL

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/

Optimization Techniques
Summary

♦ The most important aspect of an optimization is
that it is correct.

♦ The subject is confusing:
♦ The notion of optimality.
♦ Huge number of possible optimization.
♦ Many intricate and NP-complete problems.

♦ In this course we have tried to give an overview
of some common optimization techniques.

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/

Optimization Techniques
Summary

♦ Suggested method for compiler
optimization:

1. Look at the generated code – try to find
sources of inefficient code. (Better yet profile.)

2. Look in the literature for solutions to these
inefficiencies. (Most likely someone has
already solved the problem.)

3. Implement the solution.
4. Repeat from 1.

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/

Optimization Techniques
Summary

♦Some techniques are useful for many
different problems.
♦Dataflow analysis.
♦Dominators.
♦Liveness.
♦SSA form.
♦Reverse post order traversal.
♦Graph coloring.

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/

Optimization Techniques
Taxonomy

♦We can divide optimizations into:
♦Machine independent optimizations.

♦Decrease ratio of overhead to real work.
♦Example: dead code elimination.

♦Machine dependent optimizations.
♦Take advantage of specific machine properties.
♦Work around limitations of a specific machine.
♦Example: instruction scheduling.

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/

Optimization Techniques
Taxonomy

♦ We can further divide the optimizations on their
intended effect.
♦ Machine independent optimizations.

1. Eliminating redundant computations.
2. Move code to execute it less.
3. Eliminate dead code.
4. Specialize on context.
5. Enable other optimizations.

♦ Machine dependent optimizations.
1. Manage or hide latency.
2. Take advantage of special hardware features.
3. Manage finite resources.

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/

Taxonomy of Global Compiler
Optimizations

Machine Independent

Redundancy

Redundancy Elimination

Partial Redund. Eliminat.

Consolidation

Code motion

Loop-invariant Code Motion

Consolidation

Global Scheduling

Constant Propagation

Useless code

Dead Code Elimination

Partial D.C.E.

Constant Propagation

Algebraic Simplification

Create opportunities

Re-association

Replication

Inline expansion

Specialization

Replication

Strength Reduction

Constant Propagation

Method Caching

Inline expansion

Heap→stack allocation

Tail Recursion Elimination

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/

Taxonomy of Global Compiler
Optimizations

Machine Dependent

Hide Latency

Scheduling

Prefetching

Code layout

Data Packing

Manage Resources

Register allocation

Scheduling

Data packing

Coloring memory locations

Special features

Instruction selection

Peephole optimization

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/

Optimization Techniques
Summary

♦ The aim of the lectures have been to give you an
insight into and overview of some of the most
important concepts in optimizing compilers.

♦ You might also have discovered that the topic is
complex and often difficult.

♦ The project will probably really show you how
difficult it is.

♦ Hopefully the project will also show you how fun
it can be.

Implementation of
High Level Languages

Advanced Compiler Techniques
2004

Erik Stenman
EPFL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/2

Overview

♦ In this second part of the course we will talk
about how to implement:
♦ Objects and inheritance.
♦ FPLs: higher order functions, laziness.
♦ Concurrency: processes, message passing.
♦ Automatic memory management. (GC)
♦ Virtual Machines. (maybe also interpretation.)
♦ Just in time compilation.

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/3

Implementation of High Level
Languages

♦We will look at some simple ways to
implement concepts in HLL.

♦We will look at some more complex and
more efficient implementations of these
concepts.

♦We will also look at some general
optimization techniques that can be used
with great advantage in HLL.

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/4

Implementation of
Object Oriented Languages

♦In class based OO languages each object
belongs to a class that defines the fields,
methods, and the type of the object.

Im
pl

em
en

ta
tio

n
of

 O
O

class A {

int x=42;

int y=17;

int foo() {

return x;

}

}

A a = new A;

a.foo();

A a:

header:

x: 42

y: 17

foo: return x

VMT Code:fooStack

Heap

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/5

Implementation of
Object Oriented Languages

♦In class based OO languages each object
belongs to a class that defines the fields,
methods, and the type of the object.

Im
pl

em
en

ta
tio

n
of

 O
O

class A {

int x=42;

int y=17;

int foo() {

return x;

}

}

A a:

header:

x: 42

y: 17

foo: return x

VMT Code:fooStack

Heap

Reference to object:
many/object.

A a = new A;

a.foo();

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/6

Implementation of
Object Oriented Languages

♦In class based OO languages each object
belongs to a class that defines the fields,
methods, and the type of the object.

Im
pl

em
en

ta
tio

n
of

 O
O

class A {

int x=42;

int y=17;

int foo() {

return x;

}

}

A a:

header:

x: 42

y: 17

foo: return x

VMT Code:fooStack

Heap

Representation of object:
1/object.

A a = new A;

a.foo();

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/7

Implementation of
Object Oriented Languages

♦In class based OO languages each object
belongs to a class that defines the fields,
methods, and the type of the object.

Im
pl

em
en

ta
tio

n
of

 O
O

class A {

int x=42;

int y=17;

int foo() {

return x;

}

}

A a:

header:

x: 42

y: 17

foo: return x

VMT Code:fooStack

Heap

Virtual Method Table:

1/class.

A a = new A;

a.foo();

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/8

Implementation of
Object Oriented Languages

♦In class based OO languages each object
belongs to a class that defines the fields,
methods, and the type of the object.

Im
pl

em
en

ta
tio

n
of

 O
O

class A {

int x=42;

int y=17;

int foo() {

return x;

}

}

A a:

header:

x: 42

y: 17

foo: return x

VMT Code:fooStack

Heap

Code for functions (foo):

max 1/class.

A a = new A;

a.foo();

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/9

Implementation of
Object Oriented Languages

♦Object Oriented languages support
inheritance.

♦Inheritance complicates the answer to some
questions:
♦Where is the value of a field stored?
♦Where is the code for a certain method?
♦What type will a value have at runtime?

Im
pl

em
en

ta
tio

n
of

 O
O

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/10

Single Inheritance:
Fields

♦With single inheritance we can order the
fields in such a way that all fields of a class
are stored after fields of the superclass.

♦This way we know at compile time the
offset of each field.

Im
pl

em
en

ta
tio

n
of

 O
O

: S
in

gl
e

in
he

ri
ta

nc
e

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/11

Single Inheritance:
Fields

♦Example:
class A { int x = 0; }
class B extends A { int y = 0;

int z = 0; }
class C extends A { int r = 0; }
class D extends A { int s = 0; }

Im
pl

em
en

ta
tio

n
of

 O
O

: S
in

gl
e

in
he

ri
ta

nc
e

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/12

Single Inheritance:
Fields

class A {int x = 0;}
class B extends A {int y = 0;

int z = 0;}
class C extends A {int r = 0;}
class D extends B {int s = 0;}

Im
pl

em
en

ta
tio

n
of

 O
O

: S
in

gl
e

in
he

ri
ta

nc
e

A a:

B b:

C c:

D d:

header:
x: 0

Stack

Heap

header:
x: 0
y: 0
z: 0

header:
x: 0
r: 0

header:
x: 0
y: 0
z: 0
s: 0

Offsets:

(A,B,C,D).x: 1

(B,D).y: 2

(B,D).z: 3

(C).r: 2

(D).s: 4

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/13

Single Inheritance:
Methods

♦ If we only have single inheritance we can handle
methods in much the same way as fields.

♦ We store addresses to methods in the VMT
instead of in the object.

♦ We copy all the addresses of the super classes to
the VMT of the subclasses.

♦ If a method is overridden we use the address of
the new definition instead of the definition in the
superclass.Im

pl
em

en
ta

tio
n

of
 O

O
: S

in
gl

e
in

he
ri

ta
nc

e

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/14

Single Inheritance:
Methods

♦Example:
class A { int f {…}; }
class B extends A { int g {…}; }
class C extends B { int f {…}; }

Im
pl

em
en

ta
tio

n
of

 O
O

: S
in

gl
e

in
he

ri
ta

nc
e

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/15

Single Inheritance:
Methods

Im
pl

em
en

ta
tio

n
of

 O
O

: S
in

gl
e

In
he

ri
ta

nc
e

class A {int f {…}; }
class B extends A {

int g {…}; }
class C extends B {

int f {…}; }
header:

f:

VMT (A)

Code:A_fHeap

A a = new A;
B b = new B;
C c = new C;
b.g();
c.f();

LD r1,SP(4) ; Get c

LD r2,r1(0) ; Get &VMT(C)

LD r3,r2(0) ; Get &C_f

call r3 ; Call C_f

header:

header:

f:
g:

VMT (B)

f:
g:

VMT (C)

Code:B_g

Code:C_f

LD r1,SP(8) ; Get b

LD r2,r1(0) ; Get &VMT(B)

LD r3,r2(4) ; Get &B_g

call r3 ; Call B_g

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/16

Single Inheritance:
Testing Class Membership

♦Many OO languages allow you to test class
membership of an object.

♦In Java there is “o instanceof C”.
♦An object is a member of all its

superclasses.
♦We need to be able to find the superclass of

a class. Let us extend our implementation
with class descriptors.

Im
pl

em
en

ta
tio

n
of

 O
O

: S
in

gl
e

in
he

ri
ta

nc
e

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/17

Single Inheritance:
Class Membership

Im
pl

em
en

ta
tio

n
of

 O
O

: S
in

gl
e

In
he

ri
ta

nc
e

class A {int f {…}; }
class B extends A {

int g {…}; }
class C extends B {

int f {…}; }

header:

super:
f:VMT

Code:A_f

HeapA a = new A;
B b = new B;
C c = new C;
c instance of A; header:

header:

super:
f:
g:

super:
f:
g:

Class C

Code:B_g

Code:C_f

Class A

Class B

VMT

VMT

Now we can do
c instance of A as:

t = c.header
L: if t == A goto True

t = t.super
if t != nil goto L
res = false
goto End

True: res = true
End:

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/18

Single Inheritance:
Testing Class Membership

♦Searching through the class hierarchy is
inefficient.

♦We can trade space for speed.
♦Let each class descriptor have a display of

all superclasses. I.E., a direct link to each
superclass.Im

pl
em

en
ta

tio
n

of
 O

O
: S

in
gl

e
in

he
ri

ta
nc

e

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/19

Single Inheritance:
Class Membership

Im
pl

em
en

ta
tio

n
of

 O
O

: S
in

gl
e

In
he

ri
ta

nc
e

class A {}
class B extends A { }
class C extends B { }

header:

level: 1
s

VMT
HeapA a = new A;

B b = new B;
C c = new C;
c instance of A; header:

header:

level: 2
ss
s

level: 3
sss
ss
s

Class C

Class A

Class B

VMT

VMT

Now we can do
c instance of A as:

t1 = c.header
res = t1[0] >= 1 \\ A_level
if !res goto End
t2 = t1[2] \\ 2<-A_level+1
res = (t2 == A)

End:

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/20

Multiple Inheritance

♦In languages with multiple inheritance, i.e.,
where it is possible to extend several parent
classes with a class, all the operations we
have seen become more difficult.

