
Advanced 
Compiler

Techniques

Erik Stenman

LAMP

http://lamp.epfl.ch/teaching/advancedCompiler/



Advanced Compiler Techniques 08.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/2

Introduction

♦What is this course about?
♦How will this be taught?
♦Who is teaching the course?
♦Where to find more information?
♦Why is this course interesting?
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Teachers

♦Lecturer
♦Erik Stenman

♦have been hacking compilers for money since 1996. 
Have been hacking for fun since 1980.

♦Office: INR315, 021-69 37593.
♦Assistant

♦Michel Schinz
♦whom you all know and love.
♦Office: INR318, 021-69 34209.
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Course Content

♦Optimization Techniques
♦Implementation techniques for high level 

languages (HLL).
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Course Content

♦Optimization Techniques
♦Theory for analysis and optimization
♦Optimization algorithms

♦Implementation techniques for high level 
languages (HLL).
♦Virtual Machines
♦Memory Management
♦High level constructs
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Course Goals

♦Give some theoretical framework for 
compiler optimizations.

♦Give a general orientation on optimization 
techniques.

♦Give an understanding of how some higher 
level constructs are implemented.
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Non-Goals and Requirements

♦ This course will not try to teach you all possible 
optimizations, or even all common optimizations.

♦ We will not talk about parallel machines.
♦ You are supposed to be familiar with basic compiler 

concepts: scanning, parsing, semantic analysis, and simple 
code generation. (These topics will not be touched.)

♦ You are supposed to be used to programming in Java.  
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Course Structure

♦The course will be made up of lectures, 
articles, two projects, and an oral exam.

♦The lectures will be given with slides like 
this one, and the slides will be available on 
the web:
http://lamp.epfl.ch/teaching/advancedCompiler/

♦I will try to have the slides on the web at 
least a day before the lecture.
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Preliminary Schedule

1. Introduction
2. Control-Flow Analysis & Foundations of Data-Flow Analysis 
3. Reaching Definitions, Available Expressions, and Liveness Analyses. Introduction to 

Abstract Interpretation. 
4. Static Single Assignment Form, SSA-based Dead Code Elimination & Sparse 

Conditional Constant Propagation 
5. [cont] Static Single Assignment Form, SSA-based Dead Code Elimination & Sparse 

Conditional Constant Propagation 
6. Partial Redundancy Elimination & Lazy Code Motion 
7. Loop Optimizations 
8. Global Register Allocation 
9. Code Scheduling 
10. Implementation of higher order functions, processes, and objects
11. Automatic Memory Management 
12. Virtual Machines, Interpretation Techniques, and Just-In-Time Compilers 
13. Presentations 
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The Projects

♦ There will be two projects in the course and you may 
work in groups of two persons.

♦ Project 1: A simple register allocator.
♦ The main goal of the first project is to get familiar with the 

compiler framework that we will use for the second project. 
♦ The task is to implement a Sethi-Ullman tree-based register 

allocator for a given compiler.
♦ Project 2: Optimizations.

♦ The goal of the second project is to get a concrete understanding of 
different optimization techniques.

♦ The task will be to implement different optimizations in the given 
compiler in order to achieve a given speedup on a set of 
benchmarks. 
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Literature

♦ Course Book:
♦ Andrew W. Appel, 

Modern compiler implementation in Java (second edition).
Cambridge University Press, 2002, ISBN 052182060X. 

♦ Alternative:
♦ Keith Cooper and Linda Torczon, 

Engineering a Compiler, Morgan Kaufmann, October 2003. 
♦ Reference: 

♦ Steven Muchnick, 
Advanced Compiler Design and Implementation,
Morgan Kaufmann, August 1997. 

♦ Additional articles that will be handed out.

Expect to read a lot for this class, 
especially in order to complete the 

projects. 
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The Exam

♦There will be an oral exam during the last 
week of the course.

♦ The exam will concentrate on the understanding of the 
concepts taught in the course, and not on details of 
specific algorithms.

Note: 
The examination form of the course has changed from 

“Branche à examen (oral) avec contrôle continu” to 
“Contrôle continu”
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Feedback

♦This is the first time this course is given so 
the format and the content is not set in 
stone.

♦At the end of next week there will be an 
evaluation of the course so far, and you will 
have chance to influence the rest of the 
course to a great extent.
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Why is this course interesting?

♦ Optimization is challenging—you can not write 
an optimal compiler: there is always room for 
improvements. 

♦ The course will give you many techniques and 
tools that you can use in other areas.

♦ You will gain a better understanding of how a 
compiler works and what to expect of the code 
generated by compilers.

♦ It is fun!
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Foundations of              
Dataflow Analysis

This lecture is primarily based on Konstantinos Sagonas set of slides 
(Advanced Compiler Techniques, (2AD518)

at Uppsala University, January-February 2004).
Used with kind permission. 
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Terminology: 
Program Representation

Control Flow Graph (CFG):
♦Nodes N – statements of program
♦Edges E – flow of control

♦pred(n) = set of all immediate predecessors of n
♦succ(n) = set of all immediate successors of n

♦Start node n0

♦Set of final nodes NfinalTe
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Terminology: 
Control-Flow Graph

m ← a + b
n ← a + b

A

p ← c + d
r ← c + d

B

y ← a + b
z ← c + d

G

q ← a + b
r ← c + d

C

e ← b + 18
s ← a + b
u ← e + f

D e ← a + 17
t ← c + d
u ← e + f

E

v ← a + b
w ← c + d
x ← e + f

F

Control-flow graph  (CFG)

• Nodes for basic blocks

• Edges for branches

• Basis for much of program 
analysis & transformation

This CFG,

G = (N,E)

N = {A, B, C, D, E, F, G}
E = {(A, B), (A, C), (B, G), 

(C, D), (C, E), (D, F),
(E, F),(F, G)}

|N| = 7
|E| = 8
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An EBB contains 1 or 
more paths. This EBB 
({A,B,C,D,E}) contains
the paths {A,B} {A,C,D} 
{A,C,E}

Extended Basic Block (EBB):
A sequence of basic blocks B1, B2, …, Bn
where B1 has more than 1 predecessor, 
all other Bi have a unique predecessor.

Terminology: 
Extended Basic Block

m ← a + b
n ← a + b

A

p ← c + d
r ← c + d

B

y ← a + b
z ← c + d

G

q ← a + b
r ← c + d

C

e ← b + 18
s ← a + b
u ← e + f

D e ← a + 17
t ← c + d
u ← e + f

E

v ← a + b
w ← c + d
x ← e + f

F

EBB: Conceptually it is a 
program sequence with only 
one entry point but possibly 
several exit points.

An EBB contains 1 or 
more paths. 

Path:
A sequence of basic blocks B1, B2, …, Bn
where Bi is the predecessor of Bi+1.
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♦ One program point before each node.
♦ One program point after each node.
♦ Join point – Program point with multiple 

predecessors.
♦ Split point – Program point with multiple 

successors.

Terminology: 
Program Points
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Dataflow Analysis

Compile-Time Reasoning About
♦ Run-Time Values of Variables or Expressions at 

different program points:
♦Which assignment statements produced the 

value of  the variables at this point?
♦Which variables contain values that are no 

longer used after this program point?
♦What is the range of possible values of a 

variable at this program point?
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Dataflow Analysis

♦Assumptions: 
♦We have a syntactically and semantically 

correct program (as far as compile time 
analysis can determine this).

♦We have the “whole” program, or a clearly 
defined subset of the program which will only 
interact with the rest of the program through a 
predefined interface. 
(That is, no self modifying code, and if the interface is a function then the 
parameters can take any value of the given type.)
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Dataflow Analysis: 
Basic Idea

♦Information about a program represented 
using values from an algebraic structure 
called lattice. (We will call this set of values P.)

♦Analysis produces a lattice value for each 
program point.

♦Two flavors of analyses:
♦Forward dataflow analyses.
♦Backward dataflow analyses.
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Forward Dataflow Analysis
♦ Analysis propagates values forward through

control flow graph with flow of control
♦Each node has a transfer function ƒ

♦ Input – value at program point before node.
♦ Output – new value at program point after node.

♦Values flow from program points after 
predecessor nodes to program points before 
successor nodes.

♦At join points, values are combined using a 
merge function.

♦ Canonical Example: Reaching Definitions.
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Backward Dataflow Analysis
♦ Analysis propagates values backward through 

control flow graph against flow of control:
♦Each node has a transfer function ƒ

♦Input – value at program point after node.
♦Output – new value at program point before node.

♦Values flow from program points before 
successor nodes to program points after 
predecessor nodes.

♦At split points, values are combined using a 
merge function.

♦ Canonical Example: Live Variables.
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Partial Orders

♦ Set P
♦ Partial order · such that ∀ x,y,z ∈ P

i. x · x (reflexive)

ii. x · y and y · x⇒ x = y (antisymmetric)
iii. x · y and y · z⇒ x · z (transitive)

Th
eo

ry
 F

ou
nd

at
io

n:
 P

ar
tia

l O
rd

er
s



Advanced Compiler Techniques 
http://lamp.epfl.ch/teaching/advancedCompiler/12

Upper Bounds

♦ If S ⊆ P then
♦ x∈P is an upper bound of S if

∀y ∈S, y ≤ x

♦ x∈ P is the least upper bound (lub) of S if
♦ x is an upper bound of S, and 
♦ x ≤ y for all upper bounds y of S

♦ ∨ - join, least upper bound, supremum (sup)

♦ ∨S is the least upper bound of S
♦ x ∨ y is the least upper bound of {x, y}
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Lower Bounds

♦If S ⊆ P then
♦ x∈P is a lower bound of S if ∀y∈S, x ≤ y

♦ x∈P is the greatest lower bound (glb) of S if
♦ x is a lower bound of S, and 
♦ y ≤ x for all lower bounds y of S

♦∧ - meet, greatest lower bound, infimum (inf)
♦ ∧ S is the greatest lower bound of S
♦ x ∧ y is the greatest lower bound of {x, y}
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Coverings

♦Notation: x < y if x ≤ y and x≠y
♦ x is covered by y (y covers x) if

♦ x < y, and
♦ x ≤ z < y⇒ x = z

♦Conceptually, y covers x if there are no 
elements between x and yTh
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Dataflow Analysis: 
Basic Idea

♦Information about a program represented 
using values from an algebraic structure 
called lattice. (We will call this set of values P.)

♦Analysis produces a lattice value for each 
program point.

♦Two flavors of analyses:
♦Forward dataflow analyses.
♦Backward dataflow analyses.
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Hasse Diagram

♦We can visualize a partial order with a 
Hasse Diagram.

♦For each element x we draw a circle:
♦If y covers x

♦Line from y to x
♦ y above x in diagram

y 

x
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Hasse Diagram: Example

P = {000, 001, 010, 011, 100, 101, 110, 111}
x ≤ y if (x bitwise_and y) = x
(standard boolean lattice, also called hypercube) 111

011
101

110

010001

000

100
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Lattices

♦ If x ∧ y and x ∨ y exist for all x,y ∈ P, 
then P is a lattice.

♦ If ∧S and ∨S exist for all S ⊆ P,
then P is a complete lattice.

♦ Theorem: All finite lattices are complete.
♦ Example of a lattice that is not complete

♦ Integers Z
♦ For any x,y ∈Z, x ∨ y = max(x,y), x ∧ y = min(x,y)

♦ But ∨Z and ∧Z do not exist
♦ Z ∪ {+∞, −∞} is a complete lattice
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Top and Bottom

♦Greatest element of P (if it exists) is top (|).
♦Least element of P (if it exists) is bottom (⊥).
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Connection between 
≤, ∧, and ∨

The following 3 properties are equivalent:
♦ x ≤ y
♦ x ∨ y = y
♦ x ∧ y = x

♦ Will prove:
♦ x ≤ y ⇒ x ∨ y = y and x ∧ y = x
♦ x ∨ y = y ⇒ x ≤ y
♦ x ∧ y = x ⇒ x ≤ y

♦ By Transitivity, 
♦ x ∨ y = y ⇒ x ∧ y = x 
♦ x ∧ y = x ⇒ x ∨ y = y
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Connecting Lemma Proofs (1)

♦ Proof of x ≤ y⇒ x ∨ y = y

♦ x ≤ y ⇒ y is an upper bound of {x,y}.
♦Any upper bound z of {x,y} must satisfy y ≤ z.
♦ So y is least upper bound of {x,y} and x ∨ y = y

♦ Proof of x ≤ y⇒ x ∧ y = x

♦ x ≤ y ⇒ x is a lower bound of {x,y}.
♦Any lower bound z of {x,y} must satisfy z ≤ x.
♦ So x is the greatest lower bound of {x,y},

that is x ∧ y = x
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Connecting Lemma Proofs (2)

♦Proof of x ∨ y = y⇒ x ≤ y
♦ y is an upper bound of {x,y} ⇒ x ≤ y 

♦Proof of x ∧ y = x⇒ x ≤ y
♦ x is a lower bound of {x,y} ⇒ x ≤ y

Chains
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Lattices as Algebraic Structures

♦Have defined ∨ and ∧ in terms of ≤.
♦Now define ≤ in terms of ∨ and ∧:

♦Start with ∨ and ∧ as arbitrary algebraic 
operations that satisfy associative, 
commutative, idempotence, 
and absorption laws.

♦Will define ≤ using ∨ and ∧.
♦Will show that ≤ is a partial order.

Chains
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Algebraic Properties of Lattices

Assume arbitrary operations ∨ and ∧ such that
♦ (x ∨ y) ∨ z = x ∨ (y ∨ z) (associativity of ∨)
♦ (x ∧ y) ∧ z = x ∧ (y ∧ z) (associativity of ∧)
♦ x ∨ y = y ∨ x (commutativity of ∨)
♦ x ∧ y = y ∧ x (commutativity of ∧)
♦ x ∨ x = x (idempotence of ∨)
♦ x ∧ x = x (idempotence of ∧)
♦ x ∨ (x ∧ y) = x (absorption of ∨ over ∧)
♦ x ∧ (x ∨ y) = x (absorption of ∧ over ∨)
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Connection Between
∧ and ∨

Theorem: x ∨ y = y if and only if x ∧ y = x
♦ Proof of x ∨ y = y ⇒ x = x ∧ y

x = x ∧ (x ∨ y) (by absorption)
= x ∧ y (by assumption)

♦ Proof of x ∧ y = x ⇒ y = x ∨ y
y = y ∨ (y ∧ x) (by absorption)

= y ∨ (x ∧ y) (by commutativity)
= y ∨ x (by assumption)
= x ∨ y (by commutativity)
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Properties of ≤

♦ Define x ≤ y if x ∨ y = y
♦ Proof of transitive property. Show that

x ∨ y = y and y ∨ z = z ⇒ x ∨ z = z
x ∨ z = x ∨ (y ∨ z) (by assumption)

= (x ∨ y) ∨ z (by associativity)
= y ∨ z (by assumption)
= z (by assumption)
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Properties of ≤

♦Proof of asymmetry property. Show that
x ∨ y = y and y ∨ x = x ⇒ x = y

x = y ∨ x (by assumption)
= x ∨ y (by commutativity)
= y (by assumption)

♦Proof of reflexivity property. Show that
x ∨ x = x

x ∨ x = x (by idempotence)
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Properties of ≤

♦Induced operation ≤ agrees with original 
definitions of ∨ and ∧, i.e., 
♦x ∨ y = sup {x, y}
♦x ∧ y = inf {x, y}
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Proof of x ∨ y = sup {x, y}

♦Consider any upper bound u for x and y.
♦Given x ∨ u = u and y ∨ u = u, 

show x ∨ y ≤ u, 
i.e., (x ∨ y) ∨ u = u
u = x ∨ u (by assumption)

= x ∨ (y ∨ u) (by assumption)
= (x ∨ y) ∨ u (by associativity)
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Proof of x ∧ y = inf {x, y}

• Consider any lower bound l for x and y.
• Given x ∧ l = l and y ∧ l = l, 

show   l ≤ x ∧ y, 
i.e., (x ∧ y) ∧ l = l
l = x ∧ l (by assumption)

= x ∧ (y ∧ l) (by assumption)
= (x ∧ y) ∧ l (by associativity)
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Chains

♦ A set S is a chain if ∀x,y∈S. y ≤ x or x ≤ y

♦ P has no infinite chains if every chain in P is finite
♦ P satisfies the ascending chain condition if     

for all sequences x1 ≤ x2 ≤ … there exists n   
such that xn = xn+1 = …
That is, all increasing sequences in P eventually 
becomes constant.
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Dataflow Analysis
(repetition)

♦ Information about a program represented using values 
from a lattice (P). Analysis propagates values through
control flow graph, either forwards or backwards. 

♦ For forward analysis: 
♦ Each node has a transfer function ƒ, 

♦ Input – value at program point before node.
♦Output – new value at program point after node.

♦ Values flow from program points after predecessor nodes to 
program points before successor nodes.

♦ At join points, values are combined using a merge function.
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Transfer Functions

♦Assume a lattice P of abstract values. 
♦Transfer function ƒ: P→P for each node in 

control flow graph.
♦ƒ models the effect of the node on the 

program information.
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Properties of Transfer Functions
Each dataflow analysis problem has a set F of 

transfer functions ƒ:P→P
♦ Identity function i∈F
♦ Fmust be closed under composition:             
∀ƒ,g∈F, the function h = λx.ƒ(g(x))∈F

♦ Each ƒ∈Fmust be monotone:x ≤ y⇒ ƒ(x) ≤ ƒ(y)
♦ Sometimes all ƒ∈F are distributive:                       

ƒ(x ∨ y) = ƒ(x) ∨ ƒ(y)
♦ Distributivity ⇒ monotonicity

D
at

af
lo

w
 A

na
ly

si
s:

 T
ra

ns
fe

r F
un

ct
io

ns



Advanced Compiler Techniques 
http://lamp.epfl.ch/teaching/advancedCompiler/35

Distributivity Implies 
Monotonicity

Proof:
♦Assume ƒ(x ∨ y) = ƒ(x) ∨ ƒ(y)
♦Show: x ∨ y = y⇒ ƒ(x) ∨ ƒ(y) = ƒ(y)

ƒ(y) = ƒ(x ∨ y) (by assumption)
= ƒ(x) ∨ ƒ(y) (by distributivity)
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Forward Dataflow Analysis
♦ Simulates forward execution of a program
♦ For each node n, we have

inn – value at program point before n
outn – value at program point after n
ƒn – transfer function for n (given inn, computes outn)

♦ Require that solutions satisfy
i. ∀n, outn = ƒn(inn)
ii. ∀n ≠ n0, inn = ∨ { outm | m ∈ pred(n) }
iii. inn0 = ⊥
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Dataflow Equations

♦Result is a set of dataflow equations
outn := ƒn(inn)
inn := ∨ { outm | m ∈ pred(n) }

♦Conceptually separates analysis problem 
from program.D
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Worklist Algorithm for Solving 
Forward Dataflow Equations

for each n∈N do outn := ƒn(⊥)
worklist := N
while worklist ≠ ∅ do:

remove a node n from worklist
inn := ∨ { outm | m ∈ pred(n) }
outn := ƒn(inn)
if outn changed then

worklist := worklist ∪ succ(n)
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Correctness Argument
Why result satisfies dataflow equations?
♦Whenever we process a node n,

set outn := ƒn(inn) 
Algorithm ensures that outn = ƒn(inn) 

♦ Whenever outm changes, put succ(m) on worklist. 
Consider any node n ∈ succ(m).                                     
It will eventually come off the worklist and the 
algorithm will set 

inn := ∨ { outm | m ∈ pred(n) } 
to ensure that inn = ∨ { outm | m ∈ pred(n) } 
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Termination Argument

Why does the algorithm terminate?
♦ Sequence of values taken on by inn or outn is a 

chain. If values stop increasing, the worklist 
empties and the algorithm terminates.

♦ If the lattice has the ascending chain property, the 
algorithm terminates
♦Algorithm terminates for finite lattices.
♦ For lattices without the ascending chain property, we 

must use a widening operator.
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Widening Operators

♦ Detect lattice values that may be part of an 
infinitely ascending chain.

♦ Artificially raise value to least upper bound of the 
chain.

♦ Example: 
♦ Lattice is set of all subsets of integers.
♦Widening operator might raise all sets of size n or 

greater to TOP (the set of all integers).
♦Could be used to collect possible values taken on by a 

variable during execution of the program.
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Reaching Definitions

♦Concept of definition and use
♦z = x+y

♦ is a definition of z
♦ is a use of x and y

♦A definition (d) reaches a use (u) if the 
value written by d may be read by u.
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Reaching Definitions
s = 0; 
a = 4; 
i = 0;
k == 0 

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return sD
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Reaching Definitions Framework

♦ P = ℘ (the powerset) of the set of definitions in 
the program (all subsets of the set of definitions).

♦ ∨ = ∪ (order is ⊆)
♦ ⊥ = ∅
♦ F = all functions ƒ of the form ƒ(x) = a ∪ (x-b)

♦ b is the set of definitions that the node kills.
♦ a is the set of definitions that the node generates.

General pattern for many transfer functions
♦ƒ(x) = GEN ∪ (x-KILL)
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Does Reaching Definitions 
Framework Satisfy Properties?

♦⊆ satisfies conditions for ≤
x ⊆ y and y ⊆ z ⇒ x ⊆ z (transitivity)
x ⊆ y and y ⊆ x ⇒ y = x (asymmetry)
x ⊆ x (reflexivity)

♦ F satisfies transfer function conditions
λx.∅ ∪ (x- ∅) = λx.x∈F (identity)
Will show ƒ(x ∪ y) = ƒ(x) ∪ ƒ(y) (distributivity)

ƒ(x) ∪ ƒ(y) = (a ∪ (x – b)) ∪ (a ∪ (y – b))
= a ∪ (x – b) ∪ (y – b) 
= a ∪ ((x ∪ y) – b)
= ƒ(x ∪ y)
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Does Reaching Definitions 
Framework Satisfy Properties?

What about composition?
♦Given ƒ1(x) = a1 ∪ (x-b1) and ƒ2(x) = a2 ∪ (x-b2)
♦Show ƒ1(ƒ2(x)) can be expressed as a ∪ (x - b)

ƒ1(ƒ2(x)) = a1 ∪ ((a2 ∪ (x-b2)) - b1)
= a1 ∪ ((a2 - b1) ∪ ((x-b2) - b1))
= (a1 ∪ (a2 - b1)) ∪ ((x-b2) - b1))
= (a1 ∪ (a2 - b1)) ∪ (x-(b2 ∪ b1))

Let a = (a1 ∪ (a2 - b1)) and b = b2 ∪ b1
Then ƒ1(ƒ2(x)) = a ∪ (x – b)
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General Result
All GEN/KILL transfer function frameworks 

satisfy the properties:
♦Identity
♦Distributivity
♦Compositionality
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Available Expressions 
Framework

♦ P =℘ (the powerset) of the set of all expressions 
in the program (all subsets of set of expressions).

♦ ∨ = ∩ (order is ⊇)
♦ ⊥ = ℘ (but inn0 = ∅)
♦ F = all functions ƒ of the form 

ƒ(x) = a ∪ (x-b).
♦ b is set of expressions that node kills.
♦ a is set of expressions that node generates.

♦ Another GEN/KILL analysisD
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Concept of Conservatism

♦ Reaching definitions use ∪ as join
♦ Optimizations must take into account all definitions that reach 

along ANY path
♦ Available expressions use ∩ as join

♦ Optimization requires expression to reach along ALL paths
♦ Optimizations must conservatively take all possible 

executions into account. 
♦ Structure of analysis varies according to the way the 

results of the analysis are to be used.
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Backward Dataflow Analysis
• Simulates execution of program backward 

against the flow of control.
• For each node n, we have

inn – value at program point before n.
outn – value at program point after n.
ƒn – transfer function for n (given outn, computes inn).

• Require that solutions satisfy:
i. ∀n. inn = ƒn(outn)
ii. ∀n ∉ Nfinal. outn = ∨ { inm | m ∈ succ(n) }
iii. ∀n ∈ Nfinal . outn = ⊥
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Worklist Algorithm for Solving 
Backward Dataflow Equations

for each n ∈ N do inn := ƒn(⊥)
worklist := N
while worklist ≠ ∅ do

remove a node n from worklist
outn := ∨ { inm | m ∈ succ(n) }
inn := ƒn(outn)
if inn changed then 

worklist := worklist ∪ pred(n)
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Live Variables Analysis 
Framework

♦ P = powerset of the set of all variables in the 
program (all subsets of the set of variables).

♦ ∨ = ∪ (order is ⊆)
♦ ⊥ = ∅
♦ F = all functions ƒ of the form ƒ(x) = a ∪ (x-b)

♦ b is set of variables that the node kills.
♦ a is set of variables that the node reads.
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Meaning of Dataflow Results

♦ Connection between executions of program and 
dataflow analysis results.

♦ Each execution generates a trajectory of states:
♦ s0;s1;…;sk,where each si∈S

♦ Map current state sk to 
♦ Program point n where execution located.
♦Value x in dataflow lattice.

♦ Require x ≤ inn
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Abstraction Function for 
Forward Dataflow Analysis

♦Meaning of analysis results is given by an 
abstraction function AF:S→P

♦Require that for all states s
AF(s) ≤ inn

where n is the program point where the 
execution is located at in state s, and inn is 
the abstract value before that point.
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Sign analysis - compute sign of each variable v
♦ Base Lattice: flat lattice on {-,zero,+}

♦ Actual lattice records a value for each variable
♦ Example element: [a→+, b→zero, c→-]

Sign Analysis Example

- zero +

T

⊥
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Interpretation of Lattice Values

If value of v in lattice is:
♦⊥: no information about the sign of v.
♦-: variable v is negative.
♦zero: variable v is 0 .
♦+: variable v is positive.
♦T: v may be positive or negative or 0.
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Operation ⊗ on Lattice

TTzeroTTT

T+zero-++

zerozerozerozerozerozero

T-zero+--

T+zero-⊥⊥

T+zero-⊥⊗
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Transfer Functions

Defined by structural induction on the shape 
of nodes:
♦If n of the form v = c

♦ ƒn(x) = x[v→ +] if c is positive
♦ ƒn(x) = x[v→zero] if c is 0
♦ ƒn(x) = x[v→ -] if c is negative

♦If n of the form v1 = v2*v3

♦ ƒn(x) = x[v1→x[v2] ⊗ x[v3]]
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Abstraction Function

♦ AF(s)[v] = sign of v
♦ AF([a→5, b→0, c→-2]) = [a→+, b→zero, c→-]

♦ Establishes meaning of the analysis results
♦ If analysis says a variable v has a given sign
♦ then v always has that sign in actual execution.

♦ Two sources of imprecision
♦ Abstraction Imprecision – concrete values (integers) abstracted as 

lattice values (-,zero, and +);
♦ Control Flow Imprecision – one lattice value for all different flow 

of control possibilities.D
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Imprecision Example

b = -1 b = 1

a = 1

[a→+, b→⊥, c→⊥]

c = a*b

Abstraction Imprecision:
[a→1] abstracted as [a→+]

Control Flow Imprecision:
[b→T] summarizes results of all executions. 
In any execution state s, AF(s)[b]≠T

[a→+, b→⊥, c→⊥]

[a→+, b→-, c→⊥] [a→+, b→+, c→⊥]

[a→+, b→T, c→⊥]

[a→+, b→T, c→T]

[a→⊥, b→⊥, c→⊥]
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General Sources of Imprecision
♦ Abstraction Imprecision

♦ Lattice values less precise than execution values.
♦Abstraction function throws away information.

♦ Control Flow Imprecision
♦Analysis result has a single lattice value to summarize results 

of multiple concrete executions.
♦ Join operation ∨ moves up in lattice to combine values from 

different execution paths.
♦ Typically if x ≤ y, then x is more precise than y.
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Why Have Imprecision?

ANSWER: To make analysis tractable
♦ Conceptually infinite sets of values in execution.

♦ Typically abstracted by finite set of lattice values.
♦ Execution may visit infinite set of states.

♦Abstracted by computing joins of different paths.
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Augmented Execution States

♦Abstraction functions for some analyses 
require augmented execution states.
♦Reaching definitions: states are augmented 

with the definition that created each value.
♦Available expressions: states are augmented 

with expression for each value.
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Meet Over All Paths Solution

♦ What solution would be ideal for a forward 
dataflow analysis problem? 

♦ Consider a path p = n0, n1, …, nk, n to a node n 
(note that for all i, ni ∈ pred(ni+1))

♦ The solution must take this path into account:
ƒp(⊥) = (ƒn k

(ƒn k-1
(…ƒn1

(ƒn0
(⊥)) …)) ≤ inn

♦ So the solution must have the property that
∨{ƒp(⊥) | p is a path to n} ≤ inn

and ideally
∨{ƒp(⊥) | p is a path to n} = inn
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Soundness Proof of Analysis 
Algorithm

Property to prove:
For all paths p to n, ƒp(⊥) ≤ inn

♦ Proof is by induction on the length of p.
♦Uses monotonicity of transfer functions.
♦Uses following lemma.