♦Java’s hybrid approach with interfaces
complicates these issues in the same way as
multiple inheritance.Im

pl
em

en
ta

tio
n

of
 O

O
: M

ul
tip

le
 In

he
ri

ta
nc

e

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/21

Multiple Inheritance:
Graph Coloring

♦ One way to handle the layout of fields would be
to use graph coloring. (This can also be used for
methods.)

♦ All identical fields would have to occupy the
same offset in the object.

♦ For some objects there would be holes in the array
of fields. To reduce the wasted space the fields
can be compacted in the object by storing the
offsets in the class descriptor.

Im
pl

em
en

ta
tio

n
of

 O
O

: M
ul

tip
le

 In
he

ri
ta

nc
e

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/22

Multiple Inheritance:
Graph Coloring

class A {int x = 0;}
class B {int y = 0;

int z = 0;}
class C extends A,B {int r = 0;}

Im
pl

em
en

ta
tio

n
of

 O
O

: M
ul

tip
le

 in
he

ri
ta

nc
e

A a:

B b:

C c:

header:
x: 0

Stack

Heap

header:

y: 0
z: 0

header:
x: 0
y: 0
z: 0
r: 0

Offsets:

(A,C).x: 1

(B,C).y: 2

(B,C).z: 3

(C).r: 4

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/23

Multiple Inheritance:
Graph Coloring

class A {int x = 0;}
class B {int y = 0;

int z = 0;}
class C extends A,B {int r = 0;}
A a = new A;
B b = new B;
B d = new B;
C c = new C;

Im
pl

em
en

ta
tio

n
of

 O
O

: M
ul

tip
le

 in
he

ri
ta

nc
e

A a:

B b:

B d:

C c:

header:
x: 0

Stack

Heap

header:
y: 0
z: 0

header:
x: 0
y: 0
z: 0
r: 0

Offsets:

(A,C).x: header[0]

(B,C).y: header[1]

(B,C).z: header[2]

(C).r: header[3]

x: 1

Class A

y: 1
z: 2

Class B

x: 1
y: 2
z: 3
r: 4

Class C
header:
y: 0
z: 0

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/24

Multiple Inheritance:
Graph Coloring

♦One problem with global graph coloring is
that it is global: you need the whole
program – must be done at link time.

♦If dynamic linking is possible this approach
becomes even harder.

Im
pl

em
en

ta
tio

n
of

 O
O

: M
ul

tip
le

 In
he

ri
ta

nc
e

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/25

Multiple Inheritance:
Hashing

♦ Second approach: Hashing.
♦ Instead of a global compile- or link time solution we can

calculate a hash value for each name at compile time.
♦ At runtime we use the hash value as an offset into a hash

table in the class descriptor.
♦ This hash table contains the offset to fields in the object.

(This also works for method addresses.)
♦ This can be costly if there are many collisions in the hash

table.Im
pl

em
en

ta
tio

n
of

 O
O

: M
ul

tip
le

 In
he

ri
ta

nc
e

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/26

Multiple Inheritance:
Trampolines

♦Third approach: Trampoline functions.
♦We give each object several headers, one

for each extended class.
♦We add trampoline functions that changes

the view of the object from one class to
another in an efficient way.

Im
pl

em
en

ta
tio

n
of

 O
O

: M
ul

tip
le

 In
he

ri
ta

nc
e

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/27

Multiple Inheritance:
Trampolines

class A {
int x = 0;
int f() {…}}

class B {
int y = 0;
inf g() {… y …}}

class C extends A,B {
int z = 0;}

C c1 = new C();
A a = (A) c1;
C c2 = (C) a;
B b = (B) c2;

C c3 = (C) b;

Im
pl

em
en

ta
tio

n
of

 O
O

: M
ul

tip
le

 in
he

ri
ta

nc
e

tramp:
f:

header:
x: 0
header:
y: 0
z: 0

C VMT-A

tramp:
tramp_g:

C VMT-B

return r1

r1 = r1 – 8
return r1

Code: tramp

Code: tramp

Code: f

Code: g
c1 =
a = c1;
c2 = a.tramp(); /* = a */
b = c2+8;
c3 = b.tramp(); /* = b-8 */

r1 = r1 + 8
call g

Code: tramp_g

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/28

Multiple Inheritance:
Trampolines

class A {
int x = 0;
int f() {…}}

class B {
int y = 0;
inf g() {… y …}}

class C extends A,B {
int z = 0;}

C c1 = new C();
A a = (A) c1;
C c2 = (C) a;
B b = (B) c2;

C c3 = (C) b;

Im
pl

em
en

ta
tio

n
of

 O
O

: M
ul

tip
le

 in
he

ri
ta

nc
e

tramp:
f:

header:
x: 0
header:
y: 0
z: 0

C VMT-A

tramp:
tramp_g:

C VMT-B

return r1

r1 = r1 – 8
return r1

Code: tramp

Code: tramp

Code: f

c1 =
a = c1;
c2 = a.tramp(); /* = a */
b = c2+8;
c3 = b.tramp(); /* = b-8 */

Code: g

r1 = r1 + 8
call g

Code: tramp_g

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/29

Multiple Inheritance:
Trampolines

class A {
int x = 0;
int f() {…}}

class B {
int y = 0;
inf g() {… y …}}

class C extends A,B {
int z = 0;}

C c1 = new C();
A a = (A) c1;
C c2 = (C) a;
B b = (B) c2;
C c3 = (C) b;
c1.z; // c1[16]
c1.x; // c1[4]
c1.z; // c1[12]
c1.g(); // t=c[8]; t2=t[8]; call t2;
a.f(); // t=a[0]; t2=t[8]; call t2;
b.g(); // t=b[0]; t2=t[8]; call t2;

Im
pl

em
en

ta
tio

n
of

 O
O

: M
ul

tip
le

 in
he

ri
ta

nc
e

tramp:
f:

header:
x: 0
header:
y: 0
z: 0

C VMT-A

tramp:
tramp_g:

C VMT-B

return r1

r1 = r1 – 8
return r1

Code: tramp

Code: tramp

Code: f

Code: g

r1 = r1 + 8
call g

Code: tramp_g

…
y // r1[4]

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/30

Optimizing OO-Programs

♦ In modern machines a jump to a known address
is much faster than a jump to an address fetched
from a table.

♦ Dynamic dispatch also makes inlining and
interprocedural analysis harder.

♦ Possible solutions: Whole program optimization,
link time optimization, JIT compilation, or
runtime optimizations.

♦ When we have the whole program we can turn
many dynamic properties into static properties.

Im
pl

em
en

ta
tio

n
of

 O
O

: O
pt

im
iz

at
io

ns

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/31

Inline caching

♦Many dynamic calls actually go to the same
class all the time.

♦For each call site remember the actual
target of the last call.

♦Next time jump directly to this location,
and check if we end up in the right place.Im

pl
em

en
ta

tio
n

of
 O

O
: O

pt
im

iz
at

io
ns

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/32

Polymorphic Inline Caching

♦If a call site is polymorphic inline caching
can lead to degraded performance.

♦Solution: Polymorphic inline caching,
remember more than one target address.

Im
pl

em
en

ta
tio

n
of

 O
O

: O
pt

im
iz

at
io

ns

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/33

Polymorphic Inline Caching

♦Polymorphic inline caching can be
implemented with an if then else search
tree:

v.f()

if c.header < C {
if c.header < B A.f() else B.f()

} else {
if c.header < D C.f() else D.f()

}

Im
pl

em
en

ta
tio

n
of

 O
O

: O
pt

im
iz

at
io

ns

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/34

OO: Summary

♦ Implementing OO efficiently means
implementing inheritance efficiently.

♦ There are several possible solution available and
there is still research going on in this area.

♦ One of the most successful techniques for
optimizing OO is to do it at runtime using JIT
compilation – something we will look closer at
later in the course.

Im
pl

em
en

ta
tio

n
of

 O
O

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/35

Implementation of Functional
Programming Languages

♦ There is no common agreement on exactly what a
functional programming language is. But usually
such a language should have at least one of the
following concepts:
♦ No statements – only functions (or expressions).
♦ Higher order functions.
♦ Pureness (no side effects).
♦ Laziness.
♦ Automatic memory management (Garbage collection.)

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/36

Higher Order Functions

♦ In Misc (and in C) you have “second”-order functions.
♦ That is, functions are also values in the language: you can take

their addresses and pass them around and apply them.
def apply(f: (Int) => Int, x: Int): Int = f(x);

♦ These functions can be represented with just a function pointer,
i.e., the address of the function.

♦ Functions that take functions as arguments are called
higher order functions.

♦ For a language to have interesting higher order functions
you need to be able to create new functions at runtime.
E.g., in Scala you can write:

val f:(Int => Int) = x => x + 1;

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/37

Higher Order Functions

♦ To get really interesting functions at runtime you
need to be able to capture the free variables of the
function.
♦ A free variable is a variable that is not bound by the

definition of the function. (y is free in x => x+y.)
def f(y:Int):(Int => Int) = x=>x+y;

♦ In order to do this we need closures.
♦ A closure is a data structure that contains a

function pointer and a way to access all free
variables of the body of the function.

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/38

Higher Order Functions

♦ In an OO language a closure can be implemented as an object with a
single method and several instance variables.

def f(y:Int):(Int => Int) = x=>x+y;
f(42)(17)

class F {
int y;
public F(int y) { this.y = y; }
public int apply(int x) {
return x+y;

}
}

public F f(int y) = new F(y);
f(42).apply(17);

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/39

Higher Order Functions

♦ This is more or less the way Scala implements
functions.

♦ To make it more general we can make all closures
implement the Function interface:

public interface Function1 {
public abstract java.lang.Object apply(java.lang.Object a0);

}

♦ We also need to take care of local (mutable)
variables that are captured by the function. This can
be done by turning them into references.

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/40

Higher Order Functions

def f(y:Int):(Int => Int) = {
var z = y*2;
val f = x=>x+z;
z = z +1;
f;

}

class F {
IntRef y;
public F(IntRef y) {
this.y = y; }

public int apply(int x) {
return x+y.v;

}
}

class IntRef {
int v;
public IntRef(int i) {v=i;}
public set(int i) {v=i;}

}

public F f(int y) = {
IntRef z = new IntRef(y*2);
F f = new F(z);
z.set(z.v + 1);
return f;

}

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/41

Pure Functional Languages

♦ In a pure functional language there are no side
effects.

♦ This includes no updates of variables. That is,
variables are immutable.
♦ Variables are, like variables in mathematics, just names

for values.
♦ If we say x = 42; then we give the value 42 a new

name: x, from now on x and 42 are interchangeable.
♦ With a pure functional language it is possible to

do equational reasoning.

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/42

Lazy Evaluation

♦With lazy evaluation, an expression is not
evaluated unless its value is demanded by
some other part of the computation.

♦In contrast, strict languages (Java, ML, C,
Erlang) evaluate each expression as the
control flow reaches it.

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/43

Call-by-Name Evaluation

♦Most languages pass function arguments
using call-by-value:
♦ i.e. all arguments are evaluated before a

function is called.
♦e.g. in the expression f(g(x+y)), first (x+y) is

evaluated then the function g is called before
the function f is called.

♦ If the function f doesn’t use its argument then
the evaluation of g and of x+y is done in vane.

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/44

Call-by-Name Evaluation

♦ Call-by-name evaluation avoids this problem by
not evaluating the arguments, instead a thunk is
created for each argument.

♦ A thunk is a function that can be called to
compute the value on demand.
f(g(x+y)) is translated to
f(()=>g(()=>x+y))

♦ Any use of the argument in f is replaced by an application
of the function:
f(x) = x; is translated to
f(x) = x();

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/45

Call-by-Name Evaluation

♦Scala provides call-by-name with explicit
def parameters.

♦A problem with call-by-name is that a
thunk may be executed many times.
f(x) = x+x; is translated to
f(x) = x()+x();

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/46

Call-by-Need

♦With call-by-need each thunk is only
evaluated once.

♦This is implemented by giving each thunk a
memo slot that stores the evaluated value;
each evaluation of the thunk first checks
the memo slot: if it is empty the expression
is evaluated and stored in the slot,
otherwise the value in the slot is returned.

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/47

Call-by-Need

Conceptually a thunk for x+y can be implemented as:
class Thunk {

res = null;
apply() = {

if res == null then res = x+y
else res

}
}

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/48

Call-by-need

♦A thunk can also be implemented just as
two words <thunk_function, memo_slot>

♦When the thunk is evaluated both fields are
updated: the memo slot with the value and
the function with a new function that
returns the value.

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/49

Optimization of FP

♦ Functional programs tend to use many small
functions. Modern hardware is optimized for
imperative programs with few large functions,
i.e., function calls are relatively expensive.

♦ Hence it can be profitable to reduce the number of
function calls and increase the size of functions.

♦ This can be done by inline expansion.

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/50

Inline Expansion

♦ Inline expansion or iniling is an optimization
where a function call is replaced by the body of
the function.

♦ If this is done in a stage in the compiler where all
independent names are replaced by unique
symbols then the process is quite straightforward.
Otherwise the formal parameters need to be
renamed (α-converted).

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/51

Inline Expansion

♦ If inline expansion is applied
indiscriminately, the size of the program
explodes.

♦ To limit the code growth we can:
1. Expand only frequent call sites.
2. Expand only small functions.
3. Expand functions called only once, and

perform dead function elimination.

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/52

Inline Expansion

♦If we inline a recursive function just as any
other function we would probably end up
with a call to the original function. Either
directly after the first iteration or after a
while. Im

pl
em

en
ta

tio
n

of
 F

PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/53

Inline Expansion

def loop(int x, int max, int y) =
if (x > max) y else loop(x+1, y*y);

def f(int z) = loop(1,10,z);

def f(int z) = {

val x=1; val max=10; val y=z;
if (x>max) y
else loop(x+1,max,y*y);

}

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/54

Inline Expansion

♦To remedy this we can bring the definition
of the recursion with us in the inlining by
splitting the function into a prelude and a
loop header.

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/55

Inline Expansion

def loop(int x, int max, int y) =
if (x > max) y else loop(x+1, y*y);

def f(int z) = loop(1,10,z);

def f(int z) = {

val x=1; val max=10; val y=z;
val loop= (int xX, int maxX, int yX) =>

if (xX > maxX) yX else loop(xX+1,maxX, yX*yX);
if (x>max) y else loop(x+1,max,y*y);

}

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/56

Loop-Invariant Hoisting

♦We can avoid passing around values that
are the same in each recursive call by using
loop-invariant hoisting.

♦Just let the constant value become a free
variable.

♦In our example lift max from an argument
to a free variable.

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/57

Loop-Invariant Hoisting

def loop(int x, int max, int y) =
if (x > max) y else loop(x+1, y*y);

def f(int z) = loop(1,10,z);

def f(int z) = {

val x=1; val max=10; val y=z;
val loop= (int xX, int yX) =>

if (xX > max) yX else loop(xX+1, yX*yX);
if (x>max) y else loop(x+1,y*y);

}

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/58

Inline Expansion

♦ Inline expansion in itself can be useful since the
overhead for a function call and return is
removed, but the real benefit comes from
applying standard optimizations on the inline
expanded program.

♦ Constant propagation and folding, dead code and
unreachable code elimination all work better
when the scope of a function is increased.

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/59

Inline Expansion
after constant prop

def loop(int x, int max, int y) =
if (x > max) y else loop(x+1, y*y);

def f(int z) = loop(1,10,z);

def f(int z) = {

val x=1; val max=10; val y=z;
val loop= (int xX, int yX) =>

if (xX > 10) yX else loop(xX+1, yX*yX);
if (1>10) z else loop(1+1,z*z);

}

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/60

Inline Expansion
after constant folding

def loop(int x, int max, int y) =
if (x > max) y else loop(x+1, y*y);

def f(int z) = loop(1,10,z);

def f(int z) = {
val loop= (int xX, int yX) =>

if (xX > 10) yX else loop(xX+1, yX*yX);
loop(2,z*z);

}

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/61

Efficient Tail Calls

♦A function call f(x) within a body of a
function g is in a tail position if calling f is
the last thing g will do before returning.

♦We can save stack space and execution time
by turning the call to f into a jump to f.

♦For some languages, like Erlang and
Scheme, proper tail calls is not an
optimization but a requirement.

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/62

Tail Calls

♦ A tail call can be transformed from a call to a
jump as follows:

1. Move actual parameters into argument registers (and
stack positions).

2. Restore callee-save registers.
3. Pop the stack frame of the calling function.
4. Jump to the callee.

♦ If both the caller and the callee have few arguments so
that they all fit in argument registers then step 1 might
be eliminated by a coalescing register allocator, and step
2 and 3 might also be unnecessary: the tail call becomes
just a jump.

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/63

Equational Reasoning

♦In a pure language we can perform β-
substitution.
♦That is, replacing a call to a function with a

version of the body of the function where each
occurrence of the formal parameter is replaced
by the argument.

♦ ((x) => x + x)(42) β→ 42 + 42
♦Basically: we can perform function calls at

compile time.

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/64

Optimization of Lazy FP

♦A lazy language allows us to do some
optimizations that would not be safe in a
strict language:
♦ Invariant hoisting.
♦Dead code removal (of function calls).
♦Strictness Analysis.

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/65

Optimization of Lazy FP

♦ Invariant hoisting:

def f(i) = {
def g(j) = h(i) * j;
g

}

def f(i) = {

val h = h(i);
def g(j) = h * j;
g

}
♦ If h(n) loops infinitely but the result of f(n) is never called

a strict language would loop in the call to f(n).

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/66

Optimization of Lazy FP

♦ Dead code removal:
def f(i:int): int = {

var d = g(x);
i + 2;

}

♦ In an imperative language g(x) can not be
removed, there might be side effects.

♦ In a strict pure language removing g(x) might
turn a non-terminating computation into a
terminating one.

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/67

Optimization of Lazy FP

♦ The overhead of thunk creation and evaluation is quite
high, so they should only be used when needed.

♦ If a function f(x) is certain to evaluate its argument x,
there is no need to create a thunk for x.

♦ We can use a strictness analysis to find out which
arguments should be evaluated at the call site and which
should be passed as thunks.

♦ In general exact strictness analysis is not computable – a
conservative approximation must be used, i.e., assume
that arguments who can not be proved strict are non-
strict.

Im
pl

em
en

ta
tio

n
of

 F
PL

Implementation of FPL &
Concurrency

Advanced Compiler Techniques
2004

Erik Stenman
EPFL

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/2

Implementation of FPL
(Repetition)

♦ Possible properties of functional languages:
♦ No statements.
♦ Higher order functions.
♦ Pureness.
♦ Laziness.
♦ Automatic memory management.

♦ A declarative language is a language where the
program declares what to calculate.

♦ In an imperative language the program states how
to calculate.

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/3

Higher Order Functions
(Repetition)

♦A function that takes a function as an
argument is called a higher order function.

♦E.g.
f(x:int, g:int=>int) = x + g(x);

Im
pl

em
en

ta
tio

n
of

 F
PL

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/4

Tail calls
(Repetition)

♦A function call f(x) within a body of a
function g is in a tail position if calling f is
the last thing g will do before returning.

♦We can save stack space and execution time
by turning the call to f into a jump to f.Im

pl
em

en
ta

tio
n

of
 F

PL

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/5

Continuations

♦ We can combine higher order functions with tail
calls to get continuations.

♦ Normally each function returns a value:
def f(x:int) = foo(x) + 1;

♦ We can instead let each function take a
continuation that tells where the execution is to
continue:
def f(x:int, c:int=>int) = c(foo(x)+1);

Im
pl

em
en

ta
tio

n
of

 F
PL

: C
on

tin
ua

tio
ns

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/6

Continuation Passing Style
(CPS)

♦ Continuations are the basis for a compilation
technique called continuation passing style (CPS).

♦ In CPS all functions are transformed to take one
extra argument, the continuation, and the bodies
are transformed to call the continuation instead of
returning.

♦ Also, all nested expressions of the function body
are transformed into continuations. (Primitive
operations such as + also takes a continuation.)

Im
pl

em
en

ta
tio

n
of

 F
PL

: C
on

tin
ua

tio
ns

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/7

CPS Transformation

def f(x:int) = foo(x) + 1;

def f(x:int, c:int=>int) =
foo(x,

(v:int) => +(v,1,c)
)Im

pl
em

en
ta

tio
n

of
 F

PL
: C

on
tin

ua
tio

ns

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/8

CPS Transformation

♦ CPS transformation is used in many compilers for
functional languages such as Scheme and ML.

♦ CPS was studied extensively by e.g. Steele in the Rabbit
Scheme compiler, and Appel in the SML/NJ compiler.

♦ A disadvantage with CPS is that it introduces many
closures, and hence the compiler have to optimize as
many of them away as possible in order to get good
performance.

♦ An advantage is that, if closures are your only control
structure and you have optimized them to the max, then
you have optimized all control structures.

Im
pl

em
en

ta
tio

n
of

 F
PL

: C
on

tin
ua

tio
ns

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/9

Call with Current Continuation
call/cc

♦ If we have a language compiled with CPS we can
easily implement a very powerful construct called
call/cc or call with current continuation.

def call_cc(f,c) = f(c,c)
♦ That is, we call the function f with the current

continuation c as an argument, and also as the
continuation of f.

♦ With call/cc you can “easily” implement
backtracking, exceptions, coroutines, and
concurrency.

Im
pl

em
en

ta
tio

n
of

 F
PL

: C
on

tin
ua

tio
ns

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/10

Implementation of Concurrency

♦What is concurrency?
♦Some communication methods.
♦Erlang – a concurrent language.
♦Implementation of Erlang.

Im
pl

em
en

ta
tio

n
of

 C
on

cu
rr

en
cy

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/11

Concurrency vs. Parallelism

♦ Concurrency:
♦ If two events are concurrent then they conceptually

take place at the same time. That is, different
schedulings of two events are indistinguishable or
irrelevant.

♦ A language can be concurrent.
♦ Parallelism:

♦ If two events occur in parallel then they actually occur
at the same time.

♦ An implementation can be parallel.

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: C
on

ce
pt

s

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/12

Concurrency vs. Parallelism

♦A concurrent language can be implemented
either in parallel or sequentially.