Lemma:
The worklist algorithm produces a solution such that

if n ∈ pred(m) then outn ≤ inm
(That is, what you get out of a predecessor is more precise than what will go 

in to the node, because precision may be lost by the join function.)
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Proof

♦ Base case: p is of length 0
♦Then p = n0 and ƒp(⊥) = ⊥ = inn0

♦ Induction step:
♦ Assume theorem for all paths of length k.
♦ Show for an arbitrary path p of length k+1.D
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Induction Step Proof
♦ Given a path p = n0, …, nk, n show (ƒnk

(ƒnk-1
(… ƒn1

(ƒn0
(⊥)) …)) ≤ inn

By induction assumption:
(ƒnk-1

(… ƒn1(ƒn0(⊥)) …))  ≤ innk
Apply ƒnk

to both sides:
ƒnk

(ƒnk-1
(… ƒn1

(ƒn0
(⊥)) …)    ? ƒnk

(innk
)

By monotonicity:
(ƒnk

(ƒnk-1
(… ƒn1

(ƒn0
(⊥)) …)) ≤ ƒnk

(innk
)

By definition of ƒnk
: ƒnk

(innk
) = outnk

(ƒnk
(ƒnk-1

(… ƒn1
(ƒn0

(⊥)) …)) ≤ outnk
By lemma:  outnk

≤ inn

By transitivity:
(ƒnk

(ƒnk-1
(… ƒn1

(ƒn0
(⊥)) …)) ≤ inn
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Distributivity

♦Distributivity preserves precision.
♦If framework is distributive, then the 

worklist algorithm produces the meet over 
paths solution:
For all n:

∨{ƒp (⊥) | p is a path to n} = inn
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Integer Constant Propagation (ICP)
♦ Flat lattice on integers

♦ Actual lattice records a value for each variable
♦ Example element: [a→3, b→2, c→5]

Lack of Distributivity Example

-1 10

T

⊥

-2 2 ……
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Transfer Functions
♦If n of the form v = c

♦ƒn(x) = x[v→c]
♦If n of the form v1 = v2+v3

♦ƒn(x) = x[v1→x[v2] + x[v3]]

D
at

af
lo

w
 A

na
ly

si
s: 

D
is

tr
ib

ut
iv

ity
(E

xa
m

pl
e)



Advanced Compiler Techniques 
http://lamp.epfl.ch/teaching/advancedCompiler/71

Lack of Distributivity Anomaly

a = 2
b = 3

a = 3
b = 2

c = a+b
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Lack of distributivity of ICP
♦Consider transfer function ƒ for c = a + b 

(ƒ(x) = x[c→x[a] + x[b]])
♦ƒ([a→3, b→2]) ∨ ƒ([a→2, b→3]) = 

[a→3, b→2] [c→ [a→3, b→2][a] + [a→3, b→2][b]] ∨
[a→2, b→3] [c→ [a→2, b→3][a] + [a→2, b→3][b]] =
[a→3, b→2] [c→ 3 + 2] ∨ [a→2, b→3] [c→ 2 + 3] =
[a→3, b→2] [c→5] ∨ [a→2, b→3] [c→5] =
[a→T, b→T, c→5]

♦ƒ([a→3, b→2]∨[a→2, b→3]) =  
ƒ([a→T, b→T]) = 
[a→T, b→T] [c→ [a→T, b→T][a] + [a→T, b→T][b]] = 
[a→T, b→T, c→T]
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Lack of Distributivity Anomaly

a = 2
b = 3

a = 3
b = 2

[a→3, b→2][a→2, b→3]

[a→T, b→T]

c = a+b

[a→T, b→T, c→T]

Lack of Distributivity Imprecision: 
[a→T, b→T, c→5] more precise.D
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Summary

♦Formal dataflow analysis framework
♦Lattices, partial orders.
♦Transfer functions, joins and splits.
♦Dataflow equations and fixed point solutions.

♦Connection with program
♦Abstraction function AF: S→ P
♦For any state s and program point n, AF(s) ≤ inn
♦Meet over paths solutions, distributivity.
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This lecture is primarily based on Konstantinos Sagonas set of slides 
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Analysis and Optimizations

♦ Program Analysis
♦ Discover properties of a program.

♦ Optimizations
♦ Use analysis results to transform the program.
♦ Goal: improve some aspect of the program

♦number of executed instructions, number of cycles
♦ cache hit rate
♦memory space (code or data)
♦power consumption

♦ Has to be safe: Keep the semantics of the program.
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Control Flow Graph
int add(n, k) { 

s = 0; a = 4; i = 0;
if (k == 0) 

b = 1;
else

b = 2;
while (i < n) { 

s = s + a*b;
i = i + 1;

}
return s;

}

s = 0; a = 4; i = 0;
k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

entry
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Control Flow Graph

♦ Nodes represent computation.
♦ Each node is a Basic Block (BB).
♦ Basic Block is a sequence of instructions with:

♦No branches out of middle of basic block.
♦No branches into middle of basic block.
♦Basic blocks should be maximal.

♦ Execution of basic block starts with first instruction.
♦ Includes all instructions in basic block.

♦ Edges represent control flow.
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Two Kinds of Variables

♦Temporaries (temps, a tmp):
♦ Introduced by the compiler.
♦Transfer values only within basic block.
♦ Introduced as part of instruction flattening.
♦ Introduced by optimizations/transformations.

♦Program variables (vars, a var):
♦Declared in original program.
♦May transfer values between basic blocks.
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Basic Block Optimizations
(Local Optimizations)

♦ Common Sub-Expression 
Elimination (CSE)
a=(x+y)+z; b=x+y;
t=x+y; a=t+z; b=t;

♦ Constant Propagation
x=5; b=x+y;
b=5+y;

♦ Algebraic Simplification
a=x*1;
a=x;

♦ Copy Propagation 
a=x+y; b=a; c=b+z;
a=x+y; b=a; c=a+z;

♦ Dead Code Elimination
a=x+y; b=a; c=a+z;
a=x+y; c=a+z

♦ Strength Reduction
t=i*4;
t=i<<2;
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Value Numbering
♦ Normalize BB so that all statements are of the form:

♦ var = var op var (where op is a binary operator)
♦ var = op var (where op is a unary operator)
♦ var = var

(I.E., no complex statements like x=a+b*c.)

♦ Simulate execution of basic block:
♦ Assign a virtual value to each variable.
♦ Assign a virtual value to each expression.
♦ Assign a temporary variable to hold value of each 

computed expression.
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Value Numbering for CSE

As we simulate execution of program, 
generate a new version of program:
♦Each new value assigned to temporary
a=x+y; becomes 
a=x+y; t1=a;

♦Temporary preserves value for use later in 
program even if original variable rewritten
a=x+y; a=a+z; becomes
a=x+y; t1=a; a=a+z; t2=a;
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CSE Example
♦ Original

a=x+y
b=a+z
b=b+y
c=a+z

♦ After CSE
a=x+y
t1=a
b=a+z
t2=b
b=b+y
t3=b
c=t2♦Issues:

♦CSE with different names:
a=x; b=x+y; c=a+y;

♦Excessive temp generation and use.
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b→v5b→v6

a=x+y
b=a+z
b=b+y
c=a+z

a=x+y
t1=a
b=a+z
t2=b
b=b+y
t3=b

x→v1
y→v2
a→v3
z→v4

c→v5

Original Basic
Block

New Basic
Block

Var to Val

v1+v2→v3
v3+v4→v5

Exp to Val
v1+v2→t1
v3+v4→t2

Exp to Tmp

c=t2

v5+v2→v6 v5+v2→t3
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b→v5 b→v6

a=x+y
b=a+z
b=b+y
c=a+z

a=x+y
t1=a
b=a+z
t2=b
b=b+y
t3=b

x→v1
y→v2
a→v3
z→v4

c→v5

Original Basic
Block

New Basic
Block

Var to Val

v1+v2→v3
v3+v4→v5

Exp to Val
v1+v2→t1
v3+v4→t2

Exp to Tmp

c=t2

v5+v2→v6 v5+v2→t3
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Problems

♦ Algorithm has a temporary for each value.
a=x+y; t1=a;

♦ Introduces
♦ lots of temporaries.
♦ lots of copy statements to temporaries.

♦ In many cases, temporaries and copy statements 
are unnecessary.

♦ So we eliminate them with copy propagation and 
dead code elimination.
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Copy Propagation (CP)
♦Once again, simulate execution of program
♦If possible, use the original variable instead of a 

temporary
♦a=x+y; b=x+y;
♦After CSE becomes a=x+y; t1=a; b=t1;
♦After CP becomes a=x+y; b=a;

♦Key idea: determine when original variables are 
NOT overwritten between computation of 
stored value and use of stored value.
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Copy Propagation Maps

♦Maintain two maps 
♦ tmp to var: tells which variable to use instead 

of a given temporary variable.
♦var to set: inverse of tmp to var. Tells which 

temps are mapped to a given variable by tmp
to var.
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Copy Propagation Example
♦ Original

a=x+y
b=a+z
c=x+y
a=b

♦ After CSE
a=x+y
t1=a
b=a+z
t2=b
c=t1
a=b

♦ After CSE and Copy 
Propagation
a=x+y
t1=a
b=a+z
t2=b
c=a
a=b
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Copy Propagation Example

a=x+y
t1=a
b=a+z
t2=b
c=t1
a=b

Basic Block
After CSE

a=x+y
t1=a
b=a+z
t2=b
c=a
a=b

Basic Block After 
CSE and Copy Prop

tmp to var var to set
t1→a
t2→b

a→{t1}
b→{t2}
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Copy Propagation Example

a=x+y
t1=a
b=a+z
t2=b
c=t1
a=b

Basic Block
After CSE

a=x+y
t1=a
b=a+z
t2=b
c=a
a=b

Basic Block After 
CSE and Copy Prop

tmp to var var to set
t1→t1
t2→b

a→{}
b→{t2}

BB
 O

pt
: C

op
y 

Pr
op

ag
at

io
n



Advanced Compiler Techniques 
http://lamp.epfl.ch/teaching/advancedCompiler/18

Dead Code Elimination

♦ Copy propagation keeps all temporaries.
♦ There may be temps that are never read.
♦ Dead Code Elimination removes them.

a=x+y
t1=a
b=a+z
t2=b
c=a
a=b

a=x+y
b=a+z
c=a
a=b

Basic block after 
CSE and Copy Prop.

Basic block after 
CSE, CP, & 

Dead Code Elimination
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Dead Code Elimination

♦Basic idea:
♦Process code in reverse execution order.
♦Maintain a set of variables that are needed later 

in computation.
♦On encountering an assignment to a temporary 

that is not needed, we remove the assignment.BB
 O

pt
: D

ea
d 

C
od

e 
El

im
in

at
io

n



Advanced Compiler Techniques 
http://lamp.epfl.ch/teaching/advancedCompiler/20

a=x+y
t1=a
b=a+z
t2=b
c=a
a=b

Basic Block After 
CSE and Copy Prop

and Dead Code Elimination
Needed Set

{b}
{a,b}
{a,b}
{a,b,z}
{a,z}
{a,z}
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Interesting Properties

♦ Analysis and optimization algorithms simulate 
execution of the program.
♦ CSE and Copy Propagation go forward.
♦ Dead Code Elimination goes backwards.

♦ Optimizations are stacked.
♦ Group of basic transformations.
♦ Work together to get good result.
♦ Often, one transformation creates inefficient code that 

is cleaned up by following transformations.
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Other Basic Block 
Transformations

♦Constant Propagation.
♦Strength Reduction:

♦a*4; ⇒ a<<2;
♦3*a; ⇒ a+a+a;

♦Algebraic Simplification:
♦a*1; ⇒ a;
♦b+0; ⇒ b;

♦Unified transformation framework.
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Dataflow Analysis
(Global Analysis)

♦Used to determine properties of programs 
that involve multiple basic blocks.

♦Typically used to enable transformations.
♦common sub-expression elimination.
♦constant and copy propagation.
♦dead code elimination.

♦Analysis and transformation often come in 
pairs.
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♦Concept of definition and use
♦a=x+y

♦is a definition of a.
♦is a use of x and y.

♦A definition reaches a use if value written 
by definition may be read by use.

Reaching Definitions
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Reaching Definitions
s=0; 
a=4; 
i=0;
k==0

b=1; b=2;

i<n

s=s+a*b;
i=i+1; return s
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Reaching Definitions and 
Constant Propagation

♦Is a use of a variable a constant?
♦Check all reaching definitions.
♦ If all assign variable to same constant.
♦Then use is in fact a constant.

♦Can replace variable with constant.
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Is a constant in s=s+a*b?

s=0; 
a=4; 
i=0;
k==0

b=1; b=2;

i<n

s=s+a*b;
i=i+1; return s

Yes!
On all reaching 

definitions
a=4
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Constant Propagation Transform

s=0; 
a=4; 
i=0;
k==0

b=1; b=2;

i<n

s=s+4*b;
i=i+1; return s

Yes!
a=4
in

s=s+a*b
Replace use of a 

with 4.
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Is b constant in s=s+4*b?

s=0; 
a=4; 
i=0;
k==0

b=1; b=2;

i<n

s=s+4*b;
i=i+1; return s

No!
One reaching 
definition with

b=1
One reaching 
definition with

b=2
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Computing Reaching Definitions

♦Compute with sets of definitions:
♦Represent sets using bit vectors.
♦Each definition has a position in bit vector.

♦At each basic block, compute:
♦Definitions that reach start of block.
♦Definitions that reach end of block.

♦Do computation by simulating execution of 
program until the fixed point is reached.
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s1=0; 
a2=4; 
i3=0;
k==0

b4=1; b5=2;

i<n

s6=s+a*b;
i7=i+1; return s

0000000

1110000 1110000

1111111
1111111

1111111
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Formalizing Analysis

♦ Each basic block has
♦ IN - set of definitions that reach beginning of block
♦ OUT - set of definitions that reach end of block
♦ GEN - set of definitions generated in block
♦ KILL - set of definitions killed in the block

♦ GEN[s6=s+a*b;i7=i+1;] = 0000011
♦ KILL[s6=s+a*b;i7=i+1;] = 1010000
♦ Compiler scans each basic block to derive GEN and 

KILL sets.
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s1=0; 
a2=4; 
i3=0;
k==0

b4=1; b5=2;

i<n

s6=s+a*b;
i7=i+1; return s

GEN[0] = 1110000
KILL[0] = 0000011

GEN[2] = 0000100
KILL[2] = 0001000

GEN[1] = 0001000
KILL[1] = 0000100

GEN[3] = 0000000
KILL[3] = 0000000

GEN[4] = 0000011
KILL[4] = 1010000

GEN[5] = 0000000
KILL[5] = 0000000
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Dataflow Equations

♦IN[bi] = OUT[b1] ∪ ... ∪ OUT[bn]
where b1, ..., bn are predecessors of bi

♦OUT[bi] = (IN[bi] - KILL[bi]) ∪ GEN[bi]
♦IN[entry] = 0000000
♦Result: system of equations.G
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s1=0; 
a2=4; 
i3=0;
k==0

b4=1; b5=2;

i<n

s6=s+a*b;
i7=i+1; return s

IN[0] = 0000000
GEN[0] = 1110000
KILL[0] = 0000011

OUT[0]=(IN[0] -KILL[0])∪GEN[0]=
0000000-0000011∪ 1110000=1110000

IN[1]=OUT[0]
GEN[1] = 0001000
KILL[1] = 0000100

OUT[1]=(IN[1]-0000100)∪0001000

IN[2]=OUT[0]
GEN[2] = 0000100
KILL[2] = 0001000

OUT[2]=(IN[2]-0001000)∪0000100

IN[3]=OUT[1] ∪ OUT[2]
GEN[3] = 0000000
KILL[3] = 0000000

OUT[3]=IN[3]

IN[4]=OUT[3]
GEN[4] = 0000011
KILL[4] = 1010000

OUT[4]=(IN[4]-1010000)∪0000011

IN[5]=OUT[3]
GEN[5] = 0000000
KILL[5] = 0000000

OUT[5]=IN[5]
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Solving Equations
♦Use fix point algorithm.
♦Initialize with solution of 

OUT[bi] = 0000000
♦Repeatedly apply equations:

♦ IN[bi] = OUT[b1] ∪ ... ∪ OUT[bn]
♦OUT[bi] = (IN[bi] - KILL[bi]) ∪ GEN[bi] 

♦Until reach fixed point, i.e., until equation 
application has no further effect.

♦Use a worklist to track which equation 
applications may have further effect.
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Reaching Definitions Algorithm
for all nodes n∈N

OUT[n] = ∅; // Or OUT[n] = GEN[n];
Changed = N; // N = all nodes in graph
while (Changed != ∅) // Until fixed point reached.

choose n∈Changed;       // Node from worklist
Changed=Changed-{n}; // Remove from worklist
OldOut = OUT[n] // Remember old result 
IN[n] = ∅; // Calculate IN as join 
for all nodes p∈predecessors(n) //    of predecessors.

IN[n]=IN[n]∪OUT[p];
OUT[n]=(IN[n]-KILL[n])∪GEN[n]; // Recalculate OUT
if (OUT[n] != OldOut)   // If OUT[n] changed
for all nodes s∈successors(n) 

Changed=Changed∪{s}; //Add succs to worklist

G
lo

ba
l O

pt
: R

ea
ch

in
g 

D
ef

in
iti

on
s



Advanced Compiler Techniques 
http://lamp.epfl.ch/teaching/advancedCompiler/38

Questions

♦ Does the algorithm halt?
♦ yes, because transfer function is monotonic.
♦ if increase IN, increase OUT.
♦ in limit, all bits are 1.

♦ If bit is 1, is there always an execution in which 
corresponding definition reaches basic block?

♦ If bit is 0, does the corresponding definition ever 
reach basic block?

♦ Concept of conservative analysis.

G
lo

ba
l O

pt
: R

ea
ch

in
g 

D
ef

in
iti

on
s, 

su
m

m
ar

y



Advanced Compiler Techniques 
http://lamp.epfl.ch/teaching/advancedCompiler/39

Available Expressions

♦ An expression x+y is available at a point p if
♦ every path from the initial node to p evaluates x+y

before reaching p,
♦ and there are no assignments to x or y after the 

evaluation but before p.
♦ Available Expression information can be used to 

do global (across basic blocks) CSE.
♦ If an expression is available at use, there is no 

need to re-evaluate it.
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Computing Available 
Expressions

♦ Represent sets of expressions using bit vectors.
♦ Each expression corresponds to a bit.
♦ Run dataflow algorithm similar to reaching 

definitions.
♦ Big difference:

♦ Definition reaches a basic block if it comes from ANY
predecessor in CFG.

♦ Expression is available at a basic block only if it is 
available from ALL predecessors in CFG. 
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Expressions
1: x+y
2: i<n
3: i+c
4: x==0

0000

1001

1000

1000

1100 1100

a=x+y;
x==0 

x=z;
b=x+y;

i<n

c=x+y;
i=i+c;

d=x+y

i=x+y; 
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Expressions
1: x+y
2: i<n
3: i+c
4: x==0

0000

1001

1000

1000

1100 1100

a=x+y;
t1=a;
x==0 

x=z;
b=x+y;
t1=b;

i<n

c=t1;
i=i+c;

d=t1

i=t1; 

Global CSE Transform

Must use same temp
for CSE in all blocks
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Formalizing Analysis

♦ Each basic block has
IN - set of expressions that reach beginning of block.
OUT - set of expressions that reach end of block.
GEN - set of expressions generated in block.
KILL - set of expressions killed in the block.

♦ GEN[x=z; b=x+y] = 1000
♦ KILL[x=z; b=x+y] = 1001
♦ Compiler scans each basic block to derive GEN and 

KILL sets.
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Dataflow Equations

♦IN[bi] = OUT[b1]∩ ... ∩ OUT[bn]
♦where b1, ..., bn are predecessors of bi

♦OUT[bi] = (IN[bi] - KILL[bi]) ∪ GEN[bi]
♦IN[entry] = 0000
♦Result: system of equations.
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Solving Equations

♦Use fix point algorithm.
♦IN[entry]=0000
♦Initialize with solution of 

OUT[bi] = 1111
♦Repeatedly apply equations:

♦ IN[bi] = OUT[b1] ∩ ... ∩ OUT[bn]
♦OUT[bi] = (IN[bi] - KILL[bi]) ∪ GEN[bi] 

♦Use a worklist to track which equation 
applications may have further effect.
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Available Expressions Algorithm
for all nodes n∈N // E is set of all expressions.

OUT[n] = E; // OUT[n] =E -KILL[n];
Changed = N; // N = all nodes in graph
while (Changed != ∅)

choose n∈Changed;
Changed=Changed-{n};
IN[n] = E ;
OldOut = OUT[n]
for all nodes p∈predecessors(n)

IN[n]=IN[n]∩OUT[p];
OUT[n]=(IN[n]-KILL[n])∪GEN[n];
if (OUT[n] != OldOut)
for all nodes s∈successors(n) Changed=Changed∪{s};
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Questions

♦ Does algorithm always halt?
♦ If expression is available in some execution, is it 

always marked as available in analysis?
♦ If expression is not available in some execution, 

can it be marked as available in analysis?
♦ In what sense is the algorithm conservative?

G
lo

ba
l O

pt
: A

va
ila

bl
e 

Ex
pr

es
si

on
s, 

su
m

m
ar

y



Advanced Compiler Techniques 
http://lamp.epfl.ch/teaching/advancedCompiler/48

Duality In Two Algorithms

♦ Reaching definitions
♦ Confluence operation is set union.
♦ OUT[b] initialized to empty set.

♦ Available expressions
♦ Confluence operation is set intersection.
♦ OUT[b] initialized to set of available expressions.

♦ General framework for dataflow algorithms.
♦ Build parameterized dataflow analyzer once, use 

for all dataflow problems.
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Liveness Analysis

♦ A variable v is live at point p if 
♦ v is used along some path starting at p, and 
♦ no definition of v along the path before the use.

♦ When is a variable v dead at point p?
♦ No use of  v on any path from p to exit node, or
♦ If all paths from p, redefine v before using v.G
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What Use is Liveness 
Information?

♦ Register allocation.
♦ If a variable is dead, we can reassign its register.

♦ Dead code elimination.
♦ Eliminate assignments to variables not read later.
♦ But must not eliminate last assignment to variable (such as 

instance variable) visible outside CFG.
♦ Can eliminate other dead assignments.
♦ Handle by making all externally visible variables live on 

exit from CFG.
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Conceptual Idea of Analysis

♦Simulate execution.
♦But start from exit and go backwards in 

CFG.
♦Compute liveness information from end to 

beginning of basic blocks.G
lo
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Liveness Example

a=x+y;
t=a;
c=a+x;
x==0

b=t+z;

c=y+1; 

1100100

1110000

♦Assume a,b,c
visible outside 
function. They are 
live on exit.

♦Assume x,y,z,t
are not visible.

♦Represent liveness 
using a bit vector:
order is abcxyzt.

1100111
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Using Liveness Information for 
Dead Code Elimination

a=x+y;
t=a;
c=a+x;
x==0

b=t+z;

c=y+1; 

1100100

1110000

♦Assume a,b,c
visible outside 
function. They are 
live on exit.

♦Assume x,y,z,t
are not visible.

♦Represent liveness 
using a bit vector:
order is abcxyzt.

1100111
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Formalizing Analysis
♦ Each basic block has

IN - set of variables live at start of block.
OUT - set of variables live at end of block.
USE - set of variables with upwards exposed uses in block. 

(GEN)
DEF - set of variables defined in block. (KILL)

♦ USE[x=z;x=x+1;y=1;] = {z} (x not in USE)
♦ DEF[x=z;x=x+1;y=1;] = {x, y}
♦ Compiler scans each basic block to derive USE and 

DEF sets.
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Algorithm
OUT[Exit] = ∅; 
IN[Exit] = USE[n];
for all nodes n∈N-{Exit} 

IN[n] = ∅;
Changed = N-{Exit};
while (Changed != ∅)

choose n ∈ Changed;
Changed = Changed-{n};
OldIn=IN[n]
OUT[n] = ∅;
for all nodes s ∈ successors(n) OUT[n] = OUT[n] ∪ IN[p];
IN[n] = USE[n] ∪ (OUT[n] - DEF[n]);
if (IN[n] != OldIn)

for all nodes p ∈ predecessors(n) Changed=Changed∪{p};
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Similar to Other Dataflow 
Algorithms

♦Backwards analysis, not forwards.
♦Still have transfer functions.
♦Still have confluence operators.
♦Can generalize framework to work for both 

forwards and backwards analyses.G
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Analysis Information Inside 
Basic Blocks

♦One detail:
♦ Given dataflow information at IN and OUT of node.
♦ Also need to compute information at each statement of 

basic block.
♦ Simple propagation algorithm usually works fine.
♦ Can be viewed as restricted case of dataflow analysis.
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Summary

♦ Basic blocks and basic block optimizations.
♦ Copy and constant propagation.
♦ Common sub-expression elimination.
♦ Dead code elimination.

♦ Dataflow Analysis
♦ Control flow graph.
♦ IN[b], OUT[b], transfer functions, join points.

♦ Pairs of analyses and transformations:
♦ Reaching definitions/constant propagation.
♦ Available expressions/common sub-expression elimination.
♦ Liveness analysis/Dead code elimination.
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Building SSA Form

This lecture is primarily based on Konstantinos Sagonas set of slides 
(Advanced Compiler Techniques, (2AD518)

at Uppsala University, January-February 2004).
Used with kind permission.

(In turn based on Keith Cooper’s slides)
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What is SSA?

SSA-form:
♦ Each name is defined exactly once.
♦ Each use refers to exactly one name.

What’s hard?
♦ Straight-line code is trivial.
♦ Splits in the CFG are trivial.
♦ Joins in the CFG are hard.

Building SSA Form:
♦ Insert Φ-functions at birth points.
♦ Rename all values for uniqueness.

x←17-4

x←a+b

x←y-z

x←13

z←x*q

s←w-x

In
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Birth Points (a notion due to Tarjan)
Consider the flow of values in this example

The value x appears everywhere.
It takes on several values.
• Here, x can be 13, y-z, or 17-4.
• Here, it can also be a+b.

If each value has its own name …
• Need a way to merge these 

distinct values.
• Values are “born” at merge points.

x←17-4

x←a+b

x←y-z

x←13

z←x*q

s←w-x
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Consider the flow of values in this example

New value for x here
17 - 4 or y - z

New value for x here
13 or (17 - 4 or y - z)

New value for x here
a+b or ((13 or (17-4 or y-z))

Birth Points (cont)

x←17-4

x←a+b

x←y-z

x←13

z←x*q

s←w-x
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Consider the flow of values in this example
x←17-4

x←a+b

x←y-z

x←13

z←x*q

s←w-x

These are all birth points for values

• All birth points are join points
• Not all join points are birth points
• Birth points are value-specific …

Birth Points (cont)
SS

A
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Static Single Assignment Form

SSA-form:
♦ Each name is defined exactly once.
♦ Each use refers to exactly one name.

What’s hard?
♦ Straight-line code is trivial.
♦ Splits in the CFG are trivial.
♦ Joins in the CFG are hard.

Building SSA Form:
♦ Insert Φ-functions at birth points.
♦ Rename all values for uniqueness.

A Φ-function is a special kind 
of copy that selects one of 
its parameters.  

The choice of parameter is 
governed by the CFG edge 
along which control reached 
the current block.

However, real machines do 
not implement a Φ-function 
in hardware.

y1 ← ... y2 ← ...

y3 ← Φ(y1,y2)   
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SSA Construction Algorithm
(High-level sketch)

1.Insert Φ-functions.
2.Rename values.

… that’s all ...

… of course, there is some bookkeeping to be done ...

SS
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SSA Construction Algorithm
(Less high-level)

1.Insert Φ-functions at every join for every name.
2.Solve reaching definitions.
3.Rename each use to the def that reaches it.

(will be unique)SS
A

: C
on
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Reaching Definitions
The equations
REACHES(N0 ) = Ø
REACHES(N) = ∪P∈ preds(N) DEFOUT(P) ∪ (REACHES(P) ∩ SURVIVED(P))

♦ REACHES(N) is the set of definitions that reach block N
♦ DEFOUT(N) is the set of definitions in N that reach the end of N
♦ SURVIVED(N) is the set of definitions not obscured by a new def in N

Computing REACHES(N)
♦ Use any data-flow method (i.e., the iterative method)
♦ This particular problem has a very-fast solution              (Zadeck)

F.K. Zadeck, “Incremental data-flow analysis in a structured 
program editor,” Proceedings of the SIGPLAN 84 Conf. on 
Compiler Construction, June, 1984, pages 132-143.