♦Some sequential languages can also be
implemented either in parallel or
sequentially.
♦Declarative languages are usually easier to

make parallel than imperative ones.

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: C
on

ce
pt

s

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/13

Message Passing vs.
Shared Memory

♦ In a concurrent system with message passing each
message has to be copied from the sender to the
receiver. (Like when sending a mail to someone.)

♦ In a shared memory system the participating
processes can all updated the shared memory,
and the new state is “immediately” visible to all.
(Like when two people are writing on and looking at the
same blackboard.)Im

pl
em

en
ta

tio
n

of
 c

on
cu

rr
en

cy
: C

on
ce

pt
s

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/14

Message Passing vs.
Shared Memory

♦ Shared memory:
♦ Pros:

1. Performance.
♦ Cons:

1. The programmer has to ensure consistency.
2. Can not (practically) be implemented in a distributed system.

♦ Message passing:
♦ Pros:

1. Processes are decoupled (errors don’t propagate as easily).
2. The programmer can reason about the process interaction on a

higher level.
3. Can easily be extended to a distributed system.

♦ Cons:
1. (Perceived) loss of performance.

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: C
on

ce
pt

s

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/15

Message Passing vs.
Shared Memory

♦ The distinction between shared memory and
message passing is done on the level that the
programmer has to deal with.

♦ On a lower level message passing can be
implemented with shared memory (and often is,
at least to some extent).

♦ In a network the shared memory model has to be
implemented with some form of message passing.

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/16

Synchronous vs. Asynchronous

♦ In a synchronous system both the sender and the
receiver have to be in special states (ready to send
and ready to receive).
♦ If either of the processes reaches this state before the

other it will block and wait until both are in the right
state.

♦ In an asynchronous system the sender does not
have to wait for the receiver to be ready in order
to send its message.

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: C
on

ce
pt

s

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/17

Synchronous vs. Asynchronous

♦ Only one type of primitives is necessary since
each can be implemented by the other.

♦ To implement synchronization in an
asynchronous environment you only need a loop
and a protocol where an acknowledgement is sent
back upon receive.

♦ To implement asynchronous messages in a
synchronous environment you need a relaying
process.

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: C
on

ce
pt

s

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/18

Processes vs. Threads

♦ In this presentation processes do not refer to OS
processes but processes implemented by a
programming language.
♦ Such processes can be assumed to be lightweight, not

to share memory, and execute concurrently.
♦ A thread is slightly more heavyweight, share

memory and can execute in parallel on a parallel
machine.Im

pl
em

en
ta

tio
n

of
 c

on
cu

rr
en

cy
: C

on
ce

pt
s

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/19

Concurrency in Programming
Languages

♦Concurrency in programming languages
can be implemented by utilizing processes
or threads from the operating system.
♦ Either directly like in C or with a thin

abstraction layer like in Java.
♦Further abstractions can be built into libraries.

♦Another approach is to build concurrency
into the language as such.

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: C
on

ce
pt

s

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/20

Implementation of Concurrency
Example: Erlang

♦ Erlang is a concurrent programming language,
i.e., concurrency is built into the language from
the beginning.

♦ Erlang was developed by the Ericsson to be used
in large telecom application such as telephone
exchanges. (Used in e.g. Ericsson’s ATM switch
and their GPRS systems.)

♦ We will present some details of how to
implement a concurrent language by studying
how Erlang is implemented.

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/21

Erlang

♦ The sequential part of Erlang is a small higher
order functional language with no mutable data
structures.

♦ Data in Erlang is represented by a term, a term
can be a list of terms, a tuple of terms or ground
(atoms, numbers, PIDs, …).

♦ Erlang uses pattern matching to decompose and
switch on the structure of Erlang terms.

♦ Erlang requires proper tail-calls.

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: E
rl

an
g

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/22

Erlang

♦ The concurrent part of Erlang (processes that
communicate through message passing) provides the
following constructs:
♦ Asynchronous send.
Receiver ! Message

♦ Blocking, selective receive with timeouts.
receive PATTERN -> … ; after T -> … end.

♦ A method to dynamically spawn new processes.
spawn(Closure).

♦ For error correction processes can be linked in order to receive
signals when a linked process dies:
link(Process).
or
spawn_link(Closure).

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: E
rl

an
g

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/23

A Simple Generic Server

loop(State,Handler) ->
receive
{From, Request} ->
{Res,NewState} = Handler(State,Request),
From ! {self(), Res},
loop(NewState,Handler);

{swap_code,NewHandler} ->
loop(State, NewHandler);

quit -> ok
end.

> Server = spawn(fun()->loop(0,
fun(S,inc)->{ok,S+1};

(S,get)->{S,S} end)
end),

Server ! {self(),inc}, receive {_,_} -> ok end,
Server ! {self(),get}, receive {_,Val} -> Val end.

1
>

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: E
rl

an
g

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/24

Concurrency in Erlang

♦ Erlang is concurrent.
♦ The standard implementation is not parallel, but multi-tasking.

♦ Erlang processes are conceptually scheduled with pre-
emptive multitasking – the programmer does not have to
worry about the scheduling.
♦ The standard implementation uses cooperative multitasking

enforced by the compiler.
♦ Each function call is counted as a reduction, when the number of

reductions allocated to a process reaches 0 the process is
suspended.

♦ Since there are no loop constructs in Erlang other than tail calls,
this is sufficient to ensure cooperation.

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: E
rl

an
g

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/25

Implementation of Processes in
Erlang

♦ Each process has its own stack, heap, message
queue, and process control block (PCB).

♦ The PCB is relatively small ~70 words.
♦ The mailbox is a linked list of pointers to the heap

containing only unprocessed messages.
♦ The heap and the stack are collocated in one

memory area with a default initial size of 233
words. (233=fibonacci(12)).

♦ The heap and stack grow (and shrink) as needed.

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: E
rl

an
g

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/26

Processes in Erlang

P1 P2 P3

Stack pointer (sp)

Heap pointer (hp)

STACK

HEAP

Unused
memory

Live
data

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: E
rl

an
g

PCB

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/27

Process Communication in Erlang

♦ All communication between processes in Erlang
is done by message passing.

♦ In the standard implementation this means that
all messages are copied between the heap of the
sender and the heap of the receiver.

♦ This copying is done by first calculating the size
of the message, then allocating the right amount
on the receivers heap, finally the message is
copied.

♦ Since the receiver is guaranteed to be suspended,
no locking is needed.

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: E
rl

an
g

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/28

Some “Optimizations”

♦ Large chunks of immutable data can be stored in binaries.
♦ Binaries larger than 64 words are not stored on a process heap and

not copied when sent as messages.
♦ Binaries are managed by reference counting.

♦ Larger sets of shared, mutable data are handled by ETS-
tables.
♦ ETS stands for Erlang Term storage.
♦ Conceptually an ETS table could be implemented as a process

mapping keys to values.
♦ In reality ETS tables are implemented in C.

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: E
rl

an
g

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/29

Implementing Erlang
in Native Code

♦The standard implementation of Erlang
uses a virtual machine (VM). We will
discuss how to implement VMs in a later
lecture.

♦It is also possible to compile Erlang to
native code, here we will present some
implementation details for such an
implementation.

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: E
rl

an
g

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/30

Implementing Erlang
in Native Code

♦In order to enable easy integration with the
VM the native implementation uses the
same data representation, GC, and runtime
system as the VM.

♦The only major difference is that each
process that calls native code also get a
native stack.

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: E
rl

an
g

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/31

Processes in Erlang

P1 P2 P3

Stack pointer (sp)

Heap pointer (hp)

STACK

HEAP

Unused
memory

Live
data

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: E
rl

an
g

PCB

NATIVE STACK
Native stack pointer (nsp)

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/32

Implementation Details

♦ In order to handle scheduling and stack resizing
some bookkeeping code is added to the beginning
of each function:

reductions = reductions – 1;
if (reductions == 0) suspend(p); // p is the current process pointer

checkstack:
if (nsp - STACKNEED < stackEnd) {

resizeStack();
goto checkstack;

}

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: E
rl

an
g

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/33

Implementation Details

♦The stack need can be calculated at compile
time:
number of spills + max(∀ calls:
argsOnStack+callerSaves)+buffer.

♦By ensuring that there is a buffer of free
words on the stack we do not need the
bookkeeping code for leaf-functions that
uses less than that many words.

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: E
rl

an
g

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/34

Implementation Details

♦ The function suspend has to be implemented in machine
code in order to get access to the return address.

supend: // p (the current process) is passed as the argument.

p->pc = <RETADDRESS> // From the stack on x86 from a register on SPARC

p->status = READY;
SAVE(p); // Save the process sp, switch to C stack.

add(p,readyQueue);
p = schedule();
RESTORE(p); // Restore the process sp, switch from C stack.

jmp p->pc;

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: E
rl

an
g

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/35

The Scheduler

♦Since Erlang does not use OS processes or
threads, the Erlang runtime system has to
implement its own scheduler. (In, e.g., C)

pid schedule() {
static int majorReductions = MREDS;
majorReductions--;
if(majorReductions == 0) { externalPoll();
majorReductions = MREDS; }

checkTimeouts();
pid p = nextReady(readyQueue);
p->reductions = REDS; p->status = RUNNING;
return p;

}

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: E
rl

an
g

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/36

Send

♦A message send from p1 to p2 can be
implemented as:

send(pid:p1, pid:p2, term:message) {
int s = size(message);
if(s > (p2->heapTop - p2->heapPointer)) gc(p2,s);
term mp = copy(message,p2->heapTop);
add(mp,p2->messageQueue);
if(p2->status == SUSPENDED) {
p2->status = READY;
add(p2,readyQueue);

}
}

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: E
rl

an
g

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/37

Receive

♦ A message receive is slightly more complicated.
messageLoop:
m = nextMessage(p);
if (m == NIL)
sleep(p,timeout,&messageLoop,&handler);
cont = MATCH(m,PATTERNS);
if (cont == 0) goto messageLoop;
unlink(p);
jmp cont;

handler:
…

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: E
rl

an
g

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/38

Receive

M1 NIL
mQueue

mNext

mEnd
M2

M3

M1 NIL

nextMessage(pid p) {
term m = p->mNext;
p->mNext = m->next;
return m;

}

unlink(pid p) {
term m = p->mNext;
if(m->prev != NIL)
p->prev->next = m->next;

else
p->mQueue = m->next;

if(p->mEnd == m)
p->mEnd = m->prev;

p->mNext = p->mQueue;
}

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: E
rl

an
g PCB

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/39

Receive

sleep(p,timeout,messageLoop,handler) {
p->pc = messageLoop;
p->handler = handler;
add(p,now()+timeout,timeoutQueue)
p->status = SUSPENDED;
p = schedule();
(p->pc)();

}

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: E
rl

an
g

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/40

Receive

♦The checkTimeout function in the
scheduler will activate a process when the
timeout has elapsed.

♦While doing so p->pc will be updated
with p->handler so that the process will
start executing in the timeout handler when
scheduled.

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: E
rl

an
g

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/41

Spawn

♦The spawn primitive creates a new process,
i.e. allocates a new PCB, stack, and heap.

♦Then the argument to spawn (the closure)
is copied to the new heap.

♦The new pid is added to the ready queue.
♦Then execution continues in the old process

with the instructions after spawn.

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: E
rl

an
g

Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/42

Summary

♦Concurrency is an important concept that
can be useful as an abstraction when
decomposing a program, just as modules,
objects, and functions.

♦Concurrency can be implemented by either
using primitives provided by the OS or by
implementing a scheduler specifically for
the language.

Im
pl

em
en

ta
tio

n
of

 c
on

cu
rr

en
cy

: E
rl

an
g

Memory Management

Advanced Compiler Techniques
2004

Erik Stenman
EPFL

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/2

Memory Management

♦ The computer memory is a limited resource so the
memory use of programs has to be managed in some way.

♦ The memory management is usually performed by a
runtime system with help from the compiler.
♦ The runtime system is a set of system procedures linked to the

program.
♦ For C programs it can be as simple as a small library for

interacting with the operating system.
♦ For Erlang programs the runtime system implements almost all

the functionality normally provided by the OS.

M
em

or
y

M
an

ag
em

en
t

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/3

Memory Management

♦ In a language such as C there are three
ways to allocate memory:

1. Static allocation. The memory needed by
global variables (and code) is allocated at
compile time.

2. Stack allocation. Activation records are
allocated on the stack at function calls.

3. Heap allocation. Dynamically allocated by the
programmer by the use of malloc.

M
em

or
y

M
an

ag
em

en
t

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/4

Memory Organization

♦A typical layout of the
memory of a C
program looks like:

Stack

Heap (dynamic)

Uninitialized static data
(Global variables)

Constant static data

Code

M
em

or
y

M
an

ag
em

en
t

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/5

Dynamic Memory Management

♦ Heap allocation is necessary for data that lives longer than
the function which created it, and which is passed by
reference, e.g., lists in misc.

♦ Two design questions for the heap:
♦ How is space for data allocated on the heap?
♦ How and when is the space deallocated?

♦ Considerations in memory management design:
♦ Space leaks & dangling pointers.
♦ The cost for allocation and deallocation.
♦ Space overhead of the memory manager.
♦ Fragmentation.

D
yn

am
ic

 M
em

or
y

M
an

ag
em

en
t

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/6

Fragmentation

♦ The memory management system should try to avoid
fragmentation, i.e. when the free memory is broken up into
several small blocks instead of few large blocks.

♦ In a fragmented system memory allocation may fail
because there is no free block that is large enough even
though the total free memory would be large enough.

♦ We distinguish between:
♦ Internal fragmentation – the allocated block is larger than the

requested size (the waste is in the allocated data).
♦ External fragmentation – all free blocks are too small (the waste is

in the layout of the free data).

M
em

or
y

M
an

ag
em

en
t:

Fr
ag

m
en

ta
tio

n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/7

Memory Allocation

♦ The use of a free-list is a common scheme.
♦ The system keeps a list of unused memory blocks.
♦ To allocate memory the free-list is searched to find a block

which is large enough.
♦ The block is removed from the free-list and used to store

the data. If the block is larger than the need, it is split and
the unused part is returned to the free-list (to avoid internal
fragmentation).

♦ When the memory is freed it is returned to the free-list.
Adjacent memory blocks can be merged (or coalesced)
into larger blocks (to avoid external fragmentation).

M
em

or
y

M
an

ag
em

en
t:

A
llo

ca
tio

n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/8

Free-list

♦ The free-list can be stored in the
free memory since it is not used for
anything else. (We assume, or ensure,
that each memory block is at least two
words).

33

44

22
Free list:

This can be
stored as a
static global
variable.

M
em

or
y

M
an

ag
em

en
t:

A
llo

ca
tio

n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/9

Free-list

♦ Note that we need to know the size of a block
when it is deallocated. This means that even
allocated blocks need to have a size field in them.

♦ Thus the space overhead will be at least one word
per allocated data object. (It might also be
advantageous to keep the link.)

♦ The cost (time) of allocation/deallocation is
proportional to the search through the free-list.

M
em

or
y

M
an

ag
em

en
t:

A
llo

ca
tio

n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/10

Free-list

♦There are many different ways to
implement the details of the free-list
algorithm:
♦Search method: first-fit, best-fit, next-fit.
♦Links: single, double.
♦Layout: one list, one list per block size, tree,

buddy.

M
em

or
y

M
an

ag
em

en
t:

A
llo

ca
tio

n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/11

Deallocation

♦Deallocation can either be explicit or
implicit.

♦Explicit deallocation is used in e.g., Pascal
(new/dispose), C (malloc/free), and C++
(new/delete).

♦Implicit deallocation is used in e.g., Lisp,
Prolog, Erlang, ML, and Java.

M
em

or
y

M
an

ag
em

en
t:

D
ea

llo
ca

tio
n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/12

Explicit Deallocation

♦Explicit deallocation has a number of
problems:
♦ If done to soon it leads to dangling pointers.
♦ If done to late (or not at all) it leads to space

leaks.
♦ In some cases it is almost impossible to do it at

the right time. Consider a library routine to
append two destructive lists:
c = append(a,b);

M
em

or
y

M
an

ag
em

en
t:

D
ea

llo
ca

tio
n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/13

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
printList(b);

22

33

44

55

66

NILNIL

Explicit Deallocation

11

M
em

or
y

M
an

ag
em

en
t:

D
ea

llo
ca

tio
n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/14

Explicit Deallocation

♦ The programmer
now has to ensure
that a, b, and c are
all deallocated at the
same time. A mistake
would lead to
dangling pointers.

♦ If b is in use long
after a, and c, then
we will keep a live
too long. A space
leak.

list a = new List(1,2,3);
list b = new List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
printList(b);
free(c);M

em
or

y
M

an
ag

em
en

t:
D

ea
llo

ca
tio

n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/15

Implicit Deallocation

♦ With implicit deallocation the programmer does not
have to worry about when to deallocate memory.

♦ The runtime system will dynamically decide when
it is safe to do this.

♦ In some cases, and systems, the compiler can also
add static dealloctions to the program.

♦ The most commonly used automatic deallocation
method is called garbage collection (GC).

♦ There are other methods such as region based
allocation and deallocation.

M
em

or
y

M
an

ag
em

en
t:

D
ea

llo
ca

tio
n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/16

Garbage Collection (GC)

♦ Garbage collection is a common name for a set of
techniques to deallocate heap memory that is
unreachable by the program.

♦ There are several different base algorithms:
reference counting, mark & sweep, copying.

♦ We can also distinguish between how the GC
interferes or interacts with the program:
disruptive, incremental, real-time, concurrent.

G
ar

ba
ge

 C
ol

le
ct

io
n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/17

The Reachability Graph

♦ The data reachable by the program form a
directed graph, where the edges are pointers.

♦ The roots of this graph can be in:
1. global variables,
2. registers,
3. local variables & formal parameters on the stack.

♦ Objects are reachable iff there is a path of edges
that leads to them from some root. Hence, the
compiler must tell the GC where the roots are.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 T
he

 re
ac

ha
bi

lit
y

gr
ap

h

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/18

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

The Reachability Graph

22

33

44

55

66

NILNIL

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 T
he

 re
ac

ha
bi

lit
y

gr
ap

h

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/19

roots: b

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

The Reachability Graph

22

33

44

55

66

NILNIL

11

The goal with the GC is to
deallocate these:

G
ar

ba
ge

 C
ol

le
ct

io
n:

 T
he

 re
ac

ha
bi

lit
y

gr
ap

h

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/20

Reference Counting

♦ Idea: Keep track of how many references there are
to each object.

♦ If there are 0 references deallocate the object.
♦ The compiler must add code to maintain the reference

count (refcount).
♦ Set the count to 1 when created.
♦ For an assignment x = y:

♦ if (x != null) x.refcount—;
♦ if (y!=null) y.refcount++;

♦ When a stack frame is deallocated decrease the refcount of each object
pointed to from the frame.

♦ When refcount reaches 0 deallocate the object and decrease refcount of
each child.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/21

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

44

55

66

NILNIL

22

11

11

11

22

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/22

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

44

55

66

NILNIL

11

11

11

11

22

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/23

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

44

55

66

NILNIL

11

11

11

11

22

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/24

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

44

55

66

NILNIL

00

11

11

11

22

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/25

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

44

55

66

NILNIL

00

11

00

11

22

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/26

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

44

55

66

NILNIL

00

11

00

00

22

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/27

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

44

55

66

NILNIL

00

11

00

00

11

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/28

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

44

55

66

NILNIL

00

11

00

00

11

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/29

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b;

44

55

66

NILNIL

11

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/30

Reference Count

♦ Advantages of reference count:
♦ Rather easy to implement.
♦ Storage reclaimed immediately.

♦ Disadvantages of reference count:
♦ Space overhead: 1 word per object.
♦ Keeping track of the reference counts is very

expensive. (Each simple pointer copy becomes several
instructions.)

♦ There is one more problem…

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/31

list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

11

11

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

NILNIL

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/32

list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

22

11

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/33

list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

33

11

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/34

list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

22

11

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/35

list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

11

11

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/36

Reference Count

♦ Big disadvantage with reference count:
♦ The refcount of cyclic structures never reaches zero!

♦ There are ways to solve this, but they are very
complicated.

♦ Due to this fact reference count is very seldom used
in practice. There is one nice use, as we shall see later…

♦ In a pure language or a language without destructive updates there
are no cyclic structures, making reference counting a viable option.G

ar
ba

ge
 C

ol
le

ct
io

n:
 R

ef
er

en
ce

 c
ou

nt
in

g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/37

Mark & Sweep

♦ A mark & sweep GC is made up of two
phases:

1. First all reachable objects are marked.
2. Then the heap is swept clean of dead objects.

♦ The mark phase is done by a depth first
search through the reachability graph
starting from the roots.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/38

Depth First Mark Algorithm

mark(x) {
if(! marked(x)) {

setMark(x);
for each field f of x

mark(*f)
}

}

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/39

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Mark

22

33

44

55

66

NILNIL

11

mark(b)

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/40

The Sweep

♦ The Sweep phase goes through the whole heap
from start to finish and adds unmarked objects to
the free-list.

p = heapStart;
while (p<heapEnd) {
if(marked(*p)) clearMark(*p);
else free(p);
p += size(*p);

}

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/41

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

22

33

44

55

66

NILNIL

11

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/42

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

22

33

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/43

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

22

33

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/44

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

33

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/45

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

33

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/46

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/47

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/48

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/49

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/50

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/51

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/52

Cost of Mark & Sweep

♦ The mark phase takes time proportional to the amount of
reachable data (RR).

♦ The sweep phase takes time proportional to the size of the
heap (HH).

♦ The work done by the GC is to recover HH-RR words of
memory.

♦ Them amortized cost of GC (overhead/allocated word) is:
c1RR + c2HH

HH-RR
♦ If RR ≈ HH the cost is very high. The cost goes down as the

number of dead words increases.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/53

Mark & Sweep

♦ Where do we store the mark bits?
♦ We will discuss data representation a bit more at the end of the

lecture. With some representations there will always be a tag or a
header word in each heap object where the mark bit can be stored.