Domain is |DEFINITIONS|, same as 
number of operations
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SSA Construction Algorithm
(Less high-level)

1. Insert Φ-functions at every join for every name.
2. Solve reaching definitions.
3. Rename each use to the def that reaches it. (will be unique)

What’s wrong with this approach?
♦ Too many Φ-functions. (precision)
♦ Too many Φ-functions. (space)
♦ Too many Φ-functions. (time)
♦ Need to relate edges to Φ-functions parameters.          (bookkeeping)

To do better, we need a more complex approach.

Builds maximal SSA
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SSA Construction Algorithm
(Less high-level)

1. Insert Φ-functions
a.) calculate dominance frontiers
b.) find global names

for each name, build a list of blocks that define it
c.) insert Φ-functions

∀ global name n
∀ block B in which n is defined

∀ blockD in B’s dominance frontier
insert a Φ-function for n in D
add D to n’s list of defining blocks{Creates the iterated 

dominance frontier

This adds to 
the worklist !

Use a checklist to avoid putting blocks on the worklist twice; 
keep another checklist to avoid inserting the same Φ-function twice.

Compute list of blocks where each name 
is assigned & use as a worklist

Moderately complex
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SSA Construction Algorithm
(Less high-level)

2. Rename variables in a pre-order walk over dominator tree
(use an array of stacks, one stack per global name)

Staring with the root block, B
a.) generate unique names for each Φ-function

and push them on the appropriate stacks
b.) rewrite each operation in the block

i. Rewrite uses of global names with the current version 
(from the stack)

ii. Rewrite definition by inventing & pushing new name
c.) fill in Φ-function parameters of successor blocks
d.) recurse on B ’s children in the dominator tree
e.) <on exit from block B > pop names generated in B from stacks 

1 counter per 
name for 
subscripts

Need the end-of-
block name for 
this path

Reset the state
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Aside on Terminology: 
Dominators

Definitions
X dominates Y if and only if every path from the entry of the 

control-flow graph to the node for Y includes X
♦ By definition, X dominates X
♦ We associate a set of dominators (Dom) with each node 
♦ |Dom(x)| ≥ 1 

Immediate dominators
♦ For any node X, there must be aY in Dom(X) closest to X
♦ We call this Y the immediate dominator of X
♦ As a matter of notation, we write this as IDom(X)
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Dominators (cont)
Dominators have many uses in program analysis & transformation:
♦ Finding loops.

♦ Building SSA form.

♦ Making code motion decisions.

A

B C G

FED

Dominator tree

Block Dom IDom 
A A – 
B A,B A 
C A,C A 
D A,C,D C 
E A,C,E C 
F A,C,F C 
G A,G A 

 

 

Dominator sets

m0 ← a + b
n0 ← a + b

A

p0 ← c + d
r0 ← c + d

B

r2 ← φ(r0,r1)
y0 ← a + b
z0 ← c + d

G

q0 ← a + b
r1 ← c + d

C

e0 ← b + 18
s0 ← a + b
u0 ← e + f

D e1 ← a + 17
t0 ← c + d
u1 ← e + f

E

e3 ← φ(e0,e1)
u2 ← φ(u0,u1)
v0 ← a + b
w0 ← c + d
x0 ← e + f

F

Let’s look at how to compute dominators…
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SSA Construction Algorithm
(Low-level detail)

Computing Dominance
♦ First step in Φ-function insertion computes dominance.
♦ A node N dominates M iff N is on every path from N0 to M

♦ Every node dominates itself
♦ N ’s immediate dominator is its closest dominator, IDOM(N)†

DOM(N0) = {N0 }
DOM(N) = {N} ∪ (∩P∈ preds(N) DOM(P))

Computing DOM
♦ These equations form a rapid data-flow framework
♦ Iterative algorithm will solve them in d(G) + 3 passes

♦ Each pass does |N| unions & |E| intersections, 
♦ E is O(N 2)  ⇒ O(N 2) work

†IDOM(N ) ≠ N, unless N is N0 , by convention.

Initially, DOM(n) = N, ∀ n≠n0

d(G) is the loop-connectedness of the graph w.r.t a DFST
•Maximal number of back edges in an acyclic path.
•Several studies suggest that, in practice, d(G) is small. ( <3)
•For most CFGs, d(G) is independent of the specific DFST.
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Example 

B1

B2 B3

B4 B5

B6

B7

B0

Control Flow Graph
Progress of iterative solution for DOM

Results of iterative solution for DOM & IDOM 

Iter-
ation 0 1 2 3 4 5 6 7

0 0 N N N N N N N
1 0 0,1 0,1,2 0,1,3 0,1,3,4 0,1,3,5 0,1,3,6 0,1,7
2 0 0,1 0,1,2 0,1,3 0,1,3,4 0,1,3,5 0,1,3,6 0,1,7

DOM(n )

0 1 2 3 4 5 6 7
DOM 0 0,1 0,1,2 0,1,3 0,1,3,4 0,1,3,5 0,1,3,6 0,1,7
IDOM 0 0 1 1 3 3 3 1
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Example 
Dominance Tree

There are asymptotically faster algorithms.

With the right data structures, the iterative 
algorithm can be made faster.

See Cooper, Harvey, and Kennedy.

B1

B2 B3

B4 B5

B6

B7

B0
Progress of iterative solution for DOM

Results of iterative solution for DOM & IDOM 

Iter-
ation 0 1 2 3 4 5 6 7

0 0 N N N N N N N
1 0 0,1 0,1,2 0,1,3 0,1,3,4 0,1,3,5 0,1,3,6 0,1,7
2 0 0,1 0,1,2 0,1,3 0,1,3,4 0,1,3,5 0,1,3,6 0,1,7

DOM(n )

0 1 2 3 4 5 6 7
DOM 0 0,1 0,1,2 0,1,3 0,1,3,4 0,1,3,5 0,1,3,6 0,1,7
IDOM 0 0 1 1 3 3 3 1
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B1

B2 B3

B4 B5

B6

B7

B0

Example 
Dominance Frontiers Dominance Frontiers & Φ-Function Insertion

• A definition at N forces a Φ-function at M iff 
N ∉ DOM(M) but N ∈ DOM(P) for some P ∈ preds(M)

• DF(N ) is the fringe just beyond the region that N
dominates.

0 1 2 3 4 5 6 7
DOM 0 0,1 0,1,2 0,1,3 0,1,3,4 0,1,3,5 0,1,3,6 0,1,7
DF – – 7 7 6 6 7 1

• ← in B1 forces a Φ-function in DF(B1) = Ø (halt )

x← ...

x← Φ(...)
• DF(B4) is {B6}, so ← in B4 forces a Φ-function in B6

x← Φ(...) • ← in B6 forces a Φ-function in DF(B6) = {B7}

x← Φ(...)

• ← in B7 forces a Φ-function in DF(B7) = {B1}

For each assignment, we insert the Φ-functions
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Example 
Computing Dominance Frontiers
• Only join points are in DF(N ) for some N

• Leads to a simple, intuitive algorithm for computing 
dominance frontiers

For each join point M (i.e., |preds(M)| > 1)
For each CFG predecessor of M

Run up to IDOM(M) in the dominator tree, adding
M to DF(N) for each N between M and IDOM(M) 

• For some applications, we need post-dominance, the 
post-dominator tree, and reverse dominance 
frontiers, RDF(N)

> Just dominance on the reverse CFG

> Reverse the edges & add unique exit node

• We will use these in dead code elimination

0 1 2 3 4 5 6 7
DOM 0 0,1 0,1,2 0,1,3 0,1,3,4 0,1,3,5 0,1,3,6 0,1,7
DF – – 7 7 6 6 7 1

B1

B2 B3

B4 B5

B6

B7

B0

Dominance Frontiers
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SSA Construction Algorithm 
(Reminder)

1. Insert Φ-functions at every join for every name
a.) calculate dominance frontiers
b.) find global names

for each name, build a list of blocks that define it
c.) insert Φ-functions

∀ global name n
∀ block B in which n is defined

∀ blockD in B’s dominance frontier
insert a Φ-function for n in D
add D to n’s list of defining blocks

Needs a little more detail
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SSA Construction Algorithm

Finding global names
♦ Different between two forms of SSA 
♦ Minimal uses all names
♦ Semi-pruned SSA uses names that are live on entry to some block

♦ Shrinks name space & number of Φ-functions
♦ Pays for itself in compile-time speed

♦ For each “global name”, need a list of blocks where it is defined
♦ Drives Φ-function insertion
♦ B defines x implies a Φ-function for x in every C ∈ DF(B)

Pruned SSA adds a test to see if x is live at insertion point

Otherwise, we do not 
need a Φ-function 
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With all the Φ-functions

• Lots of new ops

• Renaming is next

Assume a, b, c, & d
defined before B0 Example

Excluding 
local names 

avoids Φ’s for 
y & z

a ← Φ(a,a)
b ← Φ(b,b)
c ← Φ(c,c)
d ← Φ(d,d)
y ← a+b
z ← c+d
i ← i+1

B7

i > 100
i ← •••B0

b ← •••
c ← •••
d ← •••

B2

a ← Φ(a,a)
b ← Φ(b,b)
c ← Φ(c,c)
d ← Φ(d,d)
i ← Φ(i,i) 
a ← •••
c ← •••

B1

a ← •••
d ← •••

B3 

d ← •••
B4 c ← •••

B5

d ← Φ(d,d)
c ← Φ(c,c)
b ← •••

B6

i > 100
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SSA Construction Algorithm
(Less high-level)

2. Rename variables in a pre-order walk over dominator tree
(use an array of stacks, one stack per global name)

Staring with the root block, B
a.) generate unique names for each Φ-function

and push them on the appropriate stacks
b.) rewrite each operation in the block

i. Rewrite uses of global names with the current version 
(from the stack)

ii. Rewrite definition by inventing & pushing new name
c.) fill in Φ-function parameters of successor blocks
d.) recurse on B’s children in the dominator tree
e.) <on exit from block B > pop names generated in B from stacks 
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SSA Construction Algorithm
(Less high-level)

NewName(v)
i ← counter[v]
counter[v] ← counter[v] + 1
push vi onto stack[v]
return vi

Rename( B )
for each Φ-function in B, x ← Φ(…)

rename x as NewName( x)

for each operation “x←y op z” in B
rewrite y as top(stack[y])
rewrite z as top(stack[z])
rewrite x as NewName( x)

for each successor of B in the CFG
rewrite appropriate Φ parameters

for each successor S of B in dom. tree
Rename(S)

for each operation “x←y op z” in B
pop(stack[x])

Adding all the details ...

for each global name i
counter[i] ← 0
stack[i] ← Ø

call Rename( B0 )
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Counters
Stacks

1 1 1 1 0

a

a0 b0 c0 d0

Before processing B0

b c d i

Assume a, b, c, & d
defined before B0

i has not been defined

a ← Φ(a,a)
b ← Φ(b,b)
c ← Φ(c,c)
d ← Φ(d,d)
y ← a+b
z ← c+d
i ← i+1

B7

i > 100
i ← •••B0

b ← •••
c ← •••
d ← •••

B2

a ← Φ(a,a)
b ← Φ(b,b)
c ← Φ(c,c)
d ← Φ(d,d)
i ← Φ(i,i) 
a ← •••
c ← •••

B1

a ← •••
d ← •••

B3 

d ← •••
B4 c ← •••

B5

d ← Φ(d,d)
c ← Φ(c,c)
b ← •••

B6

i > 100

Example
SS

A
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Counters
Stacks

1 1 1 1 1

a

a0 b0 c0 d0

b c d i

a ← Φ(a,a)
b ← Φ(b,b)
c ← Φ(c,c)
d ← Φ(d,d)
y ← a+b
z ← c+d
i ← i+1

B7

i > 100
i0 ← •••B0

b ← •••
c ← •••
d ← •••

B2

a ← Φ(a0,a)
b ← Φ(b0,b)
c ← Φ(c0,c)
d ← Φ(d0,d)
i ← Φ(i0,i) 
a ← •••
c ← •••

B1

a ← •••
d ← •••

B3 

d ← •••
B4 c ← •••

B5

d ← Φ(d,d)
c ← Φ(c,c)
b ← •••

B6

i > 100

Example
End of B0

i0
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Counters
Stacks

3 2 3 2 2

a

a0 b0 c0 d0

b c d i

a ← Φ(a,a)
b ← Φ(b,b)
c ← Φ(c,c)
d ← Φ(d,d)
y ← a+b
z ← c+d
i ← i+1

B7

i > 100
i0 ← •••B0

b ← •••
c ← •••
d ← •••

B2

a1 ← Φ(a0,a)
b1 ← Φ(b0,b)
c1 ← Φ(c0,c)
d1 ← Φ(d0,d)
i1 ← Φ(i0,i) 
a2 ← •••
c2 ← •••

B1

a ← •••
d ← •••

B3 

d ← •••
B4 c ← •••

B5

d ← Φ(d,d)
c ← Φ(c,c)
b ← •••

B6

i > 100

Example
End of B1

i0

a1 b1 c1 d1 i1

a2 c2
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Counters
Stacks

3 3 4 3 2

a

a0 b0 c0 d0

b c d i

a ← Φ(a2,a)
b ← Φ(b2,b)
c ← Φ(c3,c)
d ← Φ(d2,d)
y ← a+b
z ← c+d
i ← i+1

B7

i > 100
i0 ← •••B0

b2 ← •••
c3 ← •••
d2 ← •••

B2

a1 ← Φ(a0,a)
b1 ← Φ(b0,b)
c1 ← Φ(c0,c)
d1 ← Φ(d0,d)
i1 ← Φ(i0,i) 
a2 ← •••
c2 ← •••

B1

a ← •••
d ← •••

B3 

d ← •••
B4 c ← •••

B5

d ← Φ(d,d)
c ← Φ(c,c)
b ← •••

B6

i > 100

Example
End of B2

i0

a1 b1 c1 d1 i1

a2 c2b2 d2

c3
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Counters
Stacks

3 3 4 3 2

a

a0 b0 c0 d0

b c d i

a ← Φ(a2,a)
b ← Φ(b2,b)
c ← Φ(c3,c)
d ← Φ(d2,d)
y ← a+b
z ← c+d
i ← i+1

B7

i > 100
i0 ← •••B0

b2 ← •••
c3 ← •••
d2 ← •••

B2

a1 ← Φ(a0,a)
b1 ← Φ(b0,b)
c1 ← Φ(c0,c)
d1 ← Φ(d0,d)
i1 ← Φ(i0,i) 
a2 ← •••
c2 ← •••

B1

a ← •••
d ← •••

B3 

d ← •••
B4 c ← •••

B5

d ← Φ(d,d)
c ← Φ(c,c)
b ← •••

B6

i > 100

Example
Before starting B3

i0

a1 b1 c1 d1 i1

a2 c2
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Counters
Stacks

4 3 4 4 2

a

a0 b0 c0 d0

b c d i

a ← Φ(a2,a)
b ← Φ(b2,b)
c ← Φ(c3,c)
d ← Φ(d2,d)
y ← a+b
z ← c+d
i ← i+1

B7

i > 100
i0 ← •••B0

b2 ← •••
c3 ← •••
d2 ← •••

B2

a1 ← Φ(a0,a)
b1 ← Φ(b0,b)
c1 ← Φ(c0,c)
d1 ← Φ(d0,d)
i1 ← Φ(i0,i) 
a2 ← •••
c2 ← •••

B1

a3 ← •••
d3 ← •••

B3 

d ← •••
B4 c ← •••

B5

d ← Φ(d,d)
c ← Φ(c,c)
b ← •••

B6

i > 100

Example
End of B3

i0

a1 b1 c1 d1 i1

a2 c2

a3

d3
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Counters
Stacks

4 3 4 5 2

a

a0 b0 c0 d0

b c d i

a ← Φ(a2,a)
b ← Φ(b2,b)
c ← Φ(c3,c)
d ← Φ(d2,d)
y ← a+b
z ← c+d
i ← i+1

B7

i > 100
i0 ← •••B0

b2 ← •••
c3 ← •••
d2 ← •••

B2

a1 ← Φ(a0,a)
b1 ← Φ(b0,b)
c1 ← Φ(c0,c)
d1 ← Φ(d0,d)
i1 ← Φ(i0,i) 
a2 ← •••
c2 ← •••

B1

a3 ← •••
d3 ← •••

B3 

d4 ← •••
B4 c ← •••

B5

d ← Φ(d4,d)
c ← Φ(c2,c)
b ← •••

B6

i > 100

Example
End of B4

i0

a1 b1 c1 d1 i1

a2 c2

a3

d3

d4
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Counters
Stacks

4 3 5 5 2

a

a0 b0 c0 d0

b c d i

a ← Φ(a2,a)
b ← Φ(b2,b)
c ← Φ(c3,c)
d ← Φ(d2,d)
y ← a+b
z ← c+d
i ← i+1

B7

i > 100
i0 ← •••B0

b2 ← •••
c3 ← •••
d2 ← •••

B2

a1 ← Φ(a0,a)
b1 ← Φ(b0,b)
c1 ← Φ(c0,c)
d1 ← Φ(d0,d)
i1 ← Φ(i0,i) 
a2 ← •••
c2 ← •••

B1

a3 ← •••
d3 ← •••

B3 

d4 ← •••
B4 c4 ← •••

B5

d ← Φ(d4,d3)
c ← Φ(c2,c4)
b ← •••

B6

i > 100

Example
End of B5

i0

a1 b1 c1 d1 i1

a2 c2

a3

d3

c4
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Counters
Stacks

4 4 6 6 2

a

a0 b0 c0 d0

b c d i

a ← Φ(a2,a3)
b ← Φ(b2,b3)
c ← Φ(c3,c5)
d ← Φ(d2,d5)
y ← a+b
z ← c+d
i ← i+1

B7

i > 100
i0 ← •••B0

b2 ← •••
c3 ← •••
d2 ← •••

B2

a1 ← Φ(a0,a)
b1 ← Φ(b0,b)
c1 ← Φ(c0,c)
d1 ← Φ(d0,d)
i1 ← Φ(i0,i) 
a2 ← •••
c2 ← •••

B1

a3 ← •••
d3 ← •••

B3 

d4 ← •••
B4 c4 ← •••

B5

d5 ← Φ(d4,d3)
c5 ← Φ(c2,c4)
b3 ← •••

B6

i > 100

Example
End of B6

i0

a1 b1 c1 d1 i1

a2 c2

a3

d3

c5 d5

b3
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Counters
Stacks

4 4 6 6 2

a

a0 b0 c0 d0

b c d i

a ← Φ(a2,a3)
b ← Φ(b2,b3)
c ← Φ(c3,c5)
d ← Φ(d2,d5)
y ← a+b
z ← c+d
i ← i+1

B7

i > 100
i0 ← •••B0

b2 ← •••
c3 ← •••
d2 ← •••

B2

a1 ← Φ(a0,a)
b1 ← Φ(b0,b)
c1 ← Φ(c0,c)
d1 ← Φ(d0,d)
i1 ← Φ(i0,i) 
a2 ← •••
c2 ← •••

B1

a3 ← •••
d3 ← •••

B3 

d4 ← •••
B4 c4 ← •••

B5

d5 ← Φ(d4,d3)
c5 ← Φ(c2,c4)
b3 ← •••

B6

i > 100

Example
Before B7

i0

a1 b1 c1 d1 i1

a2 c2
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Counters
Stacks

5 5 7 7 3

a

a0 b0 c0 d0

b c d i

a4 ← Φ(a2,a3)
b4 ← Φ(b2,b3)
c6 ← Φ(c3,c5)
d6 ← Φ(d2,d5)
y ← a4+b4
z ← c6+d6
i2 ← i1+1

B7

i > 100
i0 ← •••B0

b2 ← •••
c3 ← •••
d2 ← •••

B2

a1 ← Φ(a0,a4)
b1 ← Φ(b0,b4)
c1 ← Φ(c0,c6)
d1 ← Φ(d0,d6)
i1 ← Φ(i0,i2) 
a2 ← •••
c2 ← •••

B1

a3 ← •••
d3 ← •••

B3 

d4 ← •••
B4 c4 ← •••

B5

d5 ← Φ(d4,d3)
c5 ← Φ(c2,c4)
b3 ← •••

B6

i > 100

Example
End of B7

i0

a1 b1 c1 d1 i1

a2 c2

a4

b4

c6

d6 i2
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Counters
Stacks

a4 ← Φ(a2,a3)
b4 ← Φ(b2,b3)
c6 ← Φ(c3,c5)
d6 ← Φ(d2,d5)
y ← a4+b4
z ← c6+d6
i2 ← i1+1

B7

i > 100
i0 ← •••B0

b2 ← •••
c3 ← •••
d2 ← •••

B2

a1 ← Φ(a0,a4)
b1 ← Φ(b0,b4)
c1 ← Φ(c0,c6)
d1 ← Φ(d0,d6)
i1 ← Φ(i0,i2) 
a2 ← •••
c2 ← •••

B1

a3 ← •••
d3 ← •••

B3 

d4 ← •••
B4 c4 ← •••

B5

d5 ← Φ(d4,d3)
c5 ← Φ(c2,c4)
b3 ← •••

B6

i > 100

Example
After renaming

• Semi-pruned SSA form

• We’re done …

Semi-pruned ⇒ only names 
live in 2 or more blocks are 
“global names”.
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SSA Construction Algorithm
(Pruned SSA)

What’s this “pruned SSA” stuff?
♦ Minimal SSA still contains extraneous Φ-functions. 
♦ Inserts some Φ-functions where they are dead.
♦ Would like to avoid inserting them.

Two ideas
♦ Semi-pruned SSA: discard names used in only one block.

♦ Significant reduction in total number of Φ-functions.
♦ Needs only local liveness information. (cheap to compute)

♦ Pruned SSA: only insert Φ-functions where their value is live.
♦ Inserts even fewer Φ-functions, but costs more to do.
♦ Requires global live variable analysis. (more expensive)

In practice, both are simple modifications to step 1.
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SSA Construction Algorithm

We can improve the stack management. 
♦ Push at most one name per stack per block.    (save push & pop)
♦ Thread names together by block.
♦ To pop names for block B, use B’s thread.

This is a good use for a scoped hash table.
♦ Significant reductions in pops and pushes.
♦ Makes a minor difference in SSA construction time.
♦ Scoped table is a clean, clear way to handle the problem.
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SSA Deconstruction

At some point, we need executable code.
♦ Few machines implement Φ operations.
♦ Need to fix up the flow of values.

Basic idea.
♦ Insert copies Φ-function pred’s.
♦ Simple algorithm.

♦ Works in most cases.
♦ Adds lots of copies.

♦ Most of them coalesce away.

X17← Φ(x10,x11)
... ← x17

... ... 

... ← x17

X17 ← x10 X17 ← x11

SS
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Dead Code Elimination &
Constant Propagation

on SSA form

This lecture is primarily based on Konstantinos Sagonas set of slides 
(Advanced Compiler Techniques, (2AD518)

at Uppsala University, January-February 2004).
Used with kind permission.

(In turn based on Keith Cooper’s slides)
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Dead Code Elimination Using 
SSA

Dead code elimination
♦ Conceptually similar to mark-sweep garbage collection:

♦ Mark useful operations.
♦ Everything not marked is useless.

♦ Need an efficient way to find and to mark useful operations.
♦ Start with critical operations.
♦ Work back up SSA edges to find their antecedents.

♦ Operations defined as critical:
♦ I/O statements, 
♦ linkage code (entry & exit blocks), 
♦ return values, 
♦ calls to other procedures.

Algorithm will use post-dominators & reverse dominance frontiers.
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Dead Code Elimination Using 
SSA

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to 

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Notes:

• Eliminates some branches.

• Reconnects dead branches to the 
remaining live code.

• Find useful post-dominator by 
walking post-dominator tree.

> Entry & exit nodes are useful
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Dead Code Elimination Using 
SSA

Handling Branches
♦ When is a branch useful?

♦ When another useful operation depends on its existence

♦ j control dependent on i ⇒ one path from i leads to j, one doesn’t
♦ This is the reverse dominance frontier of j (RDF(j))

Algorithm uses RDF(n) to mark branches as live 

In the CFG, j is control dependent on i if

1. ∃ a non-null path p from i to j such that  j post-
dominates every node on p after i

2. j does not strictly post-dominate i
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Dead Code Elimination Using 
SSA

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList
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1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

Skip
Example
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Dead Code Elimination Using 
SSA

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList
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1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
17
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
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1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
17

i=17
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList

i=17
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
12

i=17
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
12

i=17
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
12

i=12
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList

i=12
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList

i=12
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
15

i=12
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
15

i=12
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
15

i=15
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList

i=15
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im
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at
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n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList

i=15
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
2

i=15
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im
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at
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n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
2,14

i=2
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im
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at
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n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
14

i=2
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
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at
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n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
14

i=14
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 
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1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList

i=14
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
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d 
C
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e 
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1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 
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n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
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d 
C
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e 
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im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
3

i=13
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
3,10

i=13
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
3,10,16

i=13
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
3,10,16

i=3
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
10,16

i=10
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
16

i=10
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
16

i=10
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
16,4

i=16
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
4

i=4
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
1

i=4
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList
1

i=1
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Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x←y op z” ) 
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b ∈ RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

WorkList

i=
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Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to 

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

i=1
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Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to 

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

i=1
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Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to 

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

i=2...4
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Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to 

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

i=5
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Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to 

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

i=5
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Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to 

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

5:b2=x+1;

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

i=5
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Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to 

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

i=6
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Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to 

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:x==1

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

i=6
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Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to 

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:goto 

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

i=6
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Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to 

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:goto 

7:b3=x+2; 8:b4=x+3;

a,b1,c1,n

i=7
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Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to 

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at

io
n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:goto 

8:b4=x+3;

a,b1,c1,n

i=8
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Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to 

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at
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n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

9:b5=Φ(b3,b4)
10:i2=y; 

6:goto 

a,b1,c1,n

i=9
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Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to 

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
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n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

10:i2=y; 

6:goto 

a,b1,c1,n

i=10
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Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to 

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 

El
im

in
at
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n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

11:b6=Φ(b2,b5)
12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

10:i2=y; 

6:goto 

a,b1,c1,n

i=11
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Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to 

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Dead Code Elimination Using 
SSA

D
ea

d 
C

od
e 
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im
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at
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n

1:x=17+a;
2:y=a;
3:i1=0;
4:x==0

12:c2=Φ(c1,c1,c3)
13:i3=Φ(i1,i2,i4)
14:i3<n

15:c3=c2+y;
16:i4=i3+1;

17:return c2

10:i2=y; 

6:goto 

a,b1,c1,n

i=12...17
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Dead Code Elimination Using 
SSA

What’s left?
♦ Algorithm eliminates useless definitions & some useless branches
♦ Algorithm leaves behind empty blocks & extraneous control-flow

Two more issues
♦ Simplifying control-flow  
♦ Eliminating unreachable blocks
Both are CFG transformations (no need for SSA)

Algorithm from: Cytron, Ferrante, Rosen, 
Wegman, & Zadeck, Efficiently Computing
Static Single Assignment Form and the 
Control Dependence Graph, ACM TOPLAS 13(4), 
October 1991

with a correction due to Rob Shillner
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Constant Propagation

Safety
♦ Proves that name always has known value
♦ Specializes code around that value

♦ Moves some computations to compile time        (⇒ code motion)
♦ Exposes some unreachable blocks  (⇒ dead code)

Opportunity
♦ Value ≠ ⊥ signifies an opportunity

Profitability
♦ Compile-time evaluation is cheaper than run-time evaluation
♦ Branch removal may lead to block coalescing 

♦ If not, it still avoids the test & makes branch predictable
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∀ expression, e
Value(e) ←

WorkList ← Ø

∀ SSA edge s = <u,v>
if Value(u) ≠ TOP then

add s to WorkList

while (WorkList ≠ Ø)
remove s = <u,v> from WorkList
let o be the operation that uses v

if Value(o) ≠ BOT then
t ← result of evaluating o

if t ≠ Value(o) then
∀ SSA edge <o,x>

add <o,x> to WorkList

{ TOP if its value is unknown

ci if its value is known (the constant ci)
BOT if its value is known to vary

Evaluating a Φ-node:
Φ(x1,x2,x3, … xn) is

Value(x1) ∧Value(x2) Value(x3)
∧ ... ∧ Value(xn)

Where

TOP ∧ x = x ∀ x
ci ∧ cj = ci if ci = cj

ci ∧ cj = BOT if ci ≠ cj

BOT ∧ x = BOT ∀ x

Same result, fewer ∧ operations

Performs ∧ only at Φ nodes

i.e., o is “a←b op v” or “a ←v op b”

Sparse Constant Propagation 
Using SSA
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Sparse Constant Propagation 
Using SSA

How long does this algorithm take to halt?
♦ Initialization is two passes

♦ |ops| + 2 x |ops| edges
♦ Value(x) can take on 3 values

♦ TOP, ci, BOT
♦ Each use can be on WorkList twice
♦ 2 x |args| = 4 x |ops| evaluations, WorkList pushes & pops

This is an optimistic algorithm:
♦ Initialize all values to TOP, unless they are known constants
♦ Every value becomes BOT or ci, unless its use is uninitialized

TOP

BOT

ci cj ck cl cm cn
......
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Sparse Conditional Constant 
Propagation

Optimism Optimism

• This version of the algorithm is 
an optimistic formulation 

• Initializes values to TOP

• Prior version used ⊥ (implicit )

i0 ← 12
while ( … )
i1 ← Φ(i0,i3)
x ← i1 * 17
j ← i1
i2 ← …
…

i3 ← j
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Sparse Conditional Constant 
Propagation

Optimism Optimism

• This version of the algorithm is 
an optimistic formulation 

• Initializes values to TOP

• Prior version used ⊥ (implicit )

i0 ← 12
while ( … )
i1 ← Φ(i0,i3)
x ← i1 * 17
j ← i1
i2 ← …
…

i3 ← j
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Sparse Conditional Constant 
Propagation

Optimism
Clear 
that i is 
always 
12 at 
def of x

Optimism

• This version of the algorithm is 
an optimistic formulation 

• Initializes values to TOP

• Prior version used ⊥ (implicit )

i0 ← 12
while ( … )
i1 ← Φ(i0,i3)
x ← i1 * 17
j ← i1
i2 ← …
…

i3 ← j
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12

⊥

⊥

⊥
⊥

Pessimistic 
initializations

Leads to:
i1 ≡ 12 ∧ ⊥ ≡ ⊥
x ≡ ⊥ * 17 ≡ ⊥
j ≡ ⊥
i3 ≡ ⊥

Sparse Conditional Constant 
Propagation

Optimism Optimism

• This version of the algorithm is 
an optimistic formulation 

• Initializes values to TOP

• Prior version used ⊥ (implicit )

⊥

i0 ← 12
while ( … )
i1 ← Φ(i0,i3)
x ← i1 * 17
j ← i1
i2 ← …
…

i3 ← j
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Optimism
12

TOP

TOP

TOP

TOP

TOP

Optimistic 
initializations

Leads to:
i1 ≡ 12 ∧ TOP ≡ 12
x ≡ 12 * 17 ≡ 204
j ≡ 12
i3 ≡ 12
i1 ≡ 12 ∧ 12 ≡ 12

Sparse Conditional Constant 
Propagation

In general, optimism helps inside loops.