♦ They can be stored in a separate bitmap table:
♦ If we have a 32-bit architecture and the smallest heap

object is 2 words. (The three least significant bits == 0)
♦ Then we can have 536,870,911 objects and need

67,108,863 bytes to store these bits.
♦ This might seem to be a lot, but it is only 1.562% of the

total heap.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/54

Tuning Mark & Sweep

♦There is one problem with the mark phase:
♦While doing the depth first search we need to

keep track of other paths to search.
♦ If this is done with recursive calls we will need

one allocation record for each level we descend
in the reachability graph.

♦Solutions: Explicit stack or pointer reversal.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/55

Mark & Sweep

♦Advantages with mark & sweep:
♦Can reclaim cyclic structures.
♦Standard version is easy to implement.
♦Can have relatively low space overhead.

♦Disadvantages:
♦Fragmentation can become a problem.
♦Allocation from a free-list can be costly.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/56

Copying Collector

♦The idea of a copying garbage collector is to
divide the memory space in two parts.

♦Allocation is done linearly in one part
(from-space).

♦When that part is full all reachable objects
are copied to the other part (to-space).

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/57

Before GC

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

22

33

44

55

66

NILNIL

11

from-space to-space

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/58

After GC

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

22

33

44

55

66

NILNIL

11

to-space from-space

44

55

66

NILNIL

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/59

Forwarding Pointers

♦Given a pointer p that point to from-space
make it point to to-space:
♦ If p points to a from-space record that contains

a pointer to to-space, then *p is a forwarding-
pointer that indicates where the copy is. set
p=*p.

♦ If *p has not been copied, copy *p to location
next, *p=next, p=next, next+=size(*p).

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/60

Cheney’s Copying Collector

♦ Cheney’s algorithm uses breadth-first to traverse
the live data.

♦ The algorithm is non-recursive, requires no extra
space or time consuming tricks (such as pointer
reversal), and it is very simple to implement.

♦ The disadvantage is that breadth-first does not
give as good locality of references as depth-first.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/61

Cheney’s Copying Collector

♦ The algorithm:
1. Forward all roots.
2. Use the area between scan as next as a queue for copied

records whose children has yet not been forwarded.
scan = next = start of to-space
for each root r { r = forward(r); }
while scan < next {
for each field f of *scan
scan->f = forward(scan->f)

scan += size(*scan)
}

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/62

Before GC

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

22

33

44

55

66

NILNIL

11

from-space to-space

scan
next

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/63

Forward Roots

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

22

33

55

66

NILNIL

11

from-space to-space

scan

next

44

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/64

Scanning

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

22

33

66

NILNIL

11

from-space to-space

scan

next

44

55

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/65

Scanning

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

22

33

NILNIL

11

from-space to-space

scan

next

44

55

66

NILNILG
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/66

Scanning

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

22

33

NILNIL

11

from-space to-space

scan

next

44

55

66

NILNILG
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/67

Scanning

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

22

33

NILNIL

11

from-space to-space

44

55

66

NILNILG
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/68

Cost of Copying GC

♦ The GC takes time proportional to the amount of
reachable data (RR).

♦ The work done by the GC is to recover HH/2 /2 - RR words of
memory.

♦ The amortized cost of GC (overhead/allocated word) is:
c1RR

((HH/2) - RR
♦ If HH is much larger than R R then the cost approaches zero.then the cost approaches zero.
♦ The GC is often self-tuning so that HH = 4RR giving a GC

cost of c1 per allocated word.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/69

Copying GC

♦ Advantages of copying GC:
♦ Can handle cyclic structures.
♦ Very easy to implement.
♦ Extremely fast allocation (no free-list) just a check and heap

pointer increment.
♦ Automatic compaction: no fragmentation.
♦ Only visits live data – time only proportional to live data.

♦ Disadvantages of copying GC:
♦ Double the space overhead since two heaps are needed.
♦ Long lived live data might be copied several times.
♦ Copying all the live data might lead to long stop times.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/70

Generational GC

♦ Empirical observation: most objects die young.
The longer an object lives the higher the
probability it will survive the next GC.

♦ The benefit of GC is highest for young objects.
♦ Idea: Keep young objects in a small space which

is GC more often than the whole heap.
♦ With such a generational GC each collection takes

less time and yields proportionally more space.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 G
en

er
at

io
na

l

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/71

Generational GC

♦ In a generational GC we want to collect the
younger generation without having to look at
older generations.

♦ But we have to consider all pointers from older
generations to younger generations as roots.
♦ (In a language without destructive updates this is not a

problem, since there are no such pointers.)
♦ These inter-generational references must be

remembered. The compiler has to ensure that all
store operations in an older generation are
checked.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 G
en

er
at

io
na

l

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/72

Cost of Generational GC

♦ It is common for the youngest generation to have less than
10% live data.

♦ With a copying collector HH//RR =10 in this generation.
♦ The amortized cost of a minor collection is:

c1RR
(10 (10 RR) - RR

♦ Performing a major collection can be very expensive.
♦ Maintaining the remembered set also takes time. If a

programs does many updates of old objects with pointers
to new objects a generational GC can be more expensive
than a non-generational GC.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 G
en

er
at

io
na

l

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/73

Incremental GC

♦ An incremental (or concurrent) GC keeps the stop-
times down by interleaving GC with program
execution.
♦ The collector tries to free memory while the program,

called the mutator changes the reachability graph.
♦ An incremental GC only operates at request from

the mutator.
♦ A concurrent GC can operate in between any two

mutator instructions.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 In
cr

em
en

ta
l

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/74

Data Layout

♦ The compiler and the runtime system has to agree on a data layout.
The GC needs to know the size of records, and which fields of a
record contains pointers to other records.

♦ In statically typed or OO languages, each record can start with a
header word that points to a description of the type or class.

♦ In many functional languages the set of data types can not be
extended; for such languages one can use a tagging scheme where
unused bits in a pointer indicate what data type it points to.

♦ Another approach is to not give any information to the collector about
which fields are pointers. The collector must then make a conservative
guess, and treat all words that looks like pointers to the heap as such.
Since it is unsafe to change such pointers a conservative collector has to
be non-moving.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 D
at

a
la

yo
ut

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/75

The Root Set

♦ The set of registers and stack slots that contain
live data can be described by a pointer map (stack
map).

♦ For each pointer that is live after a function call
the pointer map identifies its register or stack slot.

♦ The return address can be used as a key in a hash
map to find the pointer map.

♦ To mark/forward the roots the GC starts at the
top of the stack and scans downwards frame by
frame. (In a generational collector the stack scan
can also be made generational.)

G
ar

ba
ge

 C
ol

le
ct

io
n:

 T
he

 ro
ot

 s
et

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/76

Finalizers

♦ Some languages (notably OO) has finalizers, that is, some code that
should be executed before some data is deallocated.

♦ This is, e.g., useful to make sure that an object frees all resources
(open files, locks, etc) before dying.

♦ Whit a copying collector the handling of finalizers becomes more
difficult. Such a GC does not normally visit the dead data. So all
finalizers has to be remembered and after GC a check has to be done
to see if any freed data triggers a finalizer.

♦ A mark & sweep collector does not have this problem, but just as wit
a copying collector it might take a long time after the last use before
garbage is actually collected.

♦ If one wants to ensure that a finalizer is executed as soon as the object
dies then one has to use reference counting.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 F
in

al
iz

er
s

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/77

Summary

♦Manual allocation is unsafe and should not
be used. (It also comes at a cost,
maintaining a free-list is not for free.)

♦Garbage collection solves the problem of
automatic memory management.

♦In most cases a generational copying
collector will be the most efficient solution.

Virtual Machines &
Interpretation Techniques

Advanced Compiler Techniques 2004
Erik Stenman

Partially based on slides from
Kostis Sagonas (http://user.it.uu.se/~kostis/Teaching/KT2-04/) and

Antero Taivalsaari (http://www.cs.tut.fi/~taivalsa/kurssit/VMDesign2003.html)

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/2

Virtual Machines

♦A virtual machine is an abstract computing
architecture independent of any hardware.

♦They are software machines that run on top
of real hardware, providing an abstraction
layer for language implementers.
♦ There are other types of virtual machines intended to
emulate some real hardware (e.g., VirtuTech-Simics,
VMware, Transmeta), but they are not the focus of
this course.

V
ir

tu
al

 M
ac

hi
ne

s

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/3

Characteristics of a VM

♦A VM has its own instruction set
independent of the host system.

♦A VM usually has its own memory
manager and can also provide its own
concurrency primitives.

♦Access to the host OS is usually limited and
controlled by the VM.

V
ir

tu
al

 M
ac

hi
ne

s

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/4

Advantages of VMs

♦ A VM bridges the gap between the high level language
and the low level aspects of a real machine.

♦ It is relatively easy to implement a VM, and it is easier to
compile to a VM than to a real machine.

♦ A VM can be modified when experimenting with new
languages.

♦ Portability is enhanced.
♦ Support for dynamic (down-)loading of software.
♦ VM code is usually smaller than real machine code.
♦ Safety features can be verified by the VM.
♦ Profiling and debugging are easy to implement.

V
ir

tu
al

 M
ac

hi
ne

s

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/5

Disadvantages of VMs

♦Lower performance than with a native code
compiler.
♦Overhead of interpretation.
♦Modern hardware is not designed for running

interpreters.

V
ir

tu
al

 M
ac

hi
ne

s

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/6

Some VM History

♦ VMs have been built and studied since the late 1950s.
♦ The first Lisp implementations (1958) used virtual machines with

garbage collection, sandboxing, reflection, and an interactive shell.
♦ Forth (early 70s) uses a very small and easy to implement VM with

high level of reflection.
♦ Smalltalk (early 70s) is a very dynamic language where everything

can be changed on the fly, the first truly interactive OO system.
♦ USCD Pascal (late 70s) popularized the idea of using pseudocode to

improve portability.
♦ Self (late 80s) a prototype-based Smalltalk flavor with an

implementation that pushed the limits of VM technology.
♦ Java (early 90s) made VMs popular and well known.

V
ir

tu
al

 M
ac

hi
ne

s

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/7

VM Design Choices

♦ When designing a VM one has some design choices similar to the
choices when designing intermediate code for a compiler:
♦ Should the machine be used on several different physical architectures

and operating systems? (JVM)
♦ Should the machine be used for several different source languages?

(CLI/CLR (.NET))
♦ Some design choices are similar to those of the compiler backend:

♦ Is performance more important than portability?
♦ Is reliability more important than performance?
♦ Is (smaller) size more important than performance?

♦ And some design choices are similar to when designing an OS:
♦ How to implement memory management, concurrency, IO…
♦ Is low memory consumption, scalability, or security more important than

performance?

V
ir

tu
al

 M
ac

hi
ne

s

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/8

VM Components

♦ The components of a VM vary depending on
several factors:
♦ Is the language (environment) interactive?
♦ Does the language support reflection and or dynamic

loading?
♦ Is performance paramount?
♦ Is concurrency support required?
♦ Is sandboxing required?

♦ In this lecture we will only talk about the
interpreter of the VM.

V
ir

tu
al

 M
ac

hi
ne

s

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/9

VM Implementation

♦ Virtual machines are usually written in
“portable” (in the sense that compilers for most architectures already
exists) programming languages such as C or C++.