M.N. Wegman & F.K. Zadeck, Constant propagation with conditional 
branches, ACM TOPLAS, 13(2), April 1991, pages 181–210.

Optimism

• This version of the algorithm is 
an optimistic formulation 

• Initializes values to TOP

• Prior version used ⊥ (implicit )

i0 ← 12
while ( … )
i1 ← Φ(i0,i3)
x ← i1 * 17
j ← i1
i2 ← …
…

i3 ← j
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Sparse Conditional Constant 
Propagation

What happens when it propagates a value into a branch?
♦ TOP ⇒ we gain no knowledge.
♦ BOT ⇒ either path can execute.
♦ TRUE or FALSE ⇒ only one path can execute.

Working this into the algorithm.
♦ Use two worklists: SSAWorkList & CFGWorkList:

♦ SSAWorkList determines values.
♦ CFGWorkList governs reachability.

♦ Don’t propagate into operation until its block is reachable.

}But, the algorithm 
does not use this ...

C
on

di
tio

na
l C

on
st

an
t P

ro
pa

ga
tio

n



Advanced Compiler Techniques 02.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/63

Sparse Conditional Constant 
Propagation

SSAWorkList ← Ø
CFGWorkList ← n0

∀ block b
clear b’s mark
∀ expression e in b

Value(e) ← TOP

Initialization Step

To evaluate a branch

if arg is BOT then 
put both targets on CFGWorklist

else if arg is TRUE then
put TRUE target on CFGWorkList

else if arg is FALSE then
put FALSE target on CFGWorkList

To evaluate a jump
place its target on CFGWorkList

while ((CFGWorkList ∪ SSAWorkList) ≠ Ø)

while(CFGWorkList ≠ Ø)
remove b from CFGWorkList
mark b
evaluate each Φ-function in b
evaluate each op in b, in order

while(SSAWorkList ≠ Ø)
remove s = <u,v> from SSAWorkList

let o be the operation that contains v

t ← result of evaluating o

if t ≠ Value(o) then
Value(o) ← t
∀ SSA edge <o,x>

if x is marked, then
add <o,x> to SSAWorkList

Propagation Step
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Sparse Conditional Constant 
Propagation

There are some subtle points:
♦ Branch conditions should not be TOP when evaluated.

♦ Indicates an upwards-exposed use. (no initial value - undefined) 
♦ Hard to envision compiler producing such code.

♦ Initialize all operations to TOP.
♦ Block processing will fill in the non-top initial values.
♦ Unreachable paths contribute TOP to Φ-functions.

♦ Code shows CFG edges first, then SSA edges.
♦ Can intermix them in arbitrary order. (correctness)
♦ Taking CFG edges first may help with speed. (minor effect)
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Sparse Conditional Constant 
Propagation

More subtle points:
♦ TOP * BOT → TOP

♦ If TOP becomes 0, then 0 * BOT → 0.
♦ This prevents non-monotonic behavior for the result value.
♦ Uses of the result value might go irretrievably to 0. 
♦ Similar effects with any operation that has a “zero”.

♦ Some values reveal simplifications, rather than constants
♦ BOT * ci → BOT, but might turn into shifts & adds (ci = 2, BOT ≥ 0)
♦ Removes commutativity. (reassociation)
♦ BOT**2 → BOT * BOT. (vs. series or call to library)

♦ cbr TRUE → L1,L2 becomes  br → L1
♦ Method discovers this; it must rewrite the code, too!
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Sparse Conditional Constant 
Propagation

Unreachable Code Optimism

• Initialization to TOP is still 
important. 

• Unreachable code keeps TOP.

• ∧ with TOP has desired result.

i←17
if (i>0) then
j1←10

else
j2←20

j3←Φ(j1, j2)
k←j3*17
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i←17
if (i>0) then
j1←10

else
j2←20

j3←Φ(j1, j2)
k←j3*17

Sparse Conditional Constant 
Propagation

Unreachable Code Optimism

• Initialization to TOP is still 
important. 

• Unreachable code keeps TOP.

• ∧ with TOP has desired result.

All paths 
execute 

10

20

⊥
⊥

17
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With SCC 
marking 
blocks

TOP

170

17

TOP

TOP

i←17
if (i>0) then
j1←10

else
j2←20

j3←Φ(j1, j2)
k←j3*17

Sparse Conditional Constant 
Propagation

Unreachable Code Optimism

• Initialization to TOP is still 
important. 

• Unreachable code keeps TOP.

• ∧ with TOP has desired result.
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With SCC 
marking 
blocks

TOP

170

17

TOP

TOP

i←17
if (i>0) then
j1←10

else
j2←20

j3←Φ(j1, j2)
k←j3*17

Sparse Conditional Constant 
Propagation

Unreachable Code

Cannot get this any other way:

• DEAD code cannot test (i > 0).

• DEAD marks j2 as useful.

Optimism

• Initialization to TOP is still 
important. 

• Unreachable code keeps TOP.

• ∧ with TOP has desired result.
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With SCC 
marking 
blocks

TOP

170

17

TOP

TOP

i←17
if (i>0) then
j1←10

else
j2←20

j3←Φ(j1, j2)
k←j3*17

Sparse Conditional Constant 
Propagation

Unreachable Code Optimism

• Initialization to TOP is still 
important. 

• Unreachable code keeps TOP.

• ∧ with TOP has desired result.

In general, combining two optimizations can lead to answers that
cannot be produced by any combination of running them separately.  
This algorithm is one example of that general principle.
Combining register allocation & instruction scheduling is another ...
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Using SSA Form for 
Optimizations

In general, using SSA conversion leads to:
♦ Cleaner formulations.
♦ Better results.
♦ Faster algorithms.

We’ve seen two SSA-based algorithms.
♦ Dead-code elimination.
♦ Sparse conditional constant propagation.
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Partial Redundancy 
Elimination

This lecture is primarily based on Konstantinos Sagonas set of slides 
(Advanced Compiler Techniques, (2AD518)

at Uppsala University, January-February 2004).
Used with kind permission.

(In turn based on Keith Cooper’s slides)



Advanced Compiler Techniques 21.04.04 10:32:14
http://lamp.epfl.ch/teaching/advancedCompiler/2

Common-Subexpression
Elimination

An occurrence of an expression in a program is a common subexpression if there is 
another occurrence of the expression whose evaluation always precedes this one 
in execution order and if the operands of the expression remain unchanged 
between the two evaluations.

Local Common Subexpression Elimination (CSE) keeps track of the set of available 
expressions within a basic block and replaces instances of them by references to 
new temporaries that keep their value.

…
a=(x+y)+z;
b=a-1; 
c=x+y;
…

Before CSE

…
t=x+y;
a=t+z;
b=a-1; 
c=t;
…

After CSE
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Available Expressions

♦ An expression x+y is available at a program point p if
♦ every path from the initial node to p evaluates x+y before 

reaching p,
♦ and there are no assignments to x or y after the evaluation but 

before p.

♦ Available Expression information can be used to do 
global (across basic blocks) CSE.

♦ If an expression is available at the point of its use, 
there is no need to re-evaluate it.

Re
pe

tit
io

n:
 A

va
ila

bl
e 

Ex
pr

es
si

on
s



Advanced Compiler Techniques 21.04.04 10:32:14
http://lamp.epfl.ch/teaching/advancedCompiler/4

Computing Available 
Expressions

♦ Represent sets of expressions using bit 
vectors

♦ Each expression corresponds to a bit
♦ Run dataflow algorithm similar to reaching 

definitions
♦ Notice that:

♦ A definition reaches a basic block if it comes from 
ANY predecessor in CFG.

♦ An expression is available at a basic block only if it 
is available from ALL block’s predecessors in the 
CFG.
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Expressions
1: x+y
2: i<n
3: i+c
4: x==0

0000

1001

1000

1000

1100 1100

a=x+y;
x==0 

x=z;
b=x+y;

i<n

c=x+y;
i=i+c;

d=x+y

i=x+y; 
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Expressions
1: x+y
2: i<n
3: i+c
4: x==0

0000

1001

1000

1000

1100 1100

a=x+y;
t1=a;
x==0 

x=z;
b=x+y;
t1=b;

i<n

c=t1;
i=i+c;

d=t1

i=t1; 

Global CSE Transform

Must use same temp
for CSE in all blocks
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Not all occurrences 
of b+c are redundant!

Some occurrences of 
b+c are redundant

Redundant Expressions
An expression is redundant at a point p if, on every 

path to p
1.  It is evaluated before reaching p, and
2.  None of its constituent values is redefined before p

Example

a←b+c

a←b+c b←b+1
a←b+c

a←b+c
a←b+c
a←b+c
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b←b+1
a←b+c a←b+c

a←b+c

Inserting a copy of “a←b+c” after the definition 
of b can make it redundant.

Partially Redundant 
Expressions

An expression is partially redundant at p if it is redundant along 
some, but not all, paths reaching p.

Example

b←b+1 a←b+c

a←b+cPa
rt
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Another example:

Loop invariant expressions are partially redundant.
♦ Partial redundancy elimination performs code motion.
♦ Major part of the work is figuring out where to insert operations.

Loop Invariant Expressions

x←y*z

a←b+c
b + c is partially  
redundant here

x←y*z
a←b+c

a←b+c
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Memory Management

♦ The computer memory is a limited resource so the 
memory use of programs has to be managed in some way.

♦ The memory management is usually performed by a 
runtime system with help from the compiler.
♦ The runtime system is a set of system procedures linked to the 

program. 
♦ For C programs it can be as simple as a small library for 

interacting with the operating system.
♦ For Erlang programs the runtime system implements almost all 

the functionality normally provided by the OS. 
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Memory Management

♦ In a language such as C there are three 
ways to allocate memory:

1. Static allocation. The size of memory needed 
by global variables (and code) is decided at 
compile time.

2. Stack allocation. Activation records are 
allocated on the stack at function calls.

3. Heap allocation. Dynamically allocated by the 
programmer by the use of malloc.
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Memory Organization

♦A typical layout of the 
memory of a C 
program looks like:

Stack

Heap (dynamic)

Uninitialized static data
(Global variables)

Constant static data

Code
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Dynamic Memory Management

♦ Heap allocation is necessary for data that lives longer than 
the function which created it, and which is passed by 
reference, e.g., lists in misc.

♦ Two design questions for the heap:
♦ How is space for data allocated on the heap?
♦ How and when is the space deallocated?

♦ Considerations in memory management design:
♦ Space leaks & dangling pointers.
♦ The cost for allocation and deallocation.
♦ Space overhead of the memory manager.
♦ Fragmentation.
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Fragmentation

♦ The memory management system should try to avoid 
fragmentation, i.e. when the free memory is broken up into 
several small blocks instead of few large blocks.

♦ In a fragmented system memory allocation may fail 
because there is no free block that is large enough even 
though the total free memory would be large enough.

♦ We distinguish between:
♦ Internal fragmentation – the allocated block is larger than the 

requested size (the waste is in the allocated data).
♦ External fragmentation – all free blocks are too small (the waste is 

in the layout of the free data).
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Memory Allocation

♦ The use of a free-list is a common scheme.
♦ The system keeps a list of unused memory blocks.
♦ To allocate memory the free-list is searched to find a block 

which is large enough.
♦ The block is removed from the free-list and used to store 

the data. If the block is larger than the need, it is split and 
the unused part is returned to the free-list (to avoid internal 
fragmentation).

♦ When the memory is freed it is returned to the free-list. 
Adjacent memory blocks can be merged (or coalesced) 
into larger blocks (to avoid external fragmentation).
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Free-list

♦ The free-list can be stored in the 
free memory since it is not used for 
anything else. (We assume, or ensure, 
that each memory block is at least two 
words).

33

44

22
Free list:

This can be 
stored as a 
static global 
variable.
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Free-list

♦ Note that we need to know the size of a block 
when it is deallocated. This means that even 
allocated blocks need to have a size field in them.

♦ Thus the space overhead will be at least one word 
per allocated data object. (It might also be 
advantageous to keep the link.)

♦ The cost (time) of allocation/deallocation is 
proportional to the search through the free-list.
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Free-list

♦There are many different ways to 
implement the details of the free-list 
algorithm:
♦Search method: first-fit, best-fit, next-fit.
♦Links: single, double.
♦Layout: one list, one list per block size, tree, 

buddy.
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Deallocation

♦Deallocation can either be explicit or 
implicit.

♦Explicit deallocation is used in e.g., Pascal 
(new/dispose), C (malloc/free), and C++ 
(new/delete).

♦Implicit deallocation is used in e.g., Lisp, 
Prolog, Erlang, ML, and Java.
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Explicit Deallocation

♦Explicit deallocation has a number of 
problems:
♦ If done too soon it leads to dangling pointers.
♦ If done too late (or not at all) it leads to space 

leaks.
♦ In some cases it is almost impossible to do it at 

the right time. Consider a library routine to 
append two mutable lists:
c = append(a,b);
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
printList(b);
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Explicit Deallocation

11

M
em

or
y 

M
an

ag
em

en
t: 

D
ea

llo
ca

tio
n



Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/14

Explicit Deallocation

♦ The programmer 
now has to ensure 
that a, b, and c are 
all deallocated at the 
same time. A mistake 
would lead to 
dangling pointers.

♦ If b is in use long 
after a, and c, then 
we will keep a live 
too long. A space 
leak.

list a = new List(1,2,3);
list b = new List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
printList(b);
free(c);M
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Implicit Deallocation

♦ With implicit deallocation the programmer does not 
have to worry about when to deallocate memory.

♦ The runtime system will dynamically decide when 
it is safe to do this.

♦ In some cases, and systems, the compiler can also 
add static dealloctions to the program.

♦ The most commonly used automatic deallocation 
method is called garbage collection (GC).

♦ There are other methods such as region based
allocation and deallocation.
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Garbage Collection (GC)

♦ Garbage collection is a common name for a set of 
techniques to deallocate heap memory that is 
unreachable by the program.

♦ There are several different base algorithms: 
reference counting, mark & sweep, copying.

♦ We can also distinguish between how the GC 
interferes or interacts with the program: 
disruptive, incremental, real-time, concurrent.
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The Reachability Graph

♦ The data reachable by the program form a 
directed graph, where the edges are pointers.

♦ The roots of this graph can be in:
1. global variables,
2. registers,
3. local variables & formal parameters on the stack.

♦ Objects are reachable iff there is a path of edges 
that leads to them from some root. Hence, the 
compiler must tell the GC where the roots are.
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

The Reachability Graph
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roots: b

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

The Reachability Graph
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The goal with the GC is to 
deallocate these:
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Reference Counting

♦ Idea: Keep track of how many references there are 
to each object.

♦ If there are 0 references deallocate the object.
♦ The compiler must add code to maintain the reference 

count (refcount).
♦ Set the count to 1 when created.
♦ For an assignment x = y: 

♦ if (x != null) x.refcount—;
♦ if (y!=null) y.refcount++;

♦ When a stack frame is deallocated decrease the refcount of each object 
pointed to from the frame.

♦ When refcount reaches 0 deallocate the object and decrease refcount of 
each child.
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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NILNIL
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b;
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Reference Count

♦ Advantages of reference count:
♦ Rather easy to implement.
♦ Storage reclaimed immediately.

♦ Disadvantages of reference count:
♦ Space overhead: 1 word per object.
♦ Keeping track of the reference counts is very 

expensive. (Each simple pointer copy becomes several 
instructions.)

♦ There is one more problem…
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list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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Reference Count

♦ Big disadvantage with reference count:
♦ The refcount of cyclic structures never reaches zero!

♦ There are ways to solve this, but they are very 
complicated.

♦ Due to this fact reference count is very seldom used 
in practice. There is one nice use, as we shall see later…

♦ In a pure language or a language without destructive updates there 
are no cyclic structures, making reference counting a viable option.G
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Mark & Sweep

♦ A mark & sweep GC is made up of two 
phases:

1. First all reachable objects are marked.
2. Then the heap is swept clean of dead objects.

♦ The mark phase is done by a depth first 
search through the reachability graph 
starting from the roots.
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Depth First Mark Algorithm

mark(x) {
if(! marked(x)) { 

setMark(x);
for each field f of x

mark(*f)
}

}
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Mark
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mark(b)
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The Sweep

♦ The Sweep phase goes through the whole heap 
from start to finish and adds unmarked objects to 
the free-list.

p = heapStart;
while (p<heapEnd) {
if(marked(*p)) clearMark(*p);
else free(p);
p += size(*p);

}
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

22

33

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k 
&

 S
w

ee
p



Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/43

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep
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Cost of Mark & Sweep

♦ The mark phase takes time proportional to the amount of 
reachable data (RR).

♦ The sweep phase takes time proportional to the size of the 
heap (HH).

♦ The work done by the GC is to recover HH-RR words of 
memory.

♦ Them amortized cost of GC (overhead/allocated word) is:
c1RR + c2HH

HH-RR
♦ If RR ≈ HH the cost is very high. The cost goes down as the 

number of dead words increases. 
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Mark & Sweep

♦ Where do we store the mark bits?
♦ We will discuss data representation a bit more at the end of the

lecture. With some representations there will always be a tag or a 
header word in each heap object where the mark bit can be stored.

♦ They can be stored in a separate bitmap table:
♦ If we have a 32-bit architecture and the smallest heap 

object is 2 words. (The three least significant bits == 0)
♦ Then we can have 536,870,911 objects and need 

67,108,863 bytes to store these bits. 
♦ This might seem to be a lot, but it is only 1.562% of the 

total heap.
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Tuning Mark & Sweep

♦There is one problem with the mark phase:
♦While doing the depth first search we need to 

keep track of other paths to search. 
♦ If this is done with recursive calls we will need 

one allocation record for each level we descend 
in the reachability graph. 

♦Solutions: Explicit stack or pointer reversal.
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Mark & Sweep

♦Advantages with mark & sweep:
♦Can reclaim cyclic structures.
♦Standard version is easy to implement.
♦Can have relatively low space overhead.

♦Disadvantages:
♦Fragmentation can become a problem.
♦Allocation from a free-list can be costly. 
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Copying Collector

♦The idea of a copying garbage collector is to 
divide the memory space in two parts.

♦Allocation is done linearly in one part 
(from-space).

♦When that part is full all reachable objects 
are copied to the other part (to-space).
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Before GC

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;
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After GC

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;
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Forwarding Pointers

♦Given a pointer p that point to from-space
make it point to to-space:
♦ If p points to a from-space record that contains 

a pointer to to-space, then *p is a forwarding-
pointer that indicates where the copy is. Set 
p=*p.

♦ If *p has not been copied, copy *p to location 
next, *p=next, p=next, next+=size(*p).
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Cheney’s Copying Collector

♦ Cheney’s algorithm uses breadth-first to traverse 
the live data.

♦ The algorithm is non-recursive, requires no extra 
space or time consuming tricks (such as pointer 
reversal), and it is very simple to implement.

♦ The disadvantage is that breadth-first does not 
give as good locality of references as depth-first. 
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Cheney’s Copying Collector

♦ The algorithm:
1. Forward all roots.
2. Use the area between scan and next as a queue for copied 

records whose children has yet not been forwarded.
scan = next = start of to-space
for each root r { r = forward(r); }
while scan < next {
for each field f of *scan 
scan->f = forward(scan->f)

scan += size(*scan) 
}
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Before GC

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;
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Forward Roots

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;
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Scanning

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;
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Scanning

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;
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Scanning

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;
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Scanning

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;
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Cost of Copying GC

♦ The GC takes time proportional to the amount of 
reachable data (RR).

♦ The work done by the GC is to recover HH/2 /2 - RR words of 
memory.

♦ The amortized cost of GC (overhead/allocated word) is:
c1RR

((HH/2) - RR
♦ If HH is much larger than R R then the cost approaches zero.then the cost approaches zero.
♦ The GC is often self-tuning so that HH = 4RR giving a GC 

cost of c1 per allocated word. 
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Copying GC

♦ Advantages of copying GC:
♦ Can handle cyclic structures.
♦ Very easy to implement.
♦ Extremely fast allocation (no free-list) just a check and heap 

pointer increment.
♦ Automatic compaction: no fragmentation.
♦ Only visits live data – time only proportional to live data.

♦ Disadvantages of copying GC:
♦ Double the space overhead since two heaps are needed.
♦ Long lived live data might be copied several times.
♦ Copying all the live data might lead to long stop times.
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Generational GC

♦ Empirical observation: most objects die young. 
The longer an object lives the higher the 
probability it will survive the next GC.

♦ The benefit of GC is highest for young objects.
♦ Idea: Keep young objects in a small space which 

is GC more often than the whole heap.
♦ With such a generational GC each collection takes 

less time and yields proportionally more space.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 G
en

er
at

io
na

l



Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/71

Generational GC

♦ In a generational GC we want to collect the 
younger generation without having to look at 
older generations.

♦ But we have to consider all pointers from older 
generations to younger generations as roots.
♦ (In a language without destructive updates this is not a 

problem, since there are no such pointers.) 
♦ These inter-generational references must be 

remembered (e.g., by keeping a remembered set). 
The compiler has to ensure that all store 
operations in an older generation are checked.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 G
en

er
at

io
na

l



Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/72

Cost of Generational GC

♦ It is common for the youngest generation to have less than 
10% live data.

♦ With a copying collector HH//RR =10 in this generation.
♦ The amortized cost of a minor collection is:

c1RR
(10 (10 RR) - RR

♦ Performing a major collection can be very expensive.
♦ Maintaining the remembered set also takes time. If a 

programs does many updates of old objects with pointers 
to new objects a generational GC can be more expensive 
than a non-generational GC. 
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Incremental GC

♦ An incremental (or concurrent) GC keeps the stop-
times down by interleaving GC with program 
execution.
♦ The collector tries to free memory while the program, 

called the mutator changes the reachability graph.
♦ An incremental GC only operates at request from 

the mutator.
♦ A concurrent GC can operate in between any two 

mutator instructions. 
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Data Layout

♦ The compiler and the runtime system have to agree on a data layout. 
The GC needs to know the size of records, and which fields of a 
record contains pointers to other records.

♦ In statically typed or OO languages, each record can start with a 
header word that points to a description of the type or class. 

♦ In many functional languages the set of data types can not be 
extended; for such languages one can use a tagging scheme where 
unused bits in a pointer indicate what data type it points to.

♦ Another approach is to not give any information to the collector about 
which fields are pointers. The collector must then make a conservative 
guess, and treat all words that looks like pointers to the heap as such. 
Since it is unsafe to change such pointers a conservative collector has to 
be non-moving.
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The Root Set

♦ The set of registers and stack slots that contain 
live data can be described by a pointer map (stack 
map).

♦ For each pointer that is live after a function call 
the pointer map identifies its register or stack slot.

♦ The return address can be used as a key in a hash 
map to find the pointer map.

♦ To mark/forward the roots the GC starts at the 
top of the stack and scans downwards frame by 
frame. (In a generational collector the stack scan 
can also be made generational.) 
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Finalizers

♦ Some languages (notably OO) have finalizers, that is, some code that 
should be executed before some data is deallocated.

♦ This is, e.g., useful to make sure that an object frees all resources 
(open files, locks, etc) before dying.

♦ With a copying collector the handling of finalizers becomes more 
difficult. Such a GC does not normally visit the dead data. So all 
finalizers have to be remembered and after GC a check has to be done 
to see if any freed data triggers a finalizer.

♦ A mark & sweep collector does not have this problem, but just as with 
a copying collector it might take a long time after the last use before 
garbage is actually collected.

♦ If one wants to ensure that a finalizer is executed as soon as the object 
dies then one has to use reference counting.  
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Summary

♦Manual allocation is unsafe and should not 
be used. (It also comes at a cost, 
maintaining a free-list is not for free.)

♦Garbage collection solves the problem of 
automatic memory management.

♦In most cases a generational copying 
collector will be the most efficient solution.



Lazy Code Motion
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Lazy Code Motion

The concept
♦ Solve data-flow problems that reveal limits of code motion
♦ Compute INSERT & DELETE sets from solutions
♦ Linear pass over the code to rewrite it  (using INSERT & DELETE)

The history
♦ Partial redundancy elimination          (Morel & Renvoise, CACM, 1979)
♦ Improvements by Drechsler & Stadel, Joshi & Dhamdhere, Chow, 

Knoop, Ruthing & Steffen, Dhamdhere, Sorkin, …
♦ All versions of PRE optimize placement

♦ Guarantee that no path is lengthened
♦ LCM was invented by Knoop et al. in PLDI, 1992 
♦ We will look at a variation by Drechsler & Stadel

SIGPLAN Notices, 
28(5), May, 1993
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Lazy Code Motion

The intuitions
♦ Compute available expressions
♦ Compute anticipable expressions
♦ These lead to an earliest placement for each expression
♦ Push expressions down the CFG until it changes behavior

Assumptions
♦ Uses a lexical notion of identity (not value identity)
♦ Code is in an Intermediate Representation with unlimited name space
♦ Consistent, disciplined use of names

♦ Identical expressions define the same name
♦ No other expression defines that name }Avoids copies

Result serves as proxy 
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Lazy Code Motion

The Name Space
♦ ri+rj→rk, always  (hash to find k)
♦ We can refer to ri+rj byrk (bit-vector sets)
♦ Variables must be set by copies

♦ No consistent definition for a variable
♦ Break the rule for this case, but require rsource < rdestination

♦ To achieve this, assign register names to variables first

Without this name space
♦ LCM must insert copies to preserve redundant values
♦ LCM must compute its own map of expressions to unique ids
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Lazy Code Motion: Running 
Example

B1:
r1←1
r2←r1
r3←r0+@m
r4←r3
r5←(r1< r2)
if r5 then B2 else B3

B2:
r20←r17*r18
r21←r19+r20
r8←r21
r6←r2+1
r2←r6
r7←(r2>r4)
if r7 then B3 else B2

B3: ...

Variables:
r2,r4,r8

Expressions:
r1,r3,r5,r6,r7,r20,r21

B1

B2

B3
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Lazy Code Motion

Predicates (computed by Local Analysis)
♦ DEEXPR(b) contains expressions defined in b that survive to the 

end of b.
e ∈ DEEXPR(b) ⇒ evaluating e at the end of b produces the same 
value for e as evaluating it in its original position.

♦ UEEXPR(b) contains expressions defined in b that have upward 
exposed arguments (both args).

e ∈ UEEXPR(b) ⇒ evaluating e at the start of b produces the same 
value for e as evaluating it in its original position.

♦ KILLEDEXPR(b) contains those expressions whose arguments are 
(re)defined in b.

e ∈ KILLEDEXPR(b) ⇒ evaluating e at the start of b does not produce 
the same result as evaluating it at its end.
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B1:
r1←1
r2←r1
r3←r0+@m
r4←r3
r5←(r1< r2)
if r5 then B2 else B3

B2:
r20←r17*r18
r21←r19+r20
r8←r21
r6←r2+1
r2←r6
r7←(r2>r4)
if r7 then B3 else B2

B3: ...

Lazy Code Motion: Running 
Example

B1 B2 B3
DEEXPR r1, r3, r5 r7, r20, r21
UEEXPR r1, r3 r6, r20
KILLEDEXPR r5, r6, r7 r5, r6, r7, r21

Variables:
r2,r4,r8

Expressions:
r1,r3,r5,r6,r7,r20,r21
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Lazy Code Motion
Availability

Initialize AVAILIN(n) to the set of all names, except at n0
Set AVAILIN(n0) to Ø
Interpreting AVAIL

♦ e ∈ AVAILOUT(b) ⇔ evaluating e at end of b produces the same value 
for e. AVAILOUT tells the compiler how far forward e can move the 
evaluation of e, ignoring any uses of e.

♦ This differs from the way we talk about AVAIL in global redundancy 
elimination.

AVAILIN(n) = ∩m∈ preds(n) AVAILOUT(m), n ≠ n0

AVAILOUT(m) = DEEXPR(m) ∪ (AVAILIN(m) ∩ KILLEDEXPR(m))
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Lazy Code Motion

Initialize ANTOUT(n) to the set of all names, except at exit blocks
Set ANTOUT(n) to Ø, for each exit block n
Interpreting ANTOUT

♦ e ∈ ANTIN(b) ⇔ evaluating e at start of b produces the same value for 
e. ANTIN tells the compiler how far backward e can move

♦ This view shows that anticipability is, in some sense, the inverse of 
availability (& explains the new interpretation of AVAIL).

ANTOUT(n) = ∩m∈ succs(n) ANTIN(m), n not an exit block

ANTIN(m) = UEEXPR(m) ∪ (ANTOUT(m) ∩ KILLEDEXPR(m))

Anticipability
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Lazy Code Motion

EARLIEST is a predicate
♦ Computed for edges rather than nodes (placement )
♦ e ∈ EARLIEST(i,j) if 

♦ It can move to head of j,
♦ It is not available at the end of i, and 

♦ either it cannot move to the head of i (KILLEDEXPR(i))

♦ or another edge leaving i prevents its placement in i (ANTOUT(i))

EARLIEST(i,j) = ANTIN(j) ∩ AVAILOUT(i) ∩ (KILLEDEXPR(i) ∪ ANTOUT(i))

EARLIEST(n0,j) = ANTIN(j) ∩ AVAILOUT(n0)

Earliest placement
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Lazy Code Motion

Initialize LATERIN(n0) to Ø
x ∈ LATERIN(k) ⇔ every path that reaches k has x ∈ EARLIEST(m) for 

some block m, and the path from m to k is x-clear & does not 
evaluate x.
⇒ the compiler can move x through k without losing any benefit.

x ∈ LATER(i,j) ⇔ <i,j> is its earliest placement, or it can be moved 
forward from i (LATER(i)) and placement at entry to i does not 
anticipate a use in i (moving it across the edge exposes that use).

LATERIN(j) = ∩ i ∈ preds(j) LATER(i,j), j ≠ n0

LATER(i,j) = EARLIEST(i,j) ∪ (LATERIN(i) ∩ UEEXPR(i))

Later (than earliest) placement
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Lazy Code Motion
Rewriting the code

INSERT & DELETE are predicates
Compiler uses them to guide the rewrite step
♦ x ∈ INSERT(i,j) ⇒ insert x at start of i, end of j, or 

new block
♦ x ∈ DELETE(k) ⇒ delete first evaluation of x in k

INSERT(i,j) = LATER(i,j) ∩ LATERIN(j) 

DELETE(k) = UEEXPR(k) ∩ LATERIN(k), k ≠ n0

If local redundancy elimination has already been 
performed, only one copy of x exists.  Otherwise, 
remove all upward exposed copies of x. 
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Lazy Code Motion

Edge placement
♦ x ∈ INSERT(i,j)

Three cases
♦ |succs(i)| = 1 ⇒ insert x at end of i.
♦ |succs(i)| > 1 but |preds(j)| = 1 ⇒ insert x at start of j.
♦ |succs(i)| > 1 and |preds(j)| > 1 ⇒ create new block in <i,j> for x.

Bi

Bj

|succs(i)| = 1

x

|preds(j)| = 1

Bi

Bj Bk
x

|succs(i) > 1

|preds(j)| > 1

Bi

Bj Bk

Bh

x
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Lazy Code Motion Example
B1:r1←1

r2←r1
r3←r0+@m
r4←r3
r5←(r1<r2)
if r5 then B2 else B3

B2:r20←r17*r18
r21←r19+r20
r8←r21
r6←r2+1
r2←r6
r7←(r2>r4)
if r7 then B3 else B2

B3:...

B1

B2

B3

1,2 1,3 2,2 2,3

EARLIEST r20, r21 { } { } { }

Example is too small to show off LATER

INSERT(1,2) = { r20, r21 }

DELETE(2) = { r20 , r21 }

B1 B2 B3
DEEXPR r1, r3, r5 r7, r20, r21
UEEXPR r1, r3 r6, r20
KILLEDEXPR r5, r6, r7 r5, r6, r7,r21

B1 B2 B3
AVAILIN { } r1, r3 r1, r3
AVAILOUT r1, r3, r5 r1, r3, r7, r20, r21 …
ANTIN r1, r3 r6, r20 { }
ANTOUT { } { } { }
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Register Allocation

This lecture is primarily based on Konstantinos Sagonas set of slides 
(Advanced Compiler Techniques, (2AD518)

at Uppsala University, January-February 2004).
Used with kind permission.
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Register Allocation
♦What is register allocation?
♦Different types of register allocators.
♦Webs.
♦Interference Graphs.
♦Graph coloring.
♦Spilling.
♦Live-Range Splitting.
♦More optimizations.
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Storing values between defs and 
uses

♦Program computes with values
♦value definitions (where computed)
♦value uses (where read to compute new values)

♦Values must be stored between def and use
First Option:

♦store each value in memory at definition
♦retrieve from memory at each use

Second Option:
♦store each value in register at definition
♦retrieve value from register at each use
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Issues

♦ On a typical RISC architecture:
♦ All computation takes place in registers.
♦ Load instructions and store instructions transfer 

values between memory and registers.
♦ Add two numbers; values in memory:

load r1, 4(sp)
load r2, 8(sp)
add r3,r1,r2
store r3, 12(sp)
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Issues

♦ On a typical RISC architecture
♦ All computation takes place in registers
♦ Load instructions and store instructions transfer 

values between memory and registers
♦ Add two numbers; values in registers:

add r3,r1,r2
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Issues
♦ Fewer instructions when using registers.

♦ Most instructions are register-to-register.
♦ Additional instructions for memory accesses.

♦ Registers are faster than memory.
♦ Wider gap in faster, newer processors.
♦ Factor of about 4 bandwidth, factor of about 3 latency.
♦ Could be bigger depending on program characteristics.

♦ But only a small number of registers available.
♦ Usually 32 integer and 32 floating-point registers.
♦ Some of those registers have fixed users (r0, ra, sp, fp).

W
ha

t i
s r

eg
is

te
r a

llo
ca

tio
n?



Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/7

Register Allocation

♦ Deciding which values to store in a limited 
number of registers.

♦ Register allocation has a direct impact on 
performance.
♦ Affects almost every statement of the program.
♦ Eliminates expensive memory instructions.
♦ # of instructions goes down due to direct 

manipulation of registers (no need for load and store 
instructions).

♦ This is probably the optimization with the most 
impact!
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What can be put in a register?

♦ Values stored in compiler-generated temps. 
♦ Language-level values:

♦ Values stored in local scalar variables.
♦ Big constants.
♦ Values stored in array elements and object fields 

♦ Issue: alias analysis

♦ Register set depends on the data-type:
♦ floating-point values in floating point registers.
♦ integer and pointer values in integer registers.
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Allocation vs Assignment?

♦We sometimes distinguishes between 
register allocation and register 
assignment. 

♦Register allocation deals with the problem 
to decide which values to store in 
registers and which to spill to memory.

♦Register assignment decides which value 
goes into which register.
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Different Types of Register 
Allocation

♦Local Register allocation.
♦Tree-based approaches: 

♦Sethi-Ullman numbering.
♦Basic Block.

♦Global Register allocation.
♦Linear Scan.
♦Graph Coloring.

♦Inter-procedural allocation.
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Web-Based Register Allocation

♦ Determine live ranges for each value (web).
♦ Determine overlapping ranges (interference).
♦ Compute the benefit of keeping each web in a 

register (spill cost).
♦ Decide which webs get a register (allocation).
♦ Split webs if needed (spilling and splitting).
♦ Assign hard registers to webs (assignment).
♦ Generate code including spills (code gen.).
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Webs
♦Starting Point: def-use chains (DU chains).

♦Connects definition to all reachable uses.
♦Conditions for putting defs and uses into 

same web:
♦Def and all reachable uses must be in same web.
♦All defs that reach same use must be in same web.

♦Use a union-find algorithm.
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Example
def y

def x
use y

def x
def y

use x
def x

use x

use x
use y

s1

s2

s3

s4
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Webs

♦ Web is unit of register allocation.
♦ If web allocated to a given register R:

♦ All definitions computed into R.
♦ All uses read from R.

♦ If web allocated to a memory location M:
♦ All definitions computed into M.
♦ All uses read from M.

♦ Issue: instructions compute only from registers.
♦ Reserve some registers to hold memory values.
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Convex Sets and Live Ranges
♦Concept of convex set.
♦A set S is convex if

♦a, b ∈ S and c is on a path from a to b 
implies c ∈ S

♦Concept of live range of a web.
♦Minimal convex set of instructions that includes 

all defs and uses in web.
♦ Intuitively, region in which web’s value is live.
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Interference

♦Two webs interfere if their live ranges 
overlap (have a nonempty intersection).

♦If two webs interfere, values must be 
stored in different registers or memory 
locations.

♦If two webs do not interfere, can store 
values in same register or memory 
location.
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Example
def y

use x
def x

use x

s1

s2

s3

s4

Webs s1 and s2 interfere
Webs s2 and s3 interfere
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use x
use y

def x
def y

def x
use y
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Interference Graph

Representation of webs and their interference:
♦Nodes are the webs
♦An edge exists between two nodes if they interfere:

s1 s2

s3 s4
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Example
def y

use x
def x

use x

s1

s2

s3

s4

Webs s1 and s2 interfere
Webs s2 and s3 interfere
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use x
use y

def x
def y

def x
use y

s1 s2

s3 s4
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Register Allocation Using 
Graph Coloring

♦Each web is allocated to a register.
♦Each node gets a register (color).

♦If two webs interfere they cannot use the 
same register.
♦ If two nodes have an edge between them, they 

cannot have the same color.
s1 s2

s3 s4
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Graph Coloring

♦Assign a color to each node in the graph.
♦Two nodes connected to same edge must 

have different colors.
♦Classic problem in graph theory.
♦NP complete.

♦But good heuristics exist for register 
allocation.
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Graph Coloring Example

1 Color
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Graph Coloring Example

2 Colors

G
ra

ph
s 

C
ol

or
in

g



Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/24

Graph Coloring Example

Still 2 Colors
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Graph Coloring Example

3 Colors
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Heuristics for Register Coloring

♦ Coloring a graph with N colors. 
♦ If degree < N (degree of a node = # of edges):

♦ Node can always be colored.
♦ After coloring the rest of the nodes, there is at least 

one color left to color the current node.
♦ If degree >= N:

♦ Still may be colorable with N colors. (If some 
neighbors are colored with the same color.)
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Heuristics for Register Coloring

♦ Remove nodes that have degree < N.
♦ Push the removed nodes onto a stack.

♦ When all the nodes have degree >= N: 
♦ Find a node to spill (no color for that node).
♦ Push that node into the stack.

♦ When empty, start to color:
♦ Pop a node from stack back.
♦ Assign it a color that is different from its connected 

nodes (if possible).
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Coloring Example

s1 s2

s3 s4

s0

N = 3
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Coloring Example

s1 s2

s3 s4

s0

N = 3

s4
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Coloring Example

s1 s2

s3 s4

s0

N = 3

s4
s2
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Coloring Example

s1 s2

s3 s4

s0

N = 3

s4
s2
s1
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Coloring Example

s1 s2

s3 s4
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Coloring Example

s1 s2

s3 s4
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Coloring Example

s1 s2

s3 s4
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Coloring Example

s1 s2

s3 s4

s0

N = 3
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Coloring Example

s1 s2

s3 s4
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Coloring Example

s1 s2

s3 s4
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Coloring Example

s1 s2

s3 s4
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Coloring Example

s1 s2

s3 s4
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Coloring Example

s1 s2
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Coloring Example

s1 s2

s3 s4
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Coloring Example

s1 s2

s3 s4
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Another Coloring Example

s1 s2

s3 s4
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Another Coloring Example

s1 s2

s3 s4
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Another Coloring Example

s1 s2

s3 s4

s0

N = 3

s4
s1

s1: Possible Spill
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Another Coloring Example

s1 s2
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Another Coloring Example

s1 s2

s3 s4
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Another Coloring Example

s1 s2
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Another Coloring Example
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Another Coloring Example
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Another Coloring Example
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Another Coloring Example
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Another Coloring Example
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Another Coloring Example
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Another Coloring Example

s1 s2

s3 s4

s0

N = 3

s4

s1: Actual Spill
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Another Coloring Example

s1 s2
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Another Coloring Example

s1 s2
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When Coloring Heuristics 
Fail...

Option 1:
♦Pick a web and allocate value in memory.
♦All defs go to memory, all uses come from 

memory.
Option 2:

♦Split the web into multiple webs.

♦In either case, will retry the coloring.
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Which web to spill?

♦One with interference degree >= N.
♦One with minimal spill cost (cost of 

placing value in memory rather than in 
register).

♦What is spill cost? 
♦Cost of extra load and store instructions.
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Ideal and Useful Spill Costs
♦ Ideal spill cost - dynamic cost of extra load and store 

instructions. Can’t expect to compute this.
♦ Don’t know which way branches resolve.
♦ Don’t know how many times loops execute.
♦ Actual cost may be different for different executions.

♦ Solution: Use a static approximation.
♦ profiling can give instruction execution frequencies.
♦ or use heuristics based on structure of control flow graph.
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One Way to Compute Spill 
Cost

♦ Goal: give priority to values used in loops.
♦ So assume loops execute 10 (or 8) times.
♦ Spill cost =

♦ sum over all def sites of cost of a store instruction 
times 8 to the loop nesting depth power, plus

♦ sum over all use sites of cost of a load instruction 
times 8 to the loop nesting depth power.

♦ Choose the web with the lowest spill cost.
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Spill Cost Example

def x
def y

use y
def y

use x
use y

Spill Cost For x
storeCost+loadCost

Spill Cost For y
9*storeCost+9*loadCost

With 1 Register, Which
Variable Gets Spilled?
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Splitting Rather Than Spilling

♦Split the web:
♦Split a web into multiple webs so that there 

will be less interference in the interference 
graph making it N-colorable.

♦Spill the value to memory and load it back at 
the points where the web is split.

Li
ve

-r
an

ge
 s

pl
itt

in
g



Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/64

Live-Range Splitting Example
def z
use z

def x
def y
use x
use x
use y

use z

x y z

x y

z

2 colorable?
NO!
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Live-Range Splitting Example
def z
use z

def x
def y
use x
use x
use y

use z

x y z

x y

z2

z1

2 colorable?
YES!

r1
r2

r1

r1
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Live-Range Splitting Example
def z
use z
store z

def x
def y
use x
use x
use y

load z
use z

x y z

r1
r2

r1

r1

x y

z2

z1

2 colorable?
YES!
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Live-Range Splitting Heuristic

♦ Identify a program point where the graph is 
not N-colorable (point where # of webs > N).
♦ Pick a web that is not used for the largest enclosing 

block around that point of the program.
♦ Split that web at the corresponding edge.
♦ Redo the interference graph.
♦ Try to re-color the graph.
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Cost and Benefit of Splitting
♦ Cost of splitting a node:

♦ Proportional to number of times split edge has to be 
crossed dynamically.

♦ Estimate by its loop nesting.
♦ Benefit:

♦ Increase colorability of the nodes the split web interferes 
with.

♦ Can be approximate by its degree in the interference 
graph.

♦ Greedy heuristic:
♦ Pick the live-range with the highest benefit-to-cost ration 

to spill.

Li
ve

-r
an

ge
 s

pl
itt

in
g



Advanced Compiler Techniques 30.04.04
http://lamp.epfl.ch/teaching/advancedCompiler/69

Further Optimizations

♦Register coalescing.
♦Register targeting (pre-coloring).
♦Pre-splitting of webs.
♦Interprocedural register allocation.
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Register Coalescing

♦ Find register copy instructions sj = si.

♦ If sj and si do not interfere, combine their webs.
♦ Pros:

♦ Similar to copy propagation.
♦ Reduce the number of instructions.

♦ Cons:
♦ May increase the degree of the combined node.
♦ A colorable graph may become non-colorable.
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Register Targeting 
(pre-coloring)

♦Some variables need to be in special 
registers at a given time:
♦First n arguments to a function.
♦The return value.

♦Pre-color those webs and bind them to 
the right register.

♦Will eliminate unnecessary copy 
instructions.
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Pre-splitting of the webs

♦ Some live ranges have very large “dead”
regions.
♦ Large region where the variable is unused.

♦ Break-up the live ranges:
♦ Need to pay a small cost in spilling.
♦ But the graph will be very easy to color.

♦ Can find strategic locations to break-up:
♦ At a call site (need to spill anyway).
♦ Around a large loop nest (reserve registers for 

values used in the loop).
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Interprocedural Register 
Allocation

♦ Saving registers across procedure boundaries is 
expensive. 
♦ especially for programs with many small functions.

♦ Calling convention is too general and inefficient.
♦ Customize calling convention per function by 

doing interprocedural register allocation.
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Summary

♦ The goal of register allocation is to speed up 
the program by keeping values in registers.

♦Usually gives a big impact on performance.
♦ The most commonly used method is some 

form of heuristic graph coloring.
♦ There exists many other methods.
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Instruction Scheduling

This lecture is primarily based on Konstantinos Sagonas set of slides 
(Advanced Compiler Techniques, (2AD518)

at Uppsala University, January-February 2004).
Used with kind permission.
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Outline
♦ Modern architectures.
♦ Delay slots.
♦ Introduction to instruction scheduling.
♦ List scheduling.
♦ Resource constraints.
♦ Interaction with register allocation.
♦ Scheduling across basic blocks.
♦ Trace scheduling.
♦ Scheduling for loops.
♦ Loop unrolling.
♦ Software pipelining.
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Simple Machine Model

♦Instructions are executed in sequence.
♦Fetch, decode, execute, store results.
♦One instruction at a time.

♦For branch instructions, start fetching from 
a different location if needed.
♦Check branch condition.
♦Next instruction may come from a new location 

given by the branch instruction.
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Simple Execution Model
5 Stage pipe-line:

Fetch: get the next instruction.
Decode: figure out what that instruction is.
Execute: perform ALU operation.

address calculation in a memory op
Memory: do the memory access in a mem. op.
Write Back: write the results back.

fetch decode execute memory write back
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Cycle:                1                             2           3                             4                5
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Execution Models

IF DE EXE MEM WB

IF DE EXE MEM WB

Inst 1

Inst 2

time (cycles)
Model 1

IF DE EXE MEM WB

IF DE EXE MEM WB

IF DE EXE MEM WB

IF DE EXE MEM WB

IF DE EXE MEM WB

Inst 1

Inst 2

Inst 3

Inst 4

Inst 5

Model 2
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One instruction finish every 5 cycles.

One instruction finish every cycle.

Cycle:                1                    2                    3                   4                   5                 6    7                    8                     9     10
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Handling Branch Instructions
Problem: We do not know the location of the 

next instruction until later.
♦after DE in jump instructions
♦after EXE in conditional branch instructions

Branch

???

???

Inst

What to do with the middle 2 instructions?
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Handling Branch Instructions
What to do with the middle 2 instructions?
1.  Stall the pipeline in case of a branch until we 

know the address of the next instruction:
♦ wasted cycles

Branch

Next inst

IF DE EXE MEM WB

IF
Empty

DE
Empty

EXE
Empty

MEM
Empty

WB
Empty

IF
Empty

DE
Empty

EXE
Empty

MEM
Empty

WB
Empty

IF DE EXE MEM WB

Cycle:                1                   2                    3 4                     5                   6  7                   8
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Handling Branch Instructions
What to do with the middle 2 instructions?
2. Delay the action of the branch

♦ Make branch affect only after two instructions
♦ Following two instructions after the branch get 

executed regardless of the branch 

Branch

Next seq inst

Next seq inst

Branch target inst

IF DE EXE MEM WB

IF DE EXE MEM WB

IF DE EXE MEM WB

IF DE EXE MEM WB
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Branch Delay Slot(s)

MIPS has a branch delay slot
♦ The instruction after a conditional branch gets executed 

even if the code branches to target
♦ Fetching from the branch target takes place only after 

that

ble r3, foo

Branch delay slot

What instruction to put in the branch delay 
slot?
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Filling the Branch Delay Slot

Simple Solution: Put a no-op.

Wasted instruction, just like a stall.

nop

ble r3, lbl

Branch delay slotIn
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Filling the Branch Delay Slot

♦Moved instruction executes iff branch executes.
♦Get the instruction from the same basic block as the 

branch.
♦Don’t move a branch instruction!

♦Instruction need to be moved over the branch.
♦Branch does not depend on the result of the inst.

prev_instr

prev_instr

Move an instruction from above the branch.

ble r3, lbl

Branch delay slot
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ble r3, lbl
Branch delay slot

lbl:

dom_instr

dom_instr

Filling the Branch Delay Slot

Move an instruction dominated by the 
branch instruction.
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ble r3, lbl
instr Branch delay slot

lbl:
instr

Filling the Branch Delay Slot
Move an instruction from the branch target.

♦ Instruction dominated by target.
♦ No other ways to reach target (if so, take care of them).
♦ If conditional branch, instruction should not have a lasting 

effect if the branch is not taken.
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Load Delay Slots

Problem: Results of the loads are not 
available until end of MEM stage

If the value of the load is used…what to do??

IF DE EXE MEM WB

IF DE EXE MEM WB

Load

Use of load
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Load Delay Slots
If the value of the load is used…what to do?
Always stall one cycle.
♦ Stall one cycle if next instruction uses the value.

♦ Need hardware to do this.
♦ Have a delay slot for load.

♦ The new value is only available after two instructions.
♦ If next inst. uses the register, it will get the old value.

IF DE EXE MEM WB

IF DE EXE MEM WB

IF DE EXE MEM WB

Load

???

Use of load
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Example

r2 = *(r1 + 4)
r3 = *(r1 + 8)
r4 = r2 + r3
r5 = r2 - 1
goto L1
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Example

r2 = *(r1 + 4)
r3 = *(r1 + 8)
noop
r4 = r2 + r3
r5 = r2 - 1
goto L1
noop

Assume 1 cycle delay on branches                    
and 1 cycle latency for loads
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Example

r2 = *(r1 + 4)
r3 = *(r1 + 8)
noop
r4 = r2 + r3
r5 = r2 - 1
goto L1
noop
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Example

r2 = *(r1 + 4)
r3 = *(r1 + 8)
r5 = r2 - 1
r4 = r2 + r3

goto L1
noop
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Example

r2 = *(r1 + 4)
r3 = *(r1 + 8)
r5 = r2 - 1

goto L1
r4 = r2 + r3
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Example

r2 = *(r1 + 4)
r3 = *(r1 + 8)
r5 = r2 - 1
goto L1
r4 = r2 + r3

Final code after delay slot filling

In
st

ru
ct

io
n 

Sc
he

du
lin

g:
 D

el
ay

 s
lo

ts
 –

Ex
am

pl
e 

of
 fi

lli
ng



Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

From a Simple Machine Model 
to a Real Machine Model

♦ Many pipeline stages.
♦ MIPS R4000 has 8 stages.

♦ Different instructions take different amount of 
time to execute.
♦ mult 10 cycles
♦ div 69 cycles
♦ ddiv 133 cycles

♦ Hardware to stall the pipeline if an instruction 
uses a result that is not ready.

In
st

ru
ct

io
n 

Sc
he

du
lin

g:
 In

tr
od

uc
tio

n



Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Real Machine Model cont.

♦Most modern processors have multiple 
execution units (superscalar).
♦ If the instruction sequence is correct, multiple 

operations will take place in the same cycles.
♦Even more important to have the right 

instruction sequence.In
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Instruction Scheduling

Goal: Reorder instructions so that pipeline 
stalls are minimized.

Constraints on Instruction Scheduling:
♦Data dependencies.
♦Control dependencies .
♦Resource constraints.
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Data Dependencies

♦ If two instructions access the same variable, they 
can be dependent.

♦ Kinds of dependencies:
♦ True: write → read. (Read After Write, RAW)

♦ Anti: read → write. (Write After Read, WAR)

♦ Anti (Output): write → write. (Write After Write, WAW)

♦ What to do if two instructions are dependent?
♦ The order of execution cannot be reversed.
♦ Reduce the possibilities for scheduling.
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Computing Data Dependencies

♦ For basic blocks, compute dependencies by 
walking through the instructions.

♦ Identifying register dependencies is simple.
♦ is it the same register?

♦ For memory accesses.
♦ simple: base + offset1 ?= base + offset2
♦ data dependence analysis: a[2i] ?= a[2i+1]
♦ interprocedural analysis: global ?= parameter
♦ pointer alias analysis: p1 ?= p
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♦ Using a dependence DAG, one per basic block.
♦ Nodes are instructions, edges represent dependencies.

Representing Dependencies

3

1 2

4

2 2 2

1: r2 = *(r1 + 4)
2: r3 = *(r1 + 8)
3: r4 = r2 + r3
4: r5 = r2 - 1

Edge is labeled with latency:
v(i → j) = delay required between initiation times of 

i and j minus the execution time required by i.
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Example

1: r2 = *(r1 + 4)
2: r3 = *(r2 + 4)
3: r4 = r2 + r3
4: r5 = r2 - 1

3

1 2

4

2 2
2

2
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Another Example

1: r2 = *(r1 + 4)
2: *(r1 + 4) = r3
3: r3 = r2 + r3
4: r5 = r2 - 1

3
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Control Dependencies and 
Resource Constraints

♦For now, let’s only worry about basic 
blocks.

♦For now, let’s look at simple pipelines.
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Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: MULC r6,r6,100
5: ST r7,4(r6)
6: DIVC r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

1 2 3 4 st st 5 6 st st st 7 8 9

14 cycles!

Results available in
1 cycle
1 cycle
1 cycle
3 cycles

4 cycles
1 cycle
3 cycles
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List Scheduling Algorithm
♦Idea:

♦Do a topological sort of the dependence DAG.
♦Consider when an instruction can be scheduled 

without causing a stall.
♦Schedule the instruction if it causes no stall and all 

its predecessors are already scheduled.
♦Optimal list scheduling is NP-complete.

♦Use heuristics when necessary.
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List Scheduling Algorithm
♦Create a dependence DAG of a basic block.
♦Topological Sort.

READY = nodes with no predecessors.
Loop until READY is empty.

Schedule each node in READY when no stalling
READY += nodes whose predecessors have all been 
scheduled.In
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Heuristics for selection

Heuristics for selecting from the READY list:
1. pick the node with the longest path to a leaf 

in the dependence graph.
2. pick a node with the most immediate 

successors.
3. pick a node that can go to a less busy pipeline 

(in a superscalar implementation).In
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Heuristics for selection

Pick the node with the longest path to a leaf 
in the dependence graph

Algorithm (for node x)
♦ If x has no successors   dx = 0
♦dx = MAX( dy + cxy)  for all successors y of x.

Use reverse breadth-first visiting order
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Heuristics for selection

Pick a node with the most immediate 
successors. 