♦ For performance critical components assembly
language can be used.

♦ Some VMs (Lisp, Forth, Smalltalk) are largely
written in the language itself.

♦ Many VMs are written specifically for gcc, for
reasons that will become clear in later slides.

V
ir

tu
al

 M
ac

hi
ne

s:
 Im

pl
em

en
ta

tio
n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/10

Interpreters

♦ Language runtime systems often uses two
kinds of interpreters:

1. Command-line interpreter.
♦ Reads and parses instructions in source form.
♦ Used in interactive systems.

2. Instruction interpreter.
♦ Reads and executes instructions in some

intermediate form such as bytecode.

V
ir

tu
al

 M
ac

hi
ne

s:
 Im

pl
em

en
ta

tio
n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/11

Implementing Interpreters

♦ There are several ways to implement an interpreter.
♦ Pattern (or string) based interpretation.

♦ Interpreting source code (strings) directly is inefficient since most of the time is
spent in lexical analysis.

♦ A better alternative is to compile the source into e.g., an abstract syntax tree
and then do the interpretation over that tree. (Jumps and calls are expensive.)

♦ Token-based interpretation.
♦ Compiling the code into a linear representation of instructions, where each

instruction is represented by a token, e.g., bytecode.
♦ Address-based interpretation.

♦ Compiling the code into a linear representation where each instruction is
represented by the address that implements the instruction.

♦ There are several variants: Indirect threaded code, direct threaded code and
subroutine threading.

V
ir

tu
al

 M
ac

hi
ne

s:
 Im

pl
em

en
ta

tio
n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/12

Taxonomy of Interpreters

Interpreters

Pattern-based Token-based Address-based

String-based Tree-based Bytecode Indirect threaded
code

Direct threaded
code

Subroutine threaded
code

V
ir

tu
al

 M
ac

hi
ne

s:
 Im

pl
em

en
ta

tio
n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/13

Implementing Interpreters

♦We will now look at some details of how to
implement an interpreter.

♦We will start with a complete but simple
string based interpreter for a very simple
language. Then extend the language and
the interpreter to show the different ways
to implement interpreters.

V
ir

tu
al

 M
ac

hi
ne

s:
 Im

pl
em

en
ta

tio
n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/14

Interpreting while Parsing
(String-based Interpretation)

♦ For some really simple languages the
interpretation can be done during parsing.

♦ We can e.g., implement a simple calculator
directly in a parser generator.

♦ A parser generator is a program that takes a
description of a grammar and generates a
program that can parse the grammar.

♦ We will use CUP a parser generator for Java:
♦ http://www.cs.princeton.edu/~appel/modern/java/CUP/
♦ I will not go into the details of CUP.

St
ri

ng
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/15

A Calculator Language

♦Grammar:
Expr ::= Expr MINUS Term

| Expr PLUS Term
| Term

Term ::= Term TIMES Factor
| Term DIV Factor
| Factor

Factor ::= NUMBER | LPAR Expr RPAR

St
ri

ng
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/16

Simple Interpreter .cup

terminal PLUS, MINUS, TIMES, DIV, LPAR, RPAR;
terminal Integer NUMBER;

non terminal Program;
non terminal Integer Expression, Term, Factor;

precedence left PLUS, MINUS;
precedence left TIMES, DIV;

start with Program;

terminal PLUS, MINUS, TIMES, DIV, LPAR, RPAR;
terminal Integer NUMBER;

non terminal Program;
non terminal Integer Expression, Term, Factor;

precedence left PLUS, MINUS;
precedence left TIMES, DIV;

start with Program;

St
ri

ng
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/17

Interpreter .cup

Program ::= Expression:e
{: System.out.println(e.intValue()); :}
;

Expression ::= Expression:e PLUS Term:t
{: RESULT = new Integer(e.intValue() +

t.intValue()); :}
| Expression:e MINUS Term:t
{: RESULT = new Integer(e.intValue() -

t.intValue()); :}
| Term:t
{: RESULT = t; :}

Program ::= Expression:e
{: System.out.println(e.intValue()); :}
;

Expression ::= Expression:e PLUS Term:t
{: RESULT = new Integer(e.intValue() +

t.intValue()); :}
| Expression:e MINUS Term:t
{: RESULT = new Integer(e.intValue() -

t.intValue()); :}
| Term:t
{: RESULT = t; :}

St
ri

ng
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/18

Interpreter .cup

Term ::= Term:t TIMES Factor:f
{: RESULT = new Integer(t.intValue() *

f.intValue()); :}
| Term:t DIV Factor:f
{: RESULT = new Integer(t.intValue() /

f.intValue()); :}
| Factor:f
{: RESULT = f; :}

Factor ::= NUMLIT:n {: RESULT = n; :}
| LPAR Expression:e RPAR
{: RESULT = e; :}

Term ::= Term:t TIMES Factor:f
{: RESULT = new Integer(t.intValue() *

f.intValue()); :}
| Term:t DIV Factor:f
{: RESULT = new Integer(t.intValue() /

f.intValue()); :}
| Factor:f
{: RESULT = f; :}

Factor ::= NUMLIT:n {: RESULT = n; :}
| LPAR Expression:e RPAR
{: RESULT = e; :}

St
ri

ng
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/19

Control Flow

♦ This approach works fine for simple expressions.
♦ Control flow constructs such as ‘if’ and ‘while’ are

harder to handle.
♦ For ‘while’ we would need to “reparse” the

statement that is to be repeated.
♦ Let us extend the language with control flow,

variables, and boolean values.

St
ri

ng
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/20

Tree-based (pattern-based)
Interpretation

♦ By representing the code by a data structure we
can “reexecute” the same piece of code several
times.

♦ This will lead to a slightly more complicated
interpreter, which will require at least two passes
over the code.

♦ The code will first be parsed and stored in the
internal representation, then the interpretation
will be performed.

♦ We can use an abstract syntax tree for
representing the code.

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/21

Design choices

♦ How is the program represented?
♦ As an Abstract Syntax Tree (AST) with the class Tree.

♦ How is data represented?
♦ We have different types of values, integers and

Booleans.
♦ The value of each expression is either an IntValue or a
BoolValue, subclasses of Value.

♦ How are variables represented?
♦ With a symbol table where each symbol can have a

value.

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/22

The Implementation

♦ The Interpreter itself can be implemented by a
Visitor on the AST.

♦ We need a Value class:
class Value {
static class IntValue extends Value {
int i;
public IntValue(int i) { this.i = i; }

}
static class BoolValue extends Value {
boolean b;
public BoolValue(boolean b) { this.b = b; }

}
}

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/23

Interpreting Expressions

public void caseOp(Op tree) {
switch (tree.op) {
case TRUE:
result = new BoolVal(true);
break;

case FALSE:
result = new BoolVal(false);
break;

case PLUS:
IntValue lval = (IntValue) interpret(tree.left);
IntValue rval = (IntValue) interpret(tree.right);
result = new IntValue(lval.i + rval.i);
break;

…

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/24

Semantic Analysis Needed

♦This assumes that types are
correct.
♦We could either have a prepass that

does the type analysis.
♦Or we could do the type checking at

the same time as interpreting.

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/25

Analyzing While Interpreting

public void caseOp(Op tree) {
switch (tree.op) {
case PLUS:
Value lval = interpret(tree.left);
Value rval = interpret(tree.right);
if ((lval instanceof IntValue) &&

(rval instance of IntValue)) {
result = new IntValue(

((IntValue)lval).i +
((IntValue)rval).i);

} else error();
break;

…

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/26

Control Flow

♦Now we can try to interpret a control flow
construct.

♦It turns out to be very easy, since we are
writing our interpreter in Java which
supports the same control flow constructs.

♦It becomes a bit complicated if the type
analysis has to be done at the same time.

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/27

While (assuming type analysis)

public void caseWhile(While tree){
while(((BoolValue)
interpret(tree.cond)).b) {
interpret(tree.body);

}
}

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/28

Interpreting While, While
Analyzing

public void caseWhile(While tree) {
Value cond=interpret(tree.cond);
while((cond instanceof BoolValue)

&& ((BoolValue) cond).b) {
interpret(tree.body);
cond=interpret(tree.cond);

}
}

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/29

Variables

♦ We need to keep track of the values of variables somehow.
A simple solution is to store these values with the symbols
in the symbol table.

♦ If we interpret an assignment we store the value in the
symbol.

♦ If we interpret an identifier we read the value from the
symbol.

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/30

Functions

♦These techniques can handle simple
languages without functions or more than
one scope.

♦In order to handle functions and especially
recursive functions and local scopes we
will need an environment.

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/31

Environments

♦ In an environment we store all values of parameters (arguments) and local
variables of a function for one specific call.

♦ We create a new environment when we call a function or enter a local scope.
♦ We store actual arguments of the call in the environment.
♦ We initialize local variables.
♦ After returning from a function, or leaving the local scope, the environment is not

needed any more.
♦ The environment can be implemented as an array of values, the position in

the array of an identifier can be stored in the symbol table.
class Environment {

Environment outer; // For nested scope.
Value[] values;

}
♦ An environment is similar to how scopes are handled in the compiler.
♦ When compiling to native code the environment is stored on the stack as activation

records.

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/32

Function Calls

void caseFunCall {
// call interpreter recursively on
// function arguments;
Arguments args = interpret_args(tree.args);

// Create a new Environment
currentEnv = new Environment(currentEnv);

// Store the arguments in the new environment.
insert_args(args, currentEnv);

// Call the interpreter recursively on the
// body of the called function, using the new
// environment.
result = interpret(find_code(tree.funName));

// Restore the environment.
currentEnv = currentEnv.outer;

}

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/33

Disadvantages with
Tree-based Interpreters

♦ The tree representation has to be created
somehow each time we want to run the program.
♦ Parsing the source code each time is time consuming.
♦ Storing the whole tree is space consuming.

♦ The tree representation uses a lot of space at
runtime, which is infeasible for large programs.

♦ Using the stack of the host language adds to the
space need at runtime.

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/34

Token-based Interpreters

♦ By compiling the program to a special instruction set of a
virtual machine, and by adding tables that maps function
names to offsets in the instruction sequence, some of the
interpretation overhead can be reduced.

♦ Most VM instruction sets uses small integers to represent
everything in the instruction stream (opcodes, registers,
stack slots, functions, constants, etc.).

♦ By implementing the interpreter in C we can gain some
speed, it also allows us to do nasty pointer tricks.

To
ke

n-
ba

se
d

In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/35

Token-based Interpreters

♦ The fundamental instruction unit is the token.
♦ A token is a predefined numeric value that

represents a certain instruction.
♦ E.g., BREAK=0, LOADLITERAL = 1, ADD=2.

♦ The most common case is bytecode:
♦ The token with is 8 bits.
♦ The total instruction set is limited to 256 tokens.