Algorithm (for node x):
♦ fx = number of successors of x
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Example
Results available in

1: LA r1,array 1 cycle
2: LD r2,4(r1) 1 cycle
3: AND r3,r3,0x00FF 1 cycle
4: MULC r6,r6,100 3 cycles
5: ST r7,4(r6)
6: DIVC r5,r5,100 4 cycles
7: ADD r4,r2,r5 1 cycle
8: MUL r5,r2,r4 3 cycles
9: ST r4,0(r1)
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Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: MULC r6,r6,100
5: ST r7,4(r6)
6: DIVC r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)
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Example
1

6

8

2

7

9

1

1

3

4

1

4

5

3
3

d=0 d=0

d=0

d=0 d=3

d=3

d=7d=4

d=5
f=1f=0

f=0f=1f=1

f=1

f=2

f=0 f=0

READY = {  }
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Example

READY = {                 }
1, 3, 4, 6 
6, 1, 4, 3 
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Example

READY = { 6, 1, 4, 3 }

6

1

6

8

2
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9
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d=0

d=0 d=3
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Example

READY = { 1, 4, 3 }
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Example

READY = { 4, 3 }
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Example

READY = { 2, 4, 3 }
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Example

READY = { 2, 4, 3 }
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Example

READY = { 4, 3 }
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7

Example

READY = { 7, 4, 3 }
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Example

READY = { 7, 4, 3 }
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Example

READY = { 7, 3 }
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Example

READY = { 7, 3, 5 }
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Example

READY = { 7, 3, 5 }

6 1 2 4 7

1

6

8

2

7

9

3 1

4

5

3

d=0 d=0

d=0

d=0

d=3

f=0

f=0

f=2

f=0 f=05 8

In
st

ru
ct

io
n 

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g 
-E

xa
m

pl
e



Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

READY = { 3, 5 }

6 1 2 4 7

8, 9 
1

6

8

2

7

9

4

5

3

d=0 d=0

d=0

d=0
f=0

f=0

f=0 f=05 8

In
st

ru
ct

io
n 

Sc
he

du
lin

g:
 L

is
t s

ch
ed

ul
in

g 
-E

xa
m

pl
e



Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Example

READY = { 3, 5, 8, 9 }
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Example

READY = { 5, 8, 9 }
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Example

READY = { 5, 8, 9 }
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Example

READY = { 8, 9 }
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Example

READY = { 8, 9 }
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Example

READY = { 9 }
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Example

READY = { 9 }
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Example

READY = { }
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Example
Results available in

1: LA r1,array 1 cycle
2: LD r2,4(r1) 1 cycle
3: AND r3,r3,0x00FF 1 cycle
4: MULC r6,r6,100 3 cycles
5: ST r7,4(r6)
6: DIVC r5,r5,100 4 cycles
7: ADD r4,r2,r5 1 cycle
8: MUL r5,r2,r4 3 cycles
9: ST r4,0(r1)

9 cycles
6 1 2 4 7 3 5 8 9

1 2 3 4 st st 5 6 st st st 7 8 9
14 cycles

vs.
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Resource Constraints

♦Modern machines have many resource 
constraints.

♦Superscalar architectures:
♦can run few parallel operations.
♦but have constraints.
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Resource Constraints of a 
Superscalar Processor

Example:
♦1 integer operation, e.g.,

ALUop dest, src1, src2# in 1 clock cycle
In parallel with
♦1 memory operation, e.g., 

LD dst, addr # in 2 clock cycles
ST src, addr # in 1 clock cycle
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List Scheduling Algorithm with 
Resource Constraints

♦Represent the superscalar architecture as 
multiple pipelines.
♦Each pipeline represents some resource.
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List Scheduling Algorithm with 
Resource Constraints

♦Represent the superscalar architecture as 
multiple pipelines
♦Each pipeline represents some resource

♦Example:
♦One single cycle ALU unit.
♦One two-cycle pipelined memory unit. 

ALUop

MEM 1

MEM 2
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List Scheduling Algorithm with 
Resource Constraints

♦Create a dependence DAG of a basic block.
♦Topological Sort

READY = nodes with no predecessors
Loop until READY is empty

Let n ∈ READY be the node with the highest 
priority
Schedule n in the earliest slot 

that satisfies precedence + resource constraints
Update READY

In
st

ru
ct

io
n 

Sc
he

du
lin

g:
 R

es
ou

rc
e 

C
on

st
ra

in
ts



Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

1

6

8

2

7

9

1

2

1

1

1

4

5

2
3

Example
(Slightly different from previous example.)

1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

ALUop

MEM 1

MEM 2

READY = { 1, 6, 4, 3 } d=0 d=0
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Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

ALUop
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Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

ALUop

MEM 1

MEM 2

READY = { 2, 6, 4, 3 }
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Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)
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Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

1 6 ALUop
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Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

1 6 ALUop
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Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

1 6 ALUop

4MEM 1
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Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)
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Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)
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7

Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)
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Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

1 6 3 7ALUop
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Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

1 6 3 7ALUop

4 5 MEM 1

4 2 MEM 2

READY = { 8, 9 }
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Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

1 6 3 7 8 ALUop

4 5 MEM 1

4 2 MEM 2

READY = { 9 }
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Example
1: LA r1,array
2: LD r2,4(r1)
3: AND r3,r3,0x00FF
4: LD r6,8(sp)
5: ST r7,4(r6)
6: ADD r5,r5,100
7: ADD r4,r2,r5
8: MUL r5,r2,r4
9: ST r4,0(r1)

1 6 3 7 8 ALUop

4 5 9 MEM 1

4 2 MEM 2

READY = {  }
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Register Allocation 
and Instruction Scheduling

♦If register allocation is performed before 
instruction scheduling:
♦ the choices for scheduling are restricted.
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Example

1: LD r2,0(r1)
2: ADD r3,r3,r2
3: LD r2,4(r5)
4: ADD r6,r6,r2

1

4

2

3

3

1

3

1

2 4ALUop

1 3MEM 1

1 3MEM 2
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Example

1: LD r2,0(r1)
2: ADD r3,r3,r2
3: LD r2,4(r5)
4: ADD r6,r6,r2

False dependencies
(Anti-dependencies)

How about using a different register?
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Example

1: LD r2,0(r1)
2: ADD r3,r3,r2
3: LD r4,4(r5)
4: ADD r6,r6,r4

1

4
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3

3

3

2 4ALUop

1 3MEM 1

1 3MEM 2
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Register Allocation 
and Instruction Scheduling

♦If register allocation is performed before 
instruction scheduling:
♦ the choices for scheduling are restricted.

♦If instruction scheduling is performed 
before register allocation:
♦ register allocation may spill registers.
♦will change the carefully done schedule!!!
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Scheduling across basic blocks

♦Number of instructions in a basic block is 
small.
♦Cannot keep a multiple units with long 

pipelines busy by just scheduling within a 
basic block.

♦Need to handle control dependencies.
♦Scheduling constraints across basic blocks.
♦Scheduling policy.
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Moving across basic blocks

Downward to adjacent basic block

A

B C

A path to B that does not execute A?
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Moving across basic blocks

Upward to adjacent basic block

A

B C

A path from C that does not reach A?In
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Control Dependencies

if ( . . . )
a = b op c

if ( . . . )
d = *(a1)

Constraints in moving instructions across basic blocks

if (c != 0 )
a = b / c

Not allowed if e.g.
if(valid_address(a1))

d = *(a1)

Not allowed if e.g.
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Outline
♦ Modern architectures
♦ Delay slots
♦ Introduction to instruction scheduling
♦ List scheduling
♦ Resource constraints
♦ Interaction with register allocation
♦ Scheduling across basic blocks
♦ Trace scheduling
♦ Scheduling for loops
♦ Loop unrolling
♦ Software pipelining
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Trace Scheduling

♦Find the most common trace of basic 
blocks.
♦Use profile information.

♦Combine the basic blocks in the trace and 
schedule them as one block.

♦Create compensating (clean-up) code if the 
execution goes off-trace.
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Trace Scheduling
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Trace Scheduling
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Trace Scheduling
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Trace Scheduling
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Trace Scheduling
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Large Basic Blocks via 
Code Duplication

♦ Creating large extended basic blocks by 
duplication.

♦ Schedule the larger blocks.
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Scheduling for Loops

♦Loop bodies are typically small.
♦But a lot of time is spend in loops due to 

their iterative nature.
♦Need better ways to schedule loops.

In
st

ru
ct

io
n 

Sc
he

du
lin

g:
 L

oo
p 

Sc
he

du
lin

g



Advanced Compiler Techniques 07/05/2004
http://lamp.epfl.ch/teaching/advancedCompiler/

Loop Example

Machine:
♦One load/store unit 

♦load 2 cycles
♦store 2 cycles

♦Two arithmetic units
♦add 2 cycles
♦branch 2 cycles (no delay slot)
♦multiply 3 cycles

♦Both units are pipelined (initiate one op each 
cycle)
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Loop Example

Source Code
for i = 1 to N

A[i] = A[i] * b

Assembly Code
loop:

ld  r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ble r2, r5, loop
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Loop Example

Assembly Code
loop:

ld  r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ble r2, r5, loop

Schedule (9 cycles per iteration)
  st      

  st    
mul   ble   

mul   ble  
mul   

add   
add  

Mem

ALU1

ALU2
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Loop Unrolling

Oldest compiler trick of the trade:
Unroll the loop body a few times

Pros:
♦ Creates a much larger basic block for the body.
♦ Eliminates few loop bounds checks.

Cons:
♦ Much larger program.
♦ Setup code (# of iterations < unroll factor).
♦ Beginning and end of the schedule can still have 

unused slots.
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Loop Example

Schedule (8 cycles per iteration)
ld   st  ld   st    

ld   st ld   st   
mul   mul   ble  

mul  mul   ble
mul  mul   

add add  
add add  

loop:
ld  r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ble r2, r5, loop

loop:
ld  r6,(r2)
mul r6, r6, r3
st r6,(r2)
add r2, r2, 4
ld  r6,(r2)
mul r6, r6, r3
st r6,(r2)
add r2, r2, 4
ble r2, r5, loop
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Loop Unrolling

♦Rename registers.
♦Use different registers in different iterations.
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Loop Example

loop:
ld  r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ld  r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ble r2, r5, loop

loop:
ld  r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ld  r7, (r2)
mul r7, r7, r3
st r7, (r2)
add r2, r2, 4
ble r2, r5, loop
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Loop Unrolling

♦Rename registers.
♦Use different registers in different iterations.

♦Eliminate unnecessary dependencies. 
♦again, use more registers to eliminate true, anti 

and output dependencies.
♦eliminate dependent-chains of calculations 

when possible.
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Loop Example

loop:
ld  r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ld  r7, (r2)
mul r7, r7, r3
st r7, (r2)
add r2, r2, 4
ble r2, r5, loop

loop:
ld  r6, (r1)
mul r6, r6, r3
st r6, (r1)
add r2, r1, 4
ld  r7, (r2)
mul r7, r7, r3
st r7, (r2)
add r1, r2, 4
ble r1, r5, loop
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Loop Example

loop:
ld  r6, (r1)
mul r6, r6, r3
st r6, (r1)
add r2, r1, 4
ld  r7, (r2)
mul r7, r7, r3
st r7, (r2)
add r1, r2, 4
ble r1, r5, loop

loop:
ld  r6, (r1)
mul r6, r6, r3
st r6, (r1)
add r2, r1, 4
ld  r7, (r2)
mul r7, r7, r3
st r7, (r2)
add r1, r2, 4
ble r1, r5, loop
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Loop Example

loop:
ld  r6, (r1)
mul r6, r6, r3
st r6, (r1)
add r2, r1, 4
ld  r7, (r2)
mul r7, r7, r3
st r7, (r2)
add r1, r2, 4
ble r1, r5, loop

loop:
ld  r6, (r1)
mul r6, r6, r3
st r6, (r1)
add r2, r1, 4
ld  r7, (r2)
mul r7, r7, r3
st r7, (r2)
add r1, r1, 8
ble r1, r5, loop
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Loop Example
loop:

ld  r6, (r1)
mul r6, r6, r3
st r6, (r1)
add r2, r1, 4
ld  r7, (r2)
mul r7, r7, r3
st r7, (r2)
add r1, r1, 8
ble r1, r5, loop

Schedule (4.5 cycles per iteration)
ld ld  st  st    

ld ld  st  st   
mul mul  ble  

mul mul  ble
mul mul

add add
add add
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Software Pipelining

♦Try to overlap multiple iterations so that 
the slots will be filled.

♦Find the steady-state window so that:
♦all the instructions of the loop body is 

executed. 
♦but from different iterations.
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Loop Example
Assembly Code

loop:
ld r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ble r2, r5, loop

Schedule
ld6ld5

ld5
mul5

ld4
ld4

mul4
mul4

mul4

ld st
ld st

mul ble
mul ble

mul
add

add

ld1 st1
ld1 st1

mul1 ble1
mul1 ble1

mul1
add1

add1

ld2 st2
ld2 st2

mul2 ble2
mul2 ble2

mul2
add2

add2

ld3 st3
ld3 st3

mul3
mul3

mul3
add3

add3
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Loop Example
ld3 st1
st ld3
mul2 ble

mul2
mul1

add1
add

Assembly Code
loop:
ld r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ble r2, r5, loop

Schedule (2 cycles per iteration)
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Loop Example
4 iterations are overlapped.

♦values of r3 and r5 don’t change

♦4 regs for &A[i] (r2)
♦each addr. incremented by 4*4

♦4 regs to keep value A[i] (r6)

♦Same registers can be reused 
after 4 of these blocks
generate code for 4 blocks, 
otherwise need to move .

ld3 st1
st ld3
mul2 ble

mul2
mul1

add1
add

loop:
ld  r6, (r2)
mul r6, r6, r3
st r6, (r2)
add r2, r2, 4
ble r2, r5, loop
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Software Pipelining

♦ Optimal use of resources.
♦ Need a lot of registers.

♦ Values in multiple iterations need to be kept.
♦ Issues in dependencies.

♦ Executing a store instruction in an iteration before 
branch instruction is executed for a previous iteration 
(writing when it should not have).

♦ Loads and stores are issued out-of-order (need to 
figure-out dependencies before doing this).

♦ Code generation issues.
♦ Generate pre-amble and post-amble code.
♦ Multiple blocks so no register copy is needed.
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Optimization Techniques
Summary

♦ The most important aspect of an optimization is 
that it is correct.

♦ The subject is confusing:
♦ The notion of optimality.
♦ Huge number of possible optimization.
♦ Many intricate and NP-complete problems.

♦ In this course we have tried to give an overview 
of some common optimization techniques.
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Optimization Techniques
Summary

♦ Suggested method for compiler 
optimization:

1. Look at the generated code – try to find 
sources of inefficient code. (Better yet profile.)

2. Look in the literature for solutions to these 
inefficiencies. (Most likely someone has 
already solved the problem.)

3. Implement the solution.
4. Repeat from 1.
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Optimization Techniques
Summary

♦Some techniques are useful for many 
different problems.
♦Dataflow analysis.
♦Dominators.
♦Liveness.
♦SSA form.
♦Reverse post order traversal.
♦Graph coloring.
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Optimization Techniques
Taxonomy

♦We can divide optimizations into:
♦Machine independent optimizations.

♦Decrease ratio of overhead to real work.
♦Example: dead code elimination.

♦Machine dependent optimizations.
♦Take advantage of specific machine properties.
♦Work around limitations of a specific machine.
♦Example: instruction scheduling.
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Optimization Techniques
Taxonomy

♦ We can further divide the optimizations on their 
intended effect.
♦ Machine independent optimizations.

1. Eliminating redundant computations.
2. Move code to execute it less.
3. Eliminate dead code.
4. Specialize on context.
5. Enable other optimizations.

♦ Machine dependent optimizations.
1. Manage or hide latency.
2. Take advantage of special hardware features.
3. Manage finite resources.
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Taxonomy of Global Compiler 
Optimizations 

Machine Independent

Redundancy 

Redundancy Elimination

Partial Redund.  Eliminat.

Consolidation 

Code motion

Loop-invariant Code Motion

Consolidation

Global Scheduling

Constant Propagation

Useless code 

Dead Code Elimination

Partial D.C.E.

Constant Propagation

Algebraic Simplification

Create opportunities

Re-association

Replication

Inline expansion

Specialization

Replication

Strength Reduction

Constant Propagation

Method Caching

Inline expansion

Heap→stack allocation

Tail Recursion Elimination
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Taxonomy of Global Compiler 
Optimizations 

Machine Dependent

Hide Latency 

Scheduling

Prefetching

Code layout

Data Packing

Manage Resources 

Register allocation

Scheduling

Data packing

Coloring memory locations

Special features

Instruction selection

Peephole optimization
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Optimization Techniques
Summary

♦ The aim of the lectures have been to give you an 
insight into and overview of some of the most 
important concepts in optimizing compilers.

♦ You might also have discovered that the topic is 
complex and often difficult.

♦ The project will probably really show you how 
difficult it is.

♦ Hopefully the project will also show you how fun 
it can be.
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Overview

♦ In this second part of the course we will talk 
about how to implement:
♦ Objects and inheritance.
♦ FPLs: higher order functions, laziness.
♦ Concurrency: processes, message passing.
♦ Automatic memory management. (GC)
♦ Virtual Machines. (maybe also interpretation.)
♦ Just in time compilation.  
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Implementation of High Level 
Languages

♦We will look at some simple ways to 
implement concepts in HLL.

♦We will look at some more complex and 
more efficient implementations of these 
concepts.

♦We will also look at some general 
optimization techniques that can be used 
with great advantage in HLL.
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Implementation of 
Object Oriented Languages

♦In class based OO languages each object 
belongs to a class that defines the fields, 
methods, and the type of the object.
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class A {

int x=42;

int y=17;

int foo() {

return x;

}

}

A a = new A;

a.foo();

A a:

header:

x: 42

y: 17

foo: return x

VMT Code:fooStack

Heap



Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/5

Implementation of 
Object Oriented Languages

♦In class based OO languages each object 
belongs to a class that defines the fields, 
methods, and the type of the object.
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O

class A {

int x=42;

int y=17;

int foo() {

return x;

}

}

A a:

header:

x: 42

y: 17

foo: return x

VMT Code:fooStack

Heap

Reference to object: 
many/object.

A a = new A;

a.foo();
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Implementation of 
Object Oriented Languages

♦In class based OO languages each object 
belongs to a class that defines the fields, 
methods, and the type of the object.
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O

class A {

int x=42;

int y=17;

int foo() {

return x;

}

}

A a:

header:

x: 42

y: 17

foo: return x

VMT Code:fooStack

Heap

Representation of object: 
1/object.

A a = new A;

a.foo();
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Implementation of 
Object Oriented Languages

♦In class based OO languages each object 
belongs to a class that defines the fields, 
methods, and the type of the object.
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O

class A {

int x=42;

int y=17;

int foo() {

return x;

}

}

A a:

header:

x: 42

y: 17

foo: return x

VMT Code:fooStack

Heap

Virtual Method Table:

1/class.

A a = new A;

a.foo();
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Implementation of 
Object Oriented Languages

♦In class based OO languages each object 
belongs to a class that defines the fields, 
methods, and the type of the object.
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O

class A {

int x=42;

int y=17;

int foo() {

return x;

}

}

A a:

header:

x: 42

y: 17

foo: return x

VMT Code:fooStack

Heap

Code for functions (foo):

max 1/class.

A a = new A;

a.foo();
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Implementation of 
Object Oriented Languages

♦Object Oriented languages support 
inheritance.

♦Inheritance complicates the answer to some 
questions:
♦Where is the value of a field stored?
♦Where is the code for a certain method?
♦What type will a value have at runtime? 
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Single Inheritance:
Fields

♦With single inheritance we can order the 
fields in such a way that all fields of a class 
are stored after fields of the superclass.

♦This way we know at compile time the 
offset of each field.
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Single Inheritance:
Fields

♦Example:
class A           { int x = 0; }
class B extends A { int y = 0;

int z = 0; }
class C extends A { int r = 0; }
class D extends A { int s = 0; }
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Single Inheritance:
Fields

class A           {int x = 0;}
class B extends A {int y = 0;

int z = 0;}
class C extends A {int r = 0;}
class D extends B {int s = 0;}
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A a:

B b:

C c:

D d:

header:
x: 0

Stack

Heap

header:
x: 0
y: 0
z: 0

header:
x: 0
r: 0

header:
x: 0
y: 0
z: 0
s: 0

Offsets:

(A,B,C,D).x: 1

(B,D).y: 2

(B,D).z: 3

(C).r: 2

(D).s: 4
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Single Inheritance:
Methods

♦ If we only have single inheritance we can handle 
methods in much the same way as fields.

♦ We store addresses to methods in the VMT 
instead of in the object.

♦ We copy all the addresses of the super classes to 
the VMT of the subclasses.

♦ If a method is overridden we use the address of 
the new definition instead of the definition in the 
superclass.Im

pl
em
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Single Inheritance:
Methods

♦Example:
class A           { int f {…}; }
class B extends A { int g {…}; }
class C extends B { int f {…}; }
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Single Inheritance:
Methods
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class A {int f {…}; }
class B extends A {

int g {…}; }
class C extends B {

int f {…}; }
header:

f:

VMT (A)

Code:A_fHeap

A a = new A;
B b = new B;
C c = new C;
b.g();
c.f();

LD r1,SP(4) ; Get c

LD r2,r1(0) ; Get &VMT(C)

LD r3,r2(0) ; Get &C_f

call r3     ; Call C_f

header:

header:

f:
g:

VMT (B)

f:
g:

VMT (C)

Code:B_g

Code:C_f

LD r1,SP(8) ; Get b

LD r2,r1(0) ; Get &VMT(B)

LD r3,r2(4) ; Get &B_g

call r3     ; Call B_g
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Single Inheritance:
Testing Class Membership

♦Many OO languages allow you to test class 
membership of an object.

♦In Java there is “o instanceof C”.
♦An object is a member of all its 

superclasses.
♦We need to be able to find the superclass of 

a class. Let us extend our implementation 
with class descriptors.

Im
pl

em
en

ta
tio

n 
of

 O
O

: S
in

gl
e 

in
he

ri
ta

nc
e



Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/17

Single Inheritance:
Class Membership
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class A {int f {…}; }
class B extends A {

int g {…}; }
class C extends B {

int f {…}; }

header:

super:
f:VMT

Code:A_f

HeapA a = new A;
B b = new B;
C c = new C;
c instance of A; header:

header:

super:
f:
g:

super:
f:
g:

Class C

Code:B_g

Code:C_f

Class A

Class B

VMT

VMT

Now we can do 
c instance of A as:

t = c.header
L:    if t == A goto True

t = t.super
if t != nil  goto L
res = false
goto End

True: res = true
End:  
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Single Inheritance:
Testing Class Membership

♦Searching through the class hierarchy is 
inefficient.

♦We can trade space for speed.
♦Let each class descriptor have a display of 

all superclasses. I.E., a direct link to each 
superclass.Im

pl
em
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Single Inheritance:
Class Membership
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class A {}
class B extends A { }
class C extends B { }

header:

level: 1
s

VMT
HeapA a = new A;

B b = new B;
C c = new C;
c instance of A; header:

header:

level: 2
ss
s

level: 3
sss
ss
s

Class C

Class A

Class B

VMT

VMT

Now we can do 
c instance of A as:

t1 = c.header
res = t1[0] >= 1 \\ A_level
if !res goto End
t2 = t1[2]  \\ 2<-A_level+1 
res = (t2 == A)

End:



Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/20

Multiple Inheritance

♦In languages with multiple inheritance, i.e., 
where it is possible to extend several parent 
classes with a class, all the operations we 
have seen become more difficult.

♦Java’s hybrid approach with interfaces 
complicates these issues in the same way as 
multiple inheritance.Im

pl
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Multiple Inheritance:
Graph Coloring

♦ One way to handle the layout of fields would be 
to use graph coloring. (This can also be used for 
methods.)

♦ All identical fields would have to occupy the 
same offset in the object.

♦ For some objects there would be holes in the array 
of fields. To reduce the wasted space the fields 
can be compacted in the object by storing the 
offsets in the class descriptor.
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Multiple Inheritance:
Graph Coloring

class A             {int x = 0;}
class B             {int y = 0;

int z = 0;}
class C extends A,B {int r = 0;}
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A a:

B b:

C c:

header:
x: 0

Stack

Heap

header:
-----
y: 0
z: 0

header:
x: 0
y: 0
z: 0
r: 0

Offsets:

(A,C).x: 1

(B,C).y: 2

(B,C).z: 3

(C).r: 4
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Multiple Inheritance:
Graph Coloring

class A             {int x = 0;}
class B             {int y = 0;

int z = 0;}
class C extends A,B {int r = 0;}
A a = new A;
B b = new B;
B d = new B;
C c = new C;
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A a:

B b:

B d:

C c:

header:
x: 0

Stack

Heap

header:
y: 0
z: 0

header:
x: 0
y: 0
z: 0
r: 0

Offsets:

(A,C).x: header[0]

(B,C).y: header[1]

(B,C).z: header[2]

(C).r: header[3]

x: 1

Class A

----
y: 1
z: 2

Class B

x: 1
y: 2
z: 3
r: 4

Class C
header:
y: 0
z: 0
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Multiple Inheritance:
Graph Coloring

♦One problem with global graph coloring is 
that it is global: you need the whole 
program – must be done at link time.

♦If dynamic linking is possible this approach 
becomes even harder.
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Multiple Inheritance:
Hashing

♦ Second approach: Hashing.
♦ Instead of a global compile- or link time solution we can 

calculate a hash value for each name at compile time.
♦ At runtime we use the hash value as an offset into a hash 

table in the class descriptor. 
♦ This hash table contains the offset to fields in the object. 

(This also works for method addresses.)
♦ This can be costly if there are many collisions in the hash 

table.Im
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Multiple Inheritance:
Trampolines

♦Third approach: Trampoline functions.
♦We give each object several headers, one 

for each extended class.
♦We add trampoline functions that changes 

the view of the object from one class to 
another in an efficient way.
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Multiple Inheritance:
Trampolines

class A  {
int x = 0;
int f() {…}}

class B  {
int y = 0;
inf g() {… y …}}

class C extends A,B {
int z = 0;}

C c1 = new C();
A a  = (A) c1;
C c2 = (C) a;
B b  = (B) c2;

C c3 = (C) b;
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tramp: 
f: 

header:
x: 0
header:
y: 0
z: 0

C VMT-A

tramp: 
tramp_g: 

C VMT-B

return r1

r1 = r1 – 8
return r1

Code: tramp

Code: tramp

Code: f

Code: g
c1 = 
a  = c1;
c2 = a.tramp(); /* = a */
b  = c2+8;
c3 = b.tramp(); /* = b-8 */

r1 = r1 + 8
call g

Code: tramp_g
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Multiple Inheritance:
Trampolines

class A  {
int x = 0;
int f() {…}}

class B  {
int y = 0;
inf g() {… y …}}

class C extends A,B {
int z = 0;}

C c1 = new C();
A a  = (A) c1;
C c2 = (C) a;
B b  = (B) c2;

C c3 = (C) b;
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tramp: 
f: 

header:
x: 0
header:
y: 0
z: 0

C VMT-A

tramp: 
tramp_g: 

C VMT-B

return r1

r1 = r1 – 8
return r1

Code: tramp

Code: tramp

Code: f

c1 = 
a  = c1;
c2 = a.tramp(); /* = a */
b  = c2+8;
c3 = b.tramp(); /* = b-8 */

Code: g

r1 = r1 + 8
call g

Code: tramp_g
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Multiple Inheritance:
Trampolines

class A  {
int x = 0;
int f() {…}}

class B  {
int y = 0;
inf g() {… y …}}

class C extends A,B {
int z = 0;}

C c1 = new C();
A a  = (A) c1;
C c2 = (C) a;
B b  = (B) c2;
C c3 = (C) b;
c1.z;   // c1[16] 
c1.x;   // c1[4]  
c1.z;   // c1[12]
c1.g(); // t=c[8]; t2=t[8]; call t2; 
a.f();  // t=a[0]; t2=t[8]; call t2;
b.g();  // t=b[0]; t2=t[8]; call t2;
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tramp: 
f: 

header:
x: 0
header:
y: 0
z: 0

C VMT-A

tramp: 
tramp_g: 

C VMT-B

return r1

r1 = r1 – 8
return r1

Code: tramp

Code: tramp

Code: f

Code: g

r1 = r1 + 8
call g

Code: tramp_g

…
y // r1[4]
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Optimizing OO-Programs

♦ In modern machines a jump to a known address 
is much faster than a jump to an address fetched 
from a table.

♦ Dynamic dispatch also makes inlining and 
interprocedural analysis harder.

♦ Possible solutions: Whole program optimization, 
link time optimization, JIT compilation, or 
runtime optimizations.

♦ When we have the whole program we can turn 
many dynamic properties into static properties.
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Inline caching

♦Many dynamic calls actually go to the same 
class all the time.

♦For each call site remember the actual 
target of the last call.

♦Next time jump directly to this location, 
and check if we end up in the right place.Im
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Polymorphic Inline Caching

♦If a call site is polymorphic inline caching 
can lead to degraded performance.

♦Solution: Polymorphic inline caching, 
remember more than one target address.
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Polymorphic Inline Caching

♦Polymorphic inline caching can be 
implemented with an if then else search 
tree:

v.f()

if c.header < C {
if c.header < B A.f() else B.f()

} else {
if c.header < D C.f() else D.f()

} 
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OO: Summary 

♦ Implementing OO efficiently means 
implementing inheritance efficiently.

♦ There are several possible solution available and 
there is still research going on in this area.

♦ One of the most successful techniques for 
optimizing OO is to do it at runtime using JIT 
compilation – something we will look closer at 
later in the course.
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Implementation of Functional 
Programming Languages

♦ There is no common agreement on exactly what a 
functional programming language is. But usually 
such a language should have at least one of the 
following concepts:
♦ No statements – only functions (or expressions).
♦ Higher order functions.
♦ Pureness (no side effects).
♦ Laziness.
♦ Automatic memory management (Garbage collection.)
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Higher Order Functions

♦ In Misc (and in C) you have “second”-order functions. 
♦ That is, functions are also values in the language: you can take

their addresses and pass them around and apply them.
def apply(f: (Int) => Int, x: Int): Int = f(x);

♦ These functions can be represented with just a function pointer,
i.e., the address of the function.

♦ Functions that take functions as arguments are called 
higher order functions.

♦ For a language to have interesting higher order functions 
you need to be able to create new functions at runtime. 
E.g., in Scala you can write:

val f:(Int => Int) = x => x + 1;
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Higher Order Functions

♦ To get really interesting functions at runtime you 
need to be able to capture the free variables of the 
function.
♦ A free variable is a variable that is not bound by the 

definition of the function. (y is free in x => x+y.) 
def f(y:Int):(Int => Int) = x=>x+y;

♦ In order to do this we need closures.
♦ A closure is a data structure that contains a 

function pointer and a way to access all free 
variables of the body of the function.
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Higher Order Functions

♦ In an OO language a closure can be implemented as an object with a 
single method and several instance variables.

def f(y:Int):(Int => Int) = x=>x+y;
f(42)(17)

class F {
int y;
public F(int y) { this.y = y; }
public int apply(int x) {
return x+y; 

}
}

public F f(int y) = new F(y);
f(42).apply(17);
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Higher Order Functions

♦ This is more or less the way Scala implements 
functions.

♦ To make it more general we can make all closures 
implement the Function interface:

public interface Function1 {
public abstract java.lang.Object apply(java.lang.Object a0);

}

♦ We also need to take care of local (mutable) 
variables that are captured by the function. This can 
be done by turning them into references.
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Higher Order Functions

def f(y:Int):(Int => Int) = {
var z = y*2;
val f = x=>x+z;
z = z +1;
f;

}

class F {
IntRef y;
public F(IntRef y) { 
this.y = y; }

public int apply(int x) {
return x+y.v; 

}
}

class IntRef {
int v;
public IntRef(int i) {v=i;}
public set(int i) {v=i;}

}

public F f(int y) =  {
IntRef z = new IntRef(y*2); 
F f = new F(z);
z.set(z.v + 1);
return f;

} 
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Pure Functional Languages

♦ In a pure functional language there are no side 
effects.

♦ This includes no updates of variables. That is, 
variables are immutable.
♦ Variables are, like variables in mathematics, just names 

for values.
♦ If we say x = 42; then we give the value 42 a new 

name: x, from now on x and 42 are interchangeable.
♦ With a pure functional language it is possible to 

do equational reasoning.
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Lazy Evaluation

♦With lazy evaluation, an expression is not 
evaluated unless its value is demanded by 
some other part of the computation.

♦In contrast, strict languages (Java, ML, C, 
Erlang) evaluate each expression as the 
control flow reaches it.
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Call-by-Name Evaluation

♦Most languages pass function arguments 
using call-by-value:
♦ i.e. all arguments are evaluated before a 

function is called. 
♦e.g. in the expression f(g(x+y)), first (x+y) is 

evaluated then the function g is called before 
the function f is called.

♦ If the function f doesn’t use its argument then 
the evaluation of g and of x+y is done in vane.
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Call-by-Name Evaluation

♦ Call-by-name evaluation avoids this problem by 
not evaluating the arguments, instead a thunk is 
created for each argument.

♦ A thunk is a function that can be called to 
compute the value on demand.
f(g(x+y)) is translated to
f(()=>g(()=>x+y))

♦ Any use of the argument in f is replaced by an application 
of the function:
f(x) = x; is translated to
f(x) = x();
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Call-by-Name Evaluation

♦Scala provides call-by-name with explicit 
def parameters.

♦A problem with call-by-name is that a 
thunk may be executed many times.
f(x) = x+x; is translated to
f(x) = x()+x();
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Call-by-Need

♦With call-by-need each thunk is only 
evaluated once.

♦This is implemented by giving each thunk a 
memo slot that stores the evaluated value; 
each evaluation of the thunk first checks 
the memo slot: if it is empty the expression 
is evaluated and stored in the slot, 
otherwise the value in the slot is returned.
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Call-by-Need

Conceptually a thunk for x+y can be implemented as:
class Thunk {

res = null;
apply() = {

if res == null then res = x+y
else res

}
}
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Call-by-need

♦A thunk can also be implemented just as 
two words <thunk_function, memo_slot>

♦When the thunk is evaluated both fields are 
updated: the memo slot with the value and 
the function with a new function that 
returns the value.
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Optimization of FP

♦ Functional programs tend to use many small 
functions. Modern hardware is optimized for 
imperative programs with few large functions, 
i.e., function calls are relatively expensive.

♦ Hence it can be profitable to reduce the number of 
function calls and increase the size of functions.

♦ This can be done by inline expansion.
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Inline Expansion

♦ Inline expansion or iniling is an optimization 
where a function call is replaced by the body of 
the function.

♦ If this is done in a stage in the compiler where all 
independent names are replaced by unique 
symbols then the process is quite straightforward. 
Otherwise the formal parameters need to be 
renamed (α-converted). 
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Inline Expansion

♦ If inline expansion is applied 
indiscriminately, the size of the program 
explodes. 

♦ To limit the code growth we can:
1. Expand only frequent call sites.
2. Expand only small functions.
3. Expand functions called only once, and 

perform dead function elimination. 
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Inline Expansion

♦If we inline a recursive function just as any 
other function we would probably end up 
with a call to the original function. Either 
directly after the first iteration or after a 
while. Im
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Inline Expansion

def loop(int x, int max, int y) =
if (x > max) y else loop(x+1, y*y);

def f(int z) = loop(1,10,z);   
---
def f(int z) = {

val x=1; val max=10; val y=z;
if (x>max) y 
else loop(x+1,max,y*y);

}
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Inline Expansion

♦To remedy this we can bring the definition 
of the recursion with us in the inlining by 
splitting the function into a prelude and a 
loop header.
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Inline Expansion

def loop(int x, int max, int y) =
if (x > max) y else loop(x+1, y*y);

def f(int z) = loop(1,10,z);   

---
def f(int z) = {

val x=1; val max=10; val y=z;
val loop= (int xX, int maxX, int yX) => 

if (xX > maxX) yX else loop(xX+1,maxX, yX*yX); 
if (x>max) y else loop(x+1,max,y*y);

}
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Loop-Invariant Hoisting

♦We can avoid passing around values that 
are the same in each recursive call by using 
loop-invariant hoisting.

♦Just let the constant value become a free 
variable. 

♦In our example lift max from an argument 
to a free variable.
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Loop-Invariant Hoisting

def loop(int x, int max, int y) =
if (x > max) y else loop(x+1, y*y);

def f(int z) = loop(1,10,z);   

---
def f(int z) = {

val x=1; val max=10; val y=z;
val loop= (int xX, int yX) => 

if (xX > max) yX else loop(xX+1, yX*yX); 
if (x>max) y else loop(x+1,y*y);

}
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Inline Expansion

♦ Inline expansion in itself can be useful since the 
overhead for a function call and return is 
removed, but the real benefit comes from 
applying standard optimizations on the inline 
expanded program.

♦ Constant propagation and folding, dead code and 
unreachable code elimination all work better 
when the scope of a function is increased.
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Inline Expansion
after constant prop

def loop(int x, int max, int y) =
if (x > max) y else loop(x+1, y*y);

def f(int z) = loop(1,10,z);   

---
def f(int z) = {

val x=1; val max=10; val y=z;
val loop= (int xX, int yX) => 

if (xX > 10) yX else loop(xX+1, yX*yX); 
if (1>10) z else loop(1+1,z*z);

}
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Inline Expansion
after constant folding

def loop(int x, int max, int y) =
if (x > max) y else loop(x+1, y*y);

def f(int z) = loop(1,10,z);   

---
def f(int z) = {
val loop= (int xX, int yX) => 

if (xX > 10) yX else loop(xX+1, yX*yX); 
loop(2,z*z);

}
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Efficient Tail Calls

♦A function call f(x) within a body of a 
function g is in a tail position if calling f is 
the last thing g will do before returning.

♦We can save stack space and execution time 
by turning the call to f into a jump to f.

♦For some languages, like Erlang and 
Scheme, proper tail calls is not an 
optimization but a requirement.
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Tail Calls

♦ A tail call can be transformed from a call to a 
jump as follows:

1. Move actual parameters into argument registers (and 
stack positions).

2. Restore callee-save registers.
3. Pop the stack frame of the calling function.
4. Jump to the callee.

♦ If both the caller and the callee have few arguments so 
that they all fit in argument registers then step 1 might 
be eliminated by a coalescing register allocator, and step 
2 and 3 might also be unnecessary: the tail call becomes 
just a jump.  
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Equational Reasoning 

♦In a pure language we can perform β-
substitution.
♦That is, replacing a call to a function with a 

version of the body of the function where each 
occurrence of the formal parameter is replaced 
by the argument.

♦ ((x) => x + x)(42)   β→ 42 + 42
♦Basically: we can perform function calls at 

compile time.  
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Optimization of Lazy FP

♦A lazy language allows us to do some 
optimizations that would not be safe in a 
strict language:
♦ Invariant hoisting.
♦Dead code removal (of function calls).
♦Strictness Analysis.
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Optimization of Lazy FP

♦ Invariant hoisting:

def f(i) = {
def g(j) = h(i) * j; 
g

}
---
def f(i) = {

val h = h(i);
def g(j) = h * j; 
g

}
♦ If h(n) loops infinitely but the result of f(n) is never called 

a strict language would loop in the call to f(n).
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Optimization of Lazy FP

♦ Dead code removal:
def f(i:int): int = {

var d = g(x); 
i + 2;

}

♦ In an imperative language g(x) can not be 
removed, there might be side effects.

♦ In a strict pure language removing g(x) might 
turn a non-terminating computation into a 
terminating one.
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Optimization of Lazy FP

♦ The overhead of thunk creation and evaluation is quite 
high, so they should only be used when needed.

♦ If a function f(x) is certain to evaluate its argument x, 
there is no need to create a thunk for x.

♦ We can use a strictness analysis to find out which 
arguments should be evaluated at the call site and which 
should be passed as thunks.

♦ In general exact strictness analysis is not computable – a 
conservative approximation must be used, i.e., assume 
that arguments who can not be proved strict are non-
strict.
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Implementation of FPL
(Repetition)

♦ Possible properties of functional languages:
♦ No statements. 
♦ Higher order functions.
♦ Pureness. 
♦ Laziness.
♦ Automatic memory management.

♦ A declarative language is a language where the 
program declares what to calculate.

♦ In an imperative language the program states how
to calculate. 
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Higher Order Functions
(Repetition)

♦A function that takes a function as an 
argument is called a higher order function.

♦E.g.
f(x:int, g:int=>int) = x + g(x);
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Tail calls
(Repetition)

♦A function call f(x) within a body of a 
function g is in a tail position if calling f is 
the last thing g will do before returning.

♦We can save stack space and execution time 
by turning the call to f into a jump to f.Im
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Continuations

♦ We can combine higher order functions with tail 
calls to get continuations.

♦ Normally each function returns a value:
def f(x:int) = foo(x) + 1;

♦ We can instead let each function take a 
continuation that tells where the execution is to 
continue:
def f(x:int, c:int=>int) = c(foo(x)+1);
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Continuation Passing Style
(CPS)

♦ Continuations are the basis for a compilation 
technique called continuation passing style (CPS).

♦ In CPS all functions are transformed to take one 
extra argument, the continuation, and the bodies 
are transformed to call the continuation instead of 
returning.

♦ Also, all nested expressions of the function body 
are transformed into continuations. (Primitive 
operations such as + also takes a continuation.) 
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CPS Transformation

def f(x:int) = foo(x) + 1;

def f(x:int, c:int=>int) =
foo(x,

(v:int) => +(v,1,c)
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CPS Transformation

♦ CPS transformation is used in many compilers for 
functional languages such as Scheme and ML. 

♦ CPS was studied extensively by e.g. Steele in the Rabbit 
Scheme compiler, and Appel in the SML/NJ compiler. 

♦ A disadvantage with CPS is that it introduces many  
closures, and hence the compiler have to optimize as 
many of them away as possible in order to get good 
performance. 

♦ An advantage is that, if closures are your only control 
structure and you have optimized them to the max, then 
you have optimized all control structures. 
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Call with Current Continuation
call/cc

♦ If we have a language compiled with CPS we can 
easily implement a very powerful construct called 
call/cc or call with current continuation.

def call_cc(f,c) = f(c,c)
♦ That is, we call the function f with the current 

continuation c as an argument, and also as the 
continuation of f.

♦ With call/cc you can “easily” implement 
backtracking, exceptions, coroutines, and 
concurrency. 
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Implementation of Concurrency

♦What is concurrency?
♦Some communication methods.
♦Erlang – a concurrent language.
♦Implementation of Erlang.
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Concurrency vs. Parallelism

♦ Concurrency: 
♦ If two events are concurrent then they conceptually

take place at the same time. That is, different 
schedulings of two events are indistinguishable or 
irrelevant.

♦ A language can be concurrent.
♦ Parallelism: 

♦ If two events occur in parallel then they actually occur 
at the same time. 

♦ An implementation can be parallel.
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Concurrency vs. Parallelism

♦A concurrent language can be implemented 
either in parallel or sequentially.

♦Some sequential languages can also be 
implemented either in parallel or 
sequentially. 
♦Declarative languages are usually easier to 

make parallel than imperative ones. 
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Message Passing vs. 
Shared Memory

♦ In a concurrent system with message passing each 
message has to be copied from the sender to the 
receiver. (Like when sending a mail to someone.)

♦ In a shared memory system the participating 
processes can all updated the shared memory, 
and the new state is “immediately” visible to all. 
(Like when two people are writing on and looking at the 
same blackboard.)Im
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Message Passing vs. 
Shared Memory

♦ Shared memory:
♦ Pros:

1. Performance.
♦ Cons:

1. The programmer has to ensure consistency.
2. Can not (practically) be implemented in a distributed system.

♦ Message passing:
♦ Pros:

1. Processes are decoupled (errors don’t propagate as easily).
2. The programmer can reason about the process interaction on a 

higher level.
3. Can easily be extended to a distributed system.

♦ Cons:
1. (Perceived) loss of performance.
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Message Passing vs. 
Shared Memory

♦ The distinction between shared memory and 
message passing is done on the level that the 
programmer has to deal with.

♦ On a lower level message passing can be 
implemented with shared memory (and often is, 
at least to some extent).

♦ In a network the shared memory model has to be 
implemented with some form of message passing.
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Synchronous vs. Asynchronous

♦ In a synchronous system both the sender and the 
receiver have to be in special states (ready to send 
and ready to receive).
♦ If either of the processes reaches this state before the 

other it will block and wait until both are in the right 
state.

♦ In an asynchronous system the sender does not 
have to wait for the receiver to be ready in order 
to send its message.
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Synchronous vs. Asynchronous

♦ Only one type of primitives is necessary since 
each can be implemented by the other.

♦ To implement synchronization in an 
asynchronous environment you only need a loop 
and a protocol where an acknowledgement is sent 
back upon receive.

♦ To implement asynchronous messages in a 
synchronous environment you need a relaying 
process.

Im
pl

em
en

ta
tio

n 
of

 c
on

cu
rr

en
cy

: C
on

ce
pt

s



Advanced Compiler Techniques 5/20/2004
http://lamp.epfl.ch/teaching/advancedCompiler/18

Processes vs. Threads

♦ In this presentation processes do not refer to OS 
processes but processes implemented by a 
programming language.
♦ Such processes can be assumed to be lightweight, not 

to share memory, and execute concurrently.
♦ A thread is slightly more heavyweight, share 

memory and can execute in parallel on a parallel 
machine.Im
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Concurrency in Programming 
Languages

♦Concurrency in programming languages 
can be implemented by utilizing processes 
or threads from the operating system.
♦ Either directly like in C or with a thin 

abstraction layer like in Java.
♦Further abstractions can be built into libraries.

♦Another approach is to build concurrency 
into the language as such.  
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Implementation of Concurrency 
Example: Erlang

♦ Erlang is a concurrent programming language, 
i.e., concurrency is built into the language from 
the beginning.

♦ Erlang was developed by the Ericsson to be used 
in large telecom application such as telephone 
exchanges. (Used in e.g. Ericsson’s ATM switch 
and their GPRS systems.)

♦ We will present some details of how to 
implement a concurrent language by studying 
how Erlang is implemented.
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Erlang

♦ The sequential part of Erlang is a small higher 
order functional language with  no mutable data 
structures.

♦ Data in Erlang is represented by a term, a term 
can be a list of terms, a tuple of terms or ground 
(atoms, numbers, PIDs, …).

♦ Erlang uses pattern matching to decompose and 
switch on the structure of Erlang terms.

♦ Erlang requires proper tail-calls. 
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Erlang

♦ The concurrent part of Erlang (processes that 
communicate through message passing) provides the 
following constructs:
♦ Asynchronous send.
Receiver ! Message

♦ Blocking, selective receive with timeouts. 
receive PATTERN -> … ; after T -> … end.

♦ A method to dynamically spawn new processes.
spawn(Closure).

♦ For error correction processes can be linked in order to receive
signals when a linked process dies:
link(Process).
or
spawn_link(Closure).
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A Simple Generic Server

loop(State,Handler) ->
receive
{From, Request} ->
{Res,NewState} = Handler(State,Request),
From ! {self(), Res},
loop(NewState,Handler);

{swap_code,NewHandler} -> 
loop(State, NewHandler);

quit -> ok
end.

> Server = spawn(fun()->loop(0,
fun(S,inc)->{ok,S+1};

(S,get)->{S,S} end)
end),

Server ! {self(),inc}, receive {_,_} -> ok end,
Server ! {self(),get}, receive {_,Val} -> Val end.

1
>
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Concurrency in Erlang

♦ Erlang is concurrent.
♦ The standard implementation is not parallel, but multi-tasking.

♦ Erlang processes are conceptually scheduled with pre-
emptive multitasking – the programmer does not have to 
worry about the scheduling.
♦ The standard implementation uses cooperative multitasking

enforced by the compiler.
♦ Each function call is counted as a reduction, when the number of 

reductions allocated to a process reaches 0 the process is 
suspended.

♦ Since there are no loop constructs in Erlang other than tail calls, 
this is sufficient to ensure cooperation.
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Implementation of Processes in 
Erlang

♦ Each process has its own stack, heap, message 
queue, and process control block (PCB).

♦ The PCB is relatively small ~70 words.
♦ The mailbox is a linked list of pointers to the heap 

containing only unprocessed messages.
♦ The heap and the stack are collocated in one 

memory area with a default initial size of 233 
words. (233=fibonacci(12)).

♦ The heap and stack grow (and shrink) as needed.
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Processes in Erlang

P1 P2 P3

Stack pointer (sp)

Heap pointer (hp)

STACK

HEAP

Unused
memory

Live 
data
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Process Communication in Erlang

♦ All communication between processes in Erlang 
is done by message passing.

♦ In the standard implementation this means that 
all messages are copied between the heap of the 
sender and the heap of the receiver.

♦ This copying is done by first calculating the size 
of the message, then allocating the right amount 
on the receivers heap, finally the message is 
copied.

♦ Since the receiver is guaranteed to be suspended, 
no locking is needed.
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Some “Optimizations”

♦ Large chunks of immutable data can be stored in binaries.
♦ Binaries larger than 64 words are not stored on a process heap and 

not copied when sent as messages.
♦ Binaries are managed by reference counting.

♦ Larger sets of shared, mutable data are handled by ETS-
tables.
♦ ETS stands for Erlang Term storage.
♦ Conceptually an ETS table could be implemented as a process 

mapping keys to values.
♦ In reality ETS tables are implemented in C.
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Implementing Erlang 
in Native Code

♦The standard implementation of Erlang 
uses a virtual machine (VM). We will 
discuss how to implement VMs in a later 
lecture.

♦It is also possible to compile Erlang to 
native code, here we will present some 
implementation details for such an 
implementation.
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Implementing Erlang 
in Native Code

♦In order to enable easy integration with the 
VM the native implementation uses the 
same data representation, GC, and runtime 
system as the VM.

♦The only major difference is that each 
process that calls native code also get a 
native stack. 
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Processes in Erlang

P1 P2 P3

Stack pointer (sp)

Heap pointer (hp)

STACK

HEAP

Unused
memory

Live 
data
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Implementation Details

♦ In order to handle scheduling and stack resizing 
some bookkeeping code is added to the beginning 
of each function:

reductions = reductions – 1;
if (reductions == 0) suspend(p); // p is the current process pointer

checkstack:
if (nsp - STACKNEED < stackEnd) { 

resizeStack();
goto checkstack;

}
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Implementation Details

♦The stack need can be calculated at compile 
time: 
number of spills + max(∀ calls: 
argsOnStack+callerSaves)+buffer.

♦By ensuring that there is a buffer of free 
words on the stack we do not need the 
bookkeeping code for leaf-functions that 
uses less than that many words.
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Implementation Details

♦ The function suspend has to be implemented in machine 
code in order to get access to the return address. 

supend: // p (the current process) is passed as the argument.

p->pc = <RETADDRESS> // From the stack on x86 from a register on SPARC

p->status = READY;
SAVE(p);  // Save the process sp, switch to C stack.

add(p,readyQueue);
p = schedule();
RESTORE(p); // Restore the process sp, switch from C stack.

jmp p->pc;
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The Scheduler

♦Since Erlang does not use OS processes or 
threads, the Erlang runtime system has to 
implement its own scheduler. (In, e.g., C)

pid schedule() {
static int majorReductions = MREDS;
majorReductions--;
if(majorReductions == 0) { externalPoll();
majorReductions = MREDS; }

checkTimeouts();
pid p = nextReady(readyQueue);
p->reductions = REDS; p->status = RUNNING;
return p;

} 
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Send

♦A message send from p1 to p2 can be 
implemented as:

send(pid:p1, pid:p2, term:message) {
int s = size(message);
if(s > (p2->heapTop - p2->heapPointer)) gc(p2,s);
term mp = copy(message,p2->heapTop);
add(mp,p2->messageQueue);
if(p2->status == SUSPENDED) {
p2->status = READY;
add(p2,readyQueue);

}
}
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Receive

♦ A message receive is slightly more complicated.
messageLoop:
m = nextMessage(p);
if (m == NIL)
sleep(p,timeout,&messageLoop,&handler);
cont = MATCH(m,PATTERNS);
if (cont == 0) goto messageLoop;
unlink(p);
jmp cont;

handler:
…
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Receive

M1   NIL
mQueue

mNext

mEnd
M2

M3

M1 NIL

nextMessage(pid p) {
term m = p->mNext;
p->mNext = m->next;
return m;

}

unlink(pid p) {
term m = p->mNext;
if(m->prev != NIL) 
p->prev->next = m->next;

else
p->mQueue = m->next; 

if(p->mEnd == m) 
p->mEnd = m->prev;

p->mNext = p->mQueue; 
} 
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Receive

sleep(p,timeout,messageLoop,handler) {
p->pc = messageLoop;
p->handler = handler;
add(p,now()+timeout,timeoutQueue)
p->status = SUSPENDED;
p = schedule();
(p->pc)();

}
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Receive

♦The checkTimeout function in the 
scheduler will activate a process when the 
timeout has elapsed. 

♦While doing so p->pc will be updated 
with p->handler so that the process will 
start executing in the timeout handler when 
scheduled.
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Spawn

♦The spawn primitive creates a new process, 
i.e. allocates a new PCB, stack, and heap.

♦Then the argument to spawn (the closure) 
is copied to the new heap.

♦The new pid is added to the ready queue.
♦Then execution continues in the old process 

with the instructions after spawn.
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Summary

♦Concurrency is an important concept that 
can be useful as an abstraction when 
decomposing a program, just as modules, 
objects, and functions.

♦Concurrency can be implemented by either 
using primitives provided by the OS or by 
implementing a scheduler specifically for 
the language.
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Memory Management

♦ The computer memory is a limited resource so the 
memory use of programs has to be managed in some way.

♦ The memory management is usually performed by a 
runtime system with help from the compiler.
♦ The runtime system is a set of system procedures linked to the 

program. 
♦ For C programs it can be as simple as a small library for 

interacting with the operating system.
♦ For Erlang programs the runtime system implements almost all 

the functionality normally provided by the OS. 
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Memory Management

♦ In a language such as C there are three 
ways to allocate memory:

1. Static allocation. The memory needed by 
global variables (and code) is allocated at 
compile time.

2. Stack allocation. Activation records are 
allocated on the stack at function calls.

3. Heap allocation. Dynamically allocated by the 
programmer by the use of malloc.
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Memory Organization

♦A typical layout of the 
memory of a C 
program looks like:

Stack

Heap (dynamic)

Uninitialized static data
(Global variables)

Constant static data

Code
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Dynamic Memory Management

♦ Heap allocation is necessary for data that lives longer than 
the function which created it, and which is passed by 
reference, e.g., lists in misc.

♦ Two design questions for the heap:
♦ How is space for data allocated on the heap?
♦ How and when is the space deallocated?

♦ Considerations in memory management design:
♦ Space leaks & dangling pointers.
♦ The cost for allocation and deallocation.
♦ Space overhead of the memory manager.
♦ Fragmentation.
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Fragmentation

♦ The memory management system should try to avoid 
fragmentation, i.e. when the free memory is broken up into 
several small blocks instead of few large blocks.

♦ In a fragmented system memory allocation may fail 
because there is no free block that is large enough even 
though the total free memory would be large enough.

♦ We distinguish between:
♦ Internal fragmentation – the allocated block is larger than the 

requested size (the waste is in the allocated data).
♦ External fragmentation – all free blocks are too small (the waste is 

in the layout of the free data).
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Memory Allocation

♦ The use of a free-list is a common scheme.
♦ The system keeps a list of unused memory blocks.
♦ To allocate memory the free-list is searched to find a block 

which is large enough.
♦ The block is removed from the free-list and used to store 

the data. If the block is larger than the need, it is split and 
the unused part is returned to the free-list (to avoid internal 
fragmentation).

♦ When the memory is freed it is returned to the free-list. 
Adjacent memory blocks can be merged (or coalesced) 
into larger blocks (to avoid external fragmentation).
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Free-list

♦ The free-list can be stored in the 
free memory since it is not used for 
anything else. (We assume, or ensure, 
that each memory block is at least two 
words).

33

44

22
Free list:

This can be 
stored as a 
static global 
variable.
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Free-list

♦ Note that we need to know the size of a block 
when it is deallocated. This means that even 
allocated blocks need to have a size field in them.

♦ Thus the space overhead will be at least one word 
per allocated data object. (It might also be 
advantageous to keep the link.)

♦ The cost (time) of allocation/deallocation is 
proportional to the search through the free-list.
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Free-list

♦There are many different ways to 
implement the details of the free-list 
algorithm:
♦Search method: first-fit, best-fit, next-fit.
♦Links: single, double.
♦Layout: one list, one list per block size, tree, 

buddy.
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Deallocation

♦Deallocation can either be explicit or 
implicit.

♦Explicit deallocation is used in e.g., Pascal 
(new/dispose), C (malloc/free), and C++ 
(new/delete).

♦Implicit deallocation is used in e.g., Lisp, 
Prolog, Erlang, ML, and Java.
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Explicit Deallocation

♦Explicit deallocation has a number of 
problems:
♦ If done to soon it leads to dangling pointers.
♦ If done to late (or not at all) it leads to space 

leaks.
♦ In some cases it is almost impossible to do it at 

the right time. Consider a library routine to 
append two destructive lists:
c = append(a,b);
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
printList(b);

22

33

44

55

66

NILNIL

Explicit Deallocation

11

M
em

or
y 

M
an

ag
em

en
t: 

D
ea

llo
ca

tio
n



Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/14

Explicit Deallocation

♦ The programmer 
now has to ensure 
that a, b, and c are 
all deallocated at the 
same time. A mistake 
would lead to 
dangling pointers.