To
ke

n-
ba

se
d

In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/36

Basic Structure of a Token-based
Interpreter

byte *pc = &program[0];
while(TRUE) {

byte opcode = pc[0];
switch(opcode) {
…
case LOADLITERAL:
destReg = pc[1];
value = getTwoBytes(&pc[2]);
regs[destReg] = value;
pc += 4;
break;

case JUMP:
jumpAddress = getFourBytes(&pc[1]);
pc = &program[jumpAddress]
break;

}
}

To
ke

n-
ba

se
d

In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/37

Alignment

♦ Most modern machines loads data at least one
word at the time (usually 4 bytes). By making
sure that instructions are aligned on word offsets
we get better performance.

opcode addr0 addr1 addr2 addr3

opcode addr0 addr1 addr2 addr3

Note: The padding is done by the loader,
no extra space is needed in the external
representation.

To
ke

n-
ba

se
d

In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/38

Token-based Interpreter
with Aligned Instructions

byte *pc = &program[0];
while(TRUE) {

byte opcode = pc[0];
switch(opcode) {
…
case LOADLITERAL:
destReg = pc[1];
value = getTwoBytes(&pc[2]);
regs[destReg] = value;
pc += 4;
break;

case JUMP:
jumpAddress = getFourBytes(&pc[4]);
pc = &program[jumpAddress]
break;

}
}

To
ke

n-
ba

se
d

In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/39

Token-based Interpreter
with Abstract Encoding

byte *pc = &program[0];
while(TRUE) {

byte opcode = pc[0];
switch(opcode) {
…
case LOADLITERAL:
destReg = pc[LOADLITTERAL_ARG1];
value = getTwoBytes(&pc[LOADLITTERAL_ARG2]);
regs[destReg] = value;
pc += LOADLITTERAL_SIZE;
break;

case JUMP:
jumpAddress = getFourBytes(&pc[JUMP_ARG1]);
pc = &program[jumpAddress]
break;

}
}

#define LOADLITTERAL_SIZE 4
#define JUMP_SIZE 8
#define LOADLITTERAL_ARG1 1
#define LOADLITTERAL_ARG2 2
#define JUMP_ARG1 4

To
ke

n-
ba

se
d

In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/40

Token-based Interpreter
with Abstract Control

byte *pc = &program[0];
while(TRUE) {
loop:

byte opcode = pc[0];
switch(opcode) {
…
case LOADLITERAL:
destReg = pc[LOADLITTERAL_ARG1];
value = getTwoBytes(&pc[LOADLITTERAL_ARG2]);
regs[destReg] = value;
pc += LOADLITTERAL_SIZE;
NEXT;

case JUMP:
jumpAddress = getFourBytes(&pc[JUMP_ARG1]);
pc = &program[jumpAddress]
NEXT;

}
}

#define NEXT goto loop

To
ke

n-
ba

se
d

In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/41

Indirectly Threaded Interpreter

♦ In an indirectly threaded interpreter we do not switch on the tokens.
Instead we use the tokens as indices into a table containing the
addresses of the instruction implementations.

♦ The term threaded code refers to a code representation where every
instruction is implicitly a function call to the next instruction.

♦ A threaded interpreter can be very efficiently implemented in
assembler.

♦ In GNU C (gcc) we can use labels as values and take the address of a
label with &&labelname.

♦ We can actually write the interpreter in such a way that it uses
indirectly threaded code if compiled with gcc and a switch for
compatibility.

In
di

re
ct

ly
 T

hr
ea

de
d

C
od

e

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/42

Indirectly Threaded Interpreter

byte *pc = &program[0];
while(TRUE) {
loop:

byte opcode = pc[0];
switch(opcode) {
…

case LOADLITERAL:
loadlitteral_label:

destReg = pc[LOADLITTERAL_ARG1];
value = getTwoBytes(&pc[LOADLITTERAL_ARG2]);
regs[destReg] = value;
pc += LOADLITTERAL_SIZE;
NEXT;

case JUMP:
jump_label:

jumpAddress = getFourBytes(&pc[JUMP_ARG1]);
pc = &program[jumpAddress]
NEXT;

}
}

static void *label_tab[] {
...
&&loadlitteral_label;
&&jump_label;

}
#define NEXT \
goto **(void **)(label_tab[*pc])

In
di

re
ct

ly
 T

hr
ea

de
d

C
od

e

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/43

Directly Threaded Interpreter

♦In a directly threaded interpreter we do not
use tokens at all during runtime.

♦Instead the loader replaces each token with
the address of the implementation of the
instruction.

♦This means the opcodes will take one word
or four bytes at runtime, slightly increasing
the code size.

D
ir

ec
tly

 T
hr

ea
de

d
C

od
e

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/44

Directly Threaded Interpreter

byte *pc = &program[0];
while(TRUE) {
loop:

byte opcode = pc[0];
switch(opcode) {
…

case LOADLITERAL:
loadlitteral_label:

destReg = pc[LOADLITTERAL_ARG1];
value = getTwoBytes(&pc[LOADLITTERAL_ARG2]);
regs[destReg] = value;
pc += LOADLITTERAL_SIZE;
NEXT;

case JUMP:
jump_label:

jumpAddress = getFourBytes(&pc[JUMP_ARG1]);
pc = &program[jumpAddress]
NEXT;

}
}

static void *label_tab[] {
...
&&loadlitteral_label;
&&jump_label;

}
#define NEXT \
goto **(void **)(pc)

D
ir

ec
tly

 T
hr

ea
de

d
C

od
e

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/45

Subroutine Threaded Interpreter

♦The only portable way to implement a
threaded interpreter in C is to use
subroutine threaded code.

♦Each instruction is implemented as a
function and at the end of each instruction
the next function is called.

Su
br

ou
tin

e
Th

re
ad

ed
 C

od
e

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/46

Subroutine Threaded Interpreter
(with tail-calls)

byte *pc = &program[0];
NEXT;

…
void loadlitteral(void) {

destReg = pc[LOADLITTERAL_ARG1];
value = getTwoBytes(&pc[LOADLITTERAL_ARG2]);
regs[destReg] = value;
pc += LOADLITTERAL_SIZE;
NEXT;

}
void jump(void) {

jumpAddress = getFourBytes(&pc[JUMP_ARG1]);
pc = &program[jumpAddress];
NEXT;

}

static void *label_tab[] {
...
&loadlitteral;
&jump;

}
#define NEXT ((void (*)())*pc)()

Su
br

ou
tin

e
Th

re
ad

ed
 C

od
e

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/47

Subroutine Threaded Interpreter

byte *pc = &program[0];
while (TRUE) NEXT;

…
void loadlitteral(void) {
destReg = pc[LOADLITTERAL_ARG1];
value = getTwoBytes(&pc[LOADLITTERAL_ARG2]);
regs[destReg] = value;
pc += LOADLITTERAL_SIZE;

}
void jump(void) {
jumpAddress = getFourBytes(&pc[JUMP_ARG1]);
pc = &program[jumpAddress];

}

static void *label_tab[] {
...
&loadlitteral;
&jump;

}
#define NEXT ((void (*)())*pc)()

Su
br

ou
tin

e
Th

re
ad

ed
 C

od
e

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/48

Subroutine Threaded Interpreter

(void (*)()) pc = &program[0];
while (TRUE) *pc++;

…
void loadlitteral(void) {
destReg = ((int *)pc)[LOADLITTERAL_ARG1];
value = getTwoBytes(&pc[LOADLITTERAL_ARG2]);
regs[destReg] = value;
pc += LOADLITTERAL_SIZE;

}
void jump(void) {
jumpAddress = getFourBytes(&pc[JUMP_ARG1]);
pc = &program[jumpAddress];

}

#define LOADLITTERAL_SIZE 1
#define JUMP_SIZE 1
#define LOADLITTERAL_ARG1 0
#define LOADLITTERAL_ARG2 1
#define JUMP_ARG1 0

Su
br

ou
tin

e
Th

re
ad

ed
 C

od
e

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/49

Stack-based vs. Register-based VM

♦ A VM can either be stack-based or register-based.
♦ In a stack-based machine most operands are on the

stack. The stack can grow as needed.
♦ In a register-based machine most operands are in

(virtual) registers. The number of registers is limited.
♦ Most VMs are stack-based.

♦ Stack machines are simpler to implement.
♦ Stack machines are easier to compile to.
♦ Less encoding/decoding to find the right register.
♦ Virtual registers are no faster than stack slots.

V
ir

tu
al

 M
ac

hi
ne

s:
 In

st
ru

ct
io

n
Se

t

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/50

Interpreter Tuning

♦Common interpreter optimizations include:
♦Writing the interpreter loop and key

instructions in assembler.
♦Keeping important variables in hardware

registers (pc, stack-top, heap-top). (GNU C
allow global register variables.)

♦Top of stack caching.
♦Splitting the most used instruction into a

separate interpreter loop.

V
ir

tu
al

 M
ac

hi
ne

s:
Tu

ni
ng

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/51

Interpreter Tuning

♦ More advanced interpreter optimizations includes:
♦ Instruction merging: A common sequence of VM instructions is

replaced by a single instruction.
♦ Reduced interpretation overhead.
♦ Enhances code locality.
♦ More compact bytecode.
♦ Gives C compiler bigger code block to optimize.

♦ Instruction specialization: A special case VM instruction is
created, typically with some arguments hard-coded.
♦ Eliminates argument decoding cost.
♦ More compact bytecode.
♦ Reduces register pressure.

V
ir

tu
al

 M
ac

hi
ne

s:
Tu

ni
ng

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/52

Just-in-time Compilation

♦ Native code is still faster than code interpreted in VMs. To
get the best performance native code compilation is
necessary. But bytecode is a nice format to distribute
portable code.

♦ Solution: dynamic compilation or just-in-time (JIT)
compilation.

♦ Native code takes more space than virtual machine code
(4-8x). Don’t compile everything to native code (some code
is never executed).

♦ Compilation takes time, dynamic compilation has to be
fast. No time for advanced optimization (unless the
bytecode compiler has inserted hints in the bytecode).

JIT
 C

om
pi

la
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/53

JIT – What to Compile

♦Only compile a method if the total
execution time is reduced.

♦How do we know this?
♦Use the past to predict the future:

♦Use profiling to detect what and when to
compile. There are two basic approaches:
♦Invocation counters.
♦Sample based profiling.

JIT
 C

om
pi

la
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/54

Invocation Counters

♦Associate a counter with each function.
♦When a function is called increment the

counter.
♦If the counter reaches a limit compile the

function. Reset or use decay to only
compile high-frequency functions.

♦Hard to predict behavior, no control over
time spent in compiler.

JIT
 C

om
pi

la
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/55

Sample Based Profiling

♦Measure time spent in interpreter,
compiler, and in compiled code.

♦Harder to implement.
♦Gives better picture of the hot-spots.JIT

 C
om

pi
la

tio
n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/56

JIT Integration

♦ Integrating a JIT system where native code can
coexist with interpreted code in the VM is not
trivial.

♦ Context switches between native and interpreted
code has to be fast. (They can occur at function
calls, returns, and when exceptions are thrown.)

♦ Ensuring proper tail-calls with a mixed execution
environment is also tricky.

JIT
 C

om
pi

la
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/57

Summary

♦ Virtual machines provides an abstraction from
real hardware and make programming language
implementation easier and languages more
portable.

♦ A direct threaded interpreter gives the best
performance.

♦ Virtual machines have been used for half a
century but research didn’t really take off until
the JVM came along.