♦ If b is in use long 
after a, and c, then 
we will keep a live 
too long. A space 
leak.

list a = new List(1,2,3);
list b = new List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
printList(b);
free(c);M
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Implicit Deallocation

♦ With implicit deallocation the programmer does not 
have to worry about when to deallocate memory.

♦ The runtime system will dynamically decide when 
it is safe to do this.

♦ In some cases, and systems, the compiler can also 
add static dealloctions to the program.

♦ The most commonly used automatic deallocation 
method is called garbage collection (GC).

♦ There are other methods such as region based
allocation and deallocation.
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Garbage Collection (GC)

♦ Garbage collection is a common name for a set of 
techniques to deallocate heap memory that is 
unreachable by the program.

♦ There are several different base algorithms: 
reference counting, mark & sweep, copying.

♦ We can also distinguish between how the GC 
interferes or interacts with the program: 
disruptive, incremental, real-time, concurrent.
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The Reachability Graph

♦ The data reachable by the program form a 
directed graph, where the edges are pointers.

♦ The roots of this graph can be in:
1. global variables,
2. registers,
3. local variables & formal parameters on the stack.

♦ Objects are reachable iff there is a path of edges 
that leads to them from some root. Hence, the 
compiler must tell the GC where the roots are.
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

The Reachability Graph
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roots: b

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

The Reachability Graph
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The goal with the GC is to 
deallocate these:
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Reference Counting

♦ Idea: Keep track of how many references there are 
to each object.

♦ If there are 0 references deallocate the object.
♦ The compiler must add code to maintain the reference 

count (refcount).
♦ Set the count to 1 when created.
♦ For an assignment x = y: 

♦ if (x != null) x.refcount—;
♦ if (y!=null) y.refcount++;

♦ When a stack frame is deallocated decrease the refcount of each object 
pointed to from the frame.

♦ When refcount reaches 0 deallocate the object and decrease refcount of 
each child.
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b;
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Reference Count

♦ Advantages of reference count:
♦ Rather easy to implement.
♦ Storage reclaimed immediately.

♦ Disadvantages of reference count:
♦ Space overhead: 1 word per object.
♦ Keeping track of the reference counts is very 

expensive. (Each simple pointer copy becomes several 
instructions.)

♦ There is one more problem…
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list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22
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Reference Count

♦ Big disadvantage with reference count:
♦ The refcount of cyclic structures never reaches zero!

♦ There are ways to solve this, but they are very 
complicated.

♦ Due to this fact reference count is very seldom used 
in practice. There is one nice use, as we shall see later…

♦ In a pure language or a language without destructive updates there 
are no cyclic structures, making reference counting a viable option.G
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Mark & Sweep

♦ A mark & sweep GC is made up of two 
phases:

1. First all reachable objects are marked.
2. Then the heap is swept clean of dead objects.

♦ The mark phase is done by a depth first 
search through the reachability graph 
starting from the roots.
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Depth First Mark Algorithm

mark(x) {
if(! marked(x)) { 

setMark(x);
for each field f of x

mark(*f)
}

}
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Mark
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The Sweep

♦ The Sweep phase goes through the whole heap 
from start to finish and adds unmarked objects to 
the free-list.

p = heapStart;
while (p<heapEnd) {
if(marked(*p)) clearMark(*p);
else free(p);
p += size(*p);

}
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k 
&

 S
w

ee
p



Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/49

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep
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list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep
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Cost of Mark & Sweep

♦ The mark phase takes time proportional to the amount of 
reachable data (RR).

♦ The sweep phase takes time proportional to the size of the 
heap (HH).

♦ The work done by the GC is to recover HH-RR words of 
memory.

♦ Them amortized cost of GC (overhead/allocated word) is:
c1RR + c2HH

HH-RR
♦ If RR ≈ HH the cost is very high. The cost goes down as the 

number of dead words increases. 
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Mark & Sweep

♦ Where do we store the mark bits?
♦ We will discuss data representation a bit more at the end of the

lecture. With some representations there will always be a tag or a 
header word in each heap object where the mark bit can be stored.

♦ They can be stored in a separate bitmap table:
♦ If we have a 32-bit architecture and the smallest heap 

object is 2 words. (The three least significant bits == 0)
♦ Then we can have 536,870,911 objects and need 

67,108,863 bytes to store these bits. 
♦ This might seem to be a lot, but it is only 1.562% of the 

total heap.
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Tuning Mark & Sweep

♦There is one problem with the mark phase:
♦While doing the depth first search we need to 

keep track of other paths to search. 
♦ If this is done with recursive calls we will need 

one allocation record for each level we descend 
in the reachability graph. 

♦Solutions: Explicit stack or pointer reversal.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k 
&

 S
w

ee
p



Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/55

Mark & Sweep

♦Advantages with mark & sweep:
♦Can reclaim cyclic structures.
♦Standard version is easy to implement.
♦Can have relatively low space overhead.

♦Disadvantages:
♦Fragmentation can become a problem.
♦Allocation from a free-list can be costly. 
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Copying Collector

♦The idea of a copying garbage collector is to 
divide the memory space in two parts.

♦Allocation is done linearly in one part 
(from-space).

♦When that part is full all reachable objects 
are copied to the other part (to-space).
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Before GC

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;
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After GC

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;
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Forwarding Pointers

♦Given a pointer p that point to from-space
make it point to to-space:
♦ If p points to a from-space record that contains 

a pointer to to-space, then *p is a forwarding-
pointer that indicates where the copy is. set 
p=*p.

♦ If *p has not been copied, copy *p to location 
next, *p=next, p=next, next+=size(*p).
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Cheney’s Copying Collector

♦ Cheney’s algorithm uses breadth-first to traverse 
the live data.

♦ The algorithm is non-recursive, requires no extra 
space or time consuming tricks (such as pointer 
reversal), and it is very simple to implement.

♦ The disadvantage is that breadth-first does not 
give as good locality of references as depth-first. 
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Cheney’s Copying Collector

♦ The algorithm:
1. Forward all roots.
2. Use the area between scan as next as a queue for copied 

records whose children has yet not been forwarded.
scan = next = start of to-space
for each root r { r = forward(r); }
while scan < next {
for each field f of *scan 
scan->f = forward(scan->f)

scan += size(*scan) 
}
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Before GC

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;
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Forward Roots

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;
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Scanning

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;
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Scanning

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;
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Scanning

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;
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Scanning

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;
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Cost of Copying GC

♦ The GC takes time proportional to the amount of 
reachable data (RR).

♦ The work done by the GC is to recover HH/2 /2 - RR words of 
memory.

♦ The amortized cost of GC (overhead/allocated word) is:
c1RR

((HH/2) - RR
♦ If HH is much larger than R R then the cost approaches zero.then the cost approaches zero.
♦ The GC is often self-tuning so that HH = 4RR giving a GC 

cost of c1 per allocated word. 
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Copying GC

♦ Advantages of copying GC:
♦ Can handle cyclic structures.
♦ Very easy to implement.
♦ Extremely fast allocation (no free-list) just a check and heap 

pointer increment.
♦ Automatic compaction: no fragmentation.
♦ Only visits live data – time only proportional to live data.

♦ Disadvantages of copying GC:
♦ Double the space overhead since two heaps are needed.
♦ Long lived live data might be copied several times.
♦ Copying all the live data might lead to long stop times.
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Generational GC

♦ Empirical observation: most objects die young. 
The longer an object lives the higher the 
probability it will survive the next GC.

♦ The benefit of GC is highest for young objects.
♦ Idea: Keep young objects in a small space which 

is GC more often than the whole heap.
♦ With such a generational GC each collection takes 

less time and yields proportionally more space.
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Generational GC

♦ In a generational GC we want to collect the 
younger generation without having to look at 
older generations.

♦ But we have to consider all pointers from older 
generations to younger generations as roots.
♦ (In a language without destructive updates this is not a 

problem, since there are no such pointers.) 
♦ These inter-generational references must be 

remembered. The compiler has to ensure that all 
store operations in an older generation are 
checked.
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Cost of Generational GC

♦ It is common for the youngest generation to have less than 
10% live data.

♦ With a copying collector HH//RR =10 in this generation.
♦ The amortized cost of a minor collection is:

c1RR
(10 (10 RR) - RR

♦ Performing a major collection can be very expensive.
♦ Maintaining the remembered set also takes time. If a 

programs does many updates of old objects with pointers 
to new objects a generational GC can be more expensive 
than a non-generational GC. 
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Incremental GC

♦ An incremental (or concurrent) GC keeps the stop-
times down by interleaving GC with program 
execution.
♦ The collector tries to free memory while the program, 

called the mutator changes the reachability graph.
♦ An incremental GC only operates at request from 

the mutator.
♦ A concurrent GC can operate in between any two 

mutator instructions. 
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Data Layout

♦ The compiler and the runtime system has to agree on a data layout. 
The GC needs to know the size of records, and which fields of a 
record contains pointers to other records.

♦ In statically typed or OO languages, each record can start with a 
header word that points to a description of the type or class. 

♦ In many functional languages the set of data types can not be 
extended; for such languages one can use a tagging scheme where 
unused bits in a pointer indicate what data type it points to.

♦ Another approach is to not give any information to the collector about 
which fields are pointers. The collector must then make a conservative 
guess, and treat all words that looks like pointers to the heap as such. 
Since it is unsafe to change such pointers a conservative collector has to 
be non-moving.
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The Root Set

♦ The set of registers and stack slots that contain 
live data can be described by a pointer map (stack 
map).

♦ For each pointer that is live after a function call 
the pointer map identifies its register or stack slot.

♦ The return address can be used as a key in a hash 
map to find the pointer map.

♦ To mark/forward the roots the GC starts at the 
top of the stack and scans downwards frame by 
frame. (In a generational collector the stack scan 
can also be made generational.) 
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Finalizers

♦ Some languages (notably OO) has finalizers, that is, some code that 
should be executed before some data is deallocated.

♦ This is, e.g., useful to make sure that an object frees all resources 
(open files, locks, etc) before dying.

♦ Whit a copying collector the handling of finalizers becomes more 
difficult. Such a GC does not normally visit the dead data. So all 
finalizers has to be remembered and after GC a check has to be done 
to see if any freed data triggers a finalizer.

♦ A mark & sweep collector does not have this problem, but just as wit 
a copying collector it might take a long time after the last use before 
garbage is actually collected.

♦ If one wants to ensure that a finalizer is executed as soon as the object 
dies then one has to use reference counting.  
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Summary

♦Manual allocation is unsafe and should not 
be used. (It also comes at a cost, 
maintaining a free-list is not for free.)

♦Garbage collection solves the problem of 
automatic memory management.

♦In most cases a generational copying 
collector will be the most efficient solution.
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Virtual Machines

♦A virtual machine is an abstract computing 
architecture independent of any hardware.

♦They are software machines that run on top 
of real hardware, providing an abstraction 
layer for language implementers.
♦ There are other types of virtual machines intended to 
emulate some real hardware (e.g., VirtuTech-Simics, 
VMware, Transmeta), but they are not the focus of 
this course.
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Characteristics of a VM

♦A VM has its own instruction set 
independent of the host system.

♦A VM usually has its own memory 
manager and can also provide its own 
concurrency primitives.

♦Access to the host OS is usually limited and 
controlled by the VM. 
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Advantages of VMs

♦ A VM bridges the gap between the high level language 
and the low level aspects of a real machine.

♦ It is relatively easy to implement a VM, and it is easier to 
compile to a VM than to a real machine.

♦ A VM can be modified when experimenting with new 
languages.

♦ Portability is enhanced.
♦ Support for dynamic (down-)loading of software.
♦ VM code is usually smaller than real machine code.
♦ Safety features can be verified by the VM. 
♦ Profiling and debugging are easy to implement.
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Disadvantages of VMs

♦Lower performance than with a native code 
compiler.
♦Overhead of interpretation.
♦Modern hardware is not designed for running 

interpreters. 
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Some VM History

♦ VMs have been built and studied since the late 1950s.
♦ The first Lisp implementations (1958) used virtual machines with

garbage collection, sandboxing, reflection, and an interactive shell.
♦ Forth (early 70s) uses a very small and easy to implement VM with 

high level of reflection.
♦ Smalltalk (early 70s) is a very dynamic language where everything 

can be changed on the fly, the first truly interactive OO system.  
♦ USCD Pascal (late 70s) popularized the idea of using pseudocode to 

improve portability. 
♦ Self (late 80s) a prototype-based Smalltalk flavor with an 

implementation that pushed the limits of VM technology.
♦ Java (early 90s) made VMs popular and well known. 
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VM Design Choices

♦ When designing a VM one has some design choices similar to the 
choices when designing intermediate code for a compiler:
♦ Should the machine be used on several different physical architectures 

and operating systems? (JVM)
♦ Should the machine be used for several different source languages? 

(CLI/CLR (.NET))
♦ Some design choices are similar to those of the compiler backend:

♦ Is performance more important than portability?
♦ Is reliability more important than performance?
♦ Is (smaller) size more important than performance?

♦ And some design choices are similar to when designing an OS:
♦ How to implement memory management, concurrency, IO…
♦ Is low memory consumption, scalability, or security more important than 

performance?

V
ir

tu
al

 M
ac

hi
ne

s



Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/8

VM Components

♦ The components of a VM vary depending on 
several factors:
♦ Is the language (environment) interactive?
♦ Does the language support reflection and or dynamic 

loading?
♦ Is performance paramount?
♦ Is concurrency support required?
♦ Is sandboxing required?

♦ In this lecture we will only talk about the 
interpreter of the VM.
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VM Implementation

♦ Virtual machines are usually written in 
“portable” (in the sense that compilers for most architectures already 
exists) programming languages such as C or C++.

♦ For performance critical components assembly 
language can be used.

♦ Some VMs (Lisp, Forth, Smalltalk) are largely 
written in the language itself.

♦ Many VMs are written specifically for gcc, for 
reasons that will become clear in later slides.
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Interpreters

♦ Language runtime systems often uses two 
kinds of interpreters:

1. Command-line interpreter.
♦ Reads and parses instructions in source form.
♦ Used in interactive systems.

2. Instruction interpreter.
♦ Reads and executes instructions in some 

intermediate form such as bytecode.
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Implementing Interpreters

♦ There are several ways to implement an interpreter.
♦ Pattern (or string) based interpretation.

♦ Interpreting source code (strings) directly is inefficient since most of the time is 
spent in lexical analysis.

♦ A better alternative is to compile the source into e.g., an abstract syntax tree 
and then do the interpretation over that tree. (Jumps and calls are expensive.)

♦ Token-based interpretation.
♦ Compiling the code into a linear representation of instructions, where each 

instruction is represented by a token, e.g., bytecode.
♦ Address-based interpretation.

♦ Compiling the code into a linear representation where each instruction is 
represented by the address that implements the instruction.

♦ There are several variants: Indirect threaded code, direct threaded code and 
subroutine threading.
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Taxonomy of Interpreters

Interpreters

Pattern-based Token-based Address-based

String-based Tree-based Bytecode Indirect threaded
code

Direct threaded
code

Subroutine threaded
code
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Implementing Interpreters

♦We will now look at some details of how to 
implement an interpreter.

♦We will start with a complete but simple 
string based interpreter for a very simple 
language. Then extend the language and 
the interpreter to show the different ways 
to implement interpreters. 
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Interpreting while Parsing
(String-based Interpretation)

♦ For some really simple languages the 
interpretation can be done during parsing.

♦ We can e.g., implement a simple calculator 
directly in a parser generator.

♦ A parser generator is a program that takes a 
description of a grammar and generates a 
program that can parse the grammar.

♦ We will use CUP a parser generator for Java:
♦ http://www.cs.princeton.edu/~appel/modern/java/CUP/
♦ I will not go into the details of CUP.
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A Calculator Language

♦Grammar:
Expr ::= Expr MINUS Term

| Expr PLUS Term
| Term

Term ::= Term TIMES Factor
| Term DIV Factor
| Factor

Factor ::= NUMBER | LPAR Expr RPAR
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Simple Interpreter .cup

terminal PLUS, MINUS, TIMES, DIV, LPAR, RPAR;
terminal Integer NUMBER;

non terminal Program;
non terminal Integer Expression, Term, Factor;

precedence left PLUS, MINUS;
precedence left TIMES, DIV;

start with Program;

terminal PLUS, MINUS, TIMES, DIV, LPAR, RPAR;
terminal Integer NUMBER;

non terminal Program;
non terminal Integer Expression, Term, Factor;

precedence left PLUS, MINUS;
precedence left TIMES, DIV;

start with Program;
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Interpreter .cup

Program ::= Expression:e
{: System.out.println(e.intValue()); :}
;

Expression ::= Expression:e PLUS Term:t
{: RESULT = new Integer(e.intValue() +

t.intValue()); :}
|  Expression:e MINUS Term:t
{: RESULT = new Integer(e.intValue() -

t.intValue()); :}
|  Term:t
{: RESULT = t; :}

Program ::= Expression:e
{: System.out.println(e.intValue()); :}
;

Expression ::= Expression:e PLUS Term:t
{: RESULT = new Integer(e.intValue() +

t.intValue()); :}
|  Expression:e MINUS Term:t
{: RESULT = new Integer(e.intValue() -

t.intValue()); :}
|  Term:t
{: RESULT = t; :}
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Interpreter .cup

Term ::= Term:t TIMES Factor:f
{: RESULT = new Integer(t.intValue() *

f.intValue()); :}
|  Term:t DIV Factor:f
{: RESULT = new Integer(t.intValue() /

f.intValue()); :}
|  Factor:f
{: RESULT = f; :}

Factor ::= NUMLIT:n {: RESULT = n; :}
| LPAR Expression:e RPAR
{: RESULT = e; :}

Term ::= Term:t TIMES Factor:f
{: RESULT = new Integer(t.intValue() *

f.intValue()); :}
|  Term:t DIV Factor:f
{: RESULT = new Integer(t.intValue() /

f.intValue()); :}
|  Factor:f
{: RESULT = f; :}

Factor ::= NUMLIT:n {: RESULT = n; :}
| LPAR Expression:e RPAR
{: RESULT = e; :}
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Control Flow

♦ This approach works fine for simple expressions.
♦ Control flow constructs such as ‘if’ and ‘while’ are 

harder to handle.
♦ For ‘while’ we would need to “reparse” the 

statement that is to be repeated. 
♦ Let us extend the language with control flow, 

variables, and boolean values.
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Tree-based (pattern-based) 
Interpretation

♦ By representing the code by a data structure we 
can “reexecute” the same piece of code several 
times.

♦ This will lead to a slightly more complicated 
interpreter, which will require at least two passes 
over the code. 

♦ The code will first be parsed and stored in the 
internal representation, then the interpretation 
will be performed.

♦ We can use an abstract syntax tree for 
representing the code.
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Design choices

♦ How is the program represented?
♦ As an Abstract Syntax Tree (AST) with the class Tree.

♦ How is data represented?
♦ We have different types of values, integers and 

Booleans.
♦ The value of each expression is either an IntValue or a 
BoolValue, subclasses of Value.

♦ How are variables represented?
♦ With a symbol table where each symbol can have a 

value.
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The Implementation

♦ The Interpreter itself can be implemented by a 
Visitor on the AST.

♦ We need a Value class:
class Value {
static class IntValue extends Value {
int i;
public IntValue(int i) { this.i = i; }

}
static class BoolValue extends Value {
boolean b;
public BoolValue(boolean b) { this.b = b; }

}
}
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Interpreting Expressions

public void caseOp(Op tree) {
switch (tree.op) {
case TRUE: 
result = new BoolVal(true); 
break;

case FALSE: 
result = new BoolVal(false);    
break;

case PLUS:
IntValue lval = (IntValue) interpret(tree.left);
IntValue rval = (IntValue) interpret(tree.right); 
result = new IntValue(lval.i + rval.i);
break;

…
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Semantic Analysis Needed

♦This assumes that types are 
correct.
♦We could either have a prepass that 

does the type analysis. 
♦Or we could do the type checking at 

the same time as interpreting.
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Analyzing While Interpreting

public void caseOp(Op tree) {
switch (tree.op) {
case PLUS:
Value lval = interpret(tree.left);
Value rval = interpret(tree.right);
if ((lval instanceof IntValue) && 

(rval instance of IntValue)) {
result = new IntValue(

((IntValue)lval).i + 
((IntValue)rval).i);

} else error();
break;

…
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Control Flow

♦Now we can try to interpret a control flow 
construct.

♦It turns out to be very easy, since we are 
writing our interpreter in Java which 
supports the same control flow constructs.

♦It becomes a bit complicated if the type 
analysis has to be done at the same time.
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While (assuming type analysis)

public void caseWhile(While tree){
while(((BoolValue)
interpret(tree.cond)).b) {
interpret(tree.body);

}
}
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Interpreting While, While 
Analyzing

public void caseWhile(While tree) {
Value cond=interpret(tree.cond);
while((cond instanceof BoolValue)

&& ((BoolValue) cond).b) {
interpret(tree.body);
cond=interpret(tree.cond);

}
}
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Variables

♦ We need to keep track of the values of variables somehow. 
A simple solution is to store these values with the symbols 
in the symbol table.

♦ If we interpret an assignment we store the value in the 
symbol.

♦ If we interpret an identifier we read the value from the 
symbol.
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Functions

♦These techniques can handle simple 
languages without functions or more than 
one scope. 

♦In order to handle functions and especially 
recursive functions and local scopes we 
will need an environment.
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Environments

♦ In an environment we store all values of parameters (arguments) and local 
variables of a function for one specific call.

♦ We create a new environment when we call a function or enter a local scope.
♦ We store actual arguments of the call in the environment.
♦ We initialize local variables.
♦ After returning from a function, or leaving the local scope, the environment is not 

needed any more.
♦ The environment can be implemented as an array of values, the position in 

the array of an identifier can be stored in the symbol table.
class Environment {

Environment outer; // For nested scope.
Value[] values;

}
♦ An environment is similar to how scopes are handled in the compiler. 
♦ When compiling to native code the environment is stored on the stack as activation 

records.
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Function Calls

void caseFunCall {
// call interpreter recursively on
//   function arguments;
Arguments args = interpret_args(tree.args);

// Create a new Environment
currentEnv = new Environment(currentEnv);

// Store the arguments in the new environment.
insert_args(args, currentEnv);

// Call the interpreter recursively on the 
//   body of the called function, using the new
//   environment.
result = interpret(find_code(tree.funName));

// Restore the environment.
currentEnv = currentEnv.outer;

} 
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Disadvantages with 
Tree-based Interpreters

♦ The tree representation has to be created 
somehow each time we want to run the program.
♦ Parsing the source code each time is time consuming.
♦ Storing the whole tree is space consuming.

♦ The tree representation uses a lot of space at 
runtime, which is infeasible for large programs.

♦ Using the stack of the host language adds to the 
space need at runtime.
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Token-based Interpreters

♦ By compiling the program to a special instruction set of a 
virtual machine, and by adding tables that maps function 
names to offsets in the instruction sequence, some of the 
interpretation overhead can be reduced.

♦ Most VM instruction sets uses small integers to represent 
everything in the instruction stream (opcodes, registers, 
stack slots, functions, constants, etc.).

♦ By implementing the interpreter in C we can gain some 
speed, it also allows us to do nasty pointer tricks. 
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Token-based Interpreters

♦ The fundamental instruction unit is the token.
♦ A token is a predefined numeric value that 

represents a certain instruction.
♦ E.g., BREAK=0, LOADLITERAL = 1, ADD=2.

♦ The most common case is bytecode:
♦ The token with is 8 bits.
♦ The total instruction set is limited to 256 tokens.
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Basic Structure of a Token-based 
Interpreter

byte *pc = &program[0];
while(TRUE) {

byte opcode = pc[0];
switch(opcode) {
…
case LOADLITERAL:
destReg = pc[1];
value = getTwoBytes(&pc[2]);
regs[destReg] = value;
pc += 4;
break;

case JUMP:
jumpAddress = getFourBytes(&pc[1]);
pc = &program[jumpAddress]
break;

}
} 
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Alignment

♦ Most modern machines loads data at least one 
word at the time (usually 4 bytes). By making 
sure that instructions are aligned on word offsets 
we get better performance.

opcode addr0 addr1 addr2 addr3

opcode addr0 addr1 addr2 addr3

Note: The padding is done by the loader, 
no extra space is needed in the external 
representation.
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Token-based Interpreter
with Aligned Instructions

byte *pc = &program[0];
while(TRUE) {

byte opcode = pc[0];
switch(opcode) {
…
case LOADLITERAL:
destReg = pc[1];
value = getTwoBytes(&pc[2]);
regs[destReg] = value;
pc += 4;
break;

case JUMP:
jumpAddress = getFourBytes(&pc[4]);
pc = &program[jumpAddress]
break;

}
} 
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Token-based Interpreter
with Abstract Encoding

byte *pc = &program[0];
while(TRUE) {

byte opcode = pc[0];
switch(opcode) {
…
case LOADLITERAL:
destReg = pc[LOADLITTERAL_ARG1];
value = getTwoBytes(&pc[LOADLITTERAL_ARG2]);
regs[destReg] = value;
pc += LOADLITTERAL_SIZE;
break;

case JUMP:
jumpAddress = getFourBytes(&pc[JUMP_ARG1]);
pc = &program[jumpAddress]
break;

}
} 

#define LOADLITTERAL_SIZE 4
#define JUMP_SIZE 8
#define LOADLITTERAL_ARG1 1
#define LOADLITTERAL_ARG2 2
#define JUMP_ARG1 4
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Token-based Interpreter
with Abstract Control

byte *pc = &program[0];
while(TRUE) {
loop:

byte opcode = pc[0];
switch(opcode) {
…
case LOADLITERAL:
destReg = pc[LOADLITTERAL_ARG1];
value = getTwoBytes(&pc[LOADLITTERAL_ARG2]);
regs[destReg] = value;
pc += LOADLITTERAL_SIZE;
NEXT;

case JUMP:
jumpAddress = getFourBytes(&pc[JUMP_ARG1]);
pc = &program[jumpAddress]
NEXT;

}
} 

#define NEXT goto loop
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Indirectly Threaded Interpreter 

♦ In an indirectly threaded interpreter we do not switch on the tokens. 
Instead we use the tokens as indices into a table containing the
addresses of the instruction implementations.

♦ The term threaded code refers to a code representation where every 
instruction is implicitly a function call to the next instruction.

♦ A threaded interpreter can be very efficiently implemented in 
assembler. 

♦ In GNU C (gcc) we can use labels as values and take the address of a 
label with &&labelname.

♦ We can actually write the interpreter in such a way that it uses
indirectly threaded code if compiled with gcc and a switch for 
compatibility.
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Indirectly Threaded Interpreter

byte *pc = &program[0];
while(TRUE) {
loop:

byte opcode = pc[0];
switch(opcode) {
…

case LOADLITERAL:
loadlitteral_label:

destReg = pc[LOADLITTERAL_ARG1];
value = getTwoBytes(&pc[LOADLITTERAL_ARG2]);
regs[destReg] = value;
pc += LOADLITTERAL_SIZE;
NEXT;

case JUMP:
jump_label:

jumpAddress = getFourBytes(&pc[JUMP_ARG1]);
pc = &program[jumpAddress]
NEXT;

}
} 

static void *label_tab[] {
...
&&loadlitteral_label;
&&jump_label;

}
#define NEXT \
goto **(void **)(label_tab[*pc])
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Directly Threaded Interpreter

♦In a directly threaded interpreter we do not 
use tokens at all during runtime.

♦Instead the loader replaces each token with 
the address of the implementation of the 
instruction.

♦This means the opcodes will take one word 
or four bytes at runtime, slightly increasing 
the code size. 
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Directly Threaded Interpreter

byte *pc = &program[0];
while(TRUE) {
loop:

byte opcode = pc[0];
switch(opcode) {
…

case LOADLITERAL:
loadlitteral_label:

destReg = pc[LOADLITTERAL_ARG1];
value = getTwoBytes(&pc[LOADLITTERAL_ARG2]);
regs[destReg] = value;
pc += LOADLITTERAL_SIZE;
NEXT;

case JUMP:
jump_label:

jumpAddress = getFourBytes(&pc[JUMP_ARG1]);
pc = &program[jumpAddress]
NEXT;

}
} 

static void *label_tab[] {
...
&&loadlitteral_label;
&&jump_label;

}
#define NEXT \
goto **(void **)(pc)
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Subroutine Threaded Interpreter 

♦The only portable way to implement a 
threaded interpreter in C is to use 
subroutine threaded code.

♦Each instruction is implemented as a 
function and at the end of each instruction 
the next function is called.

Su
br

ou
tin

e 
Th

re
ad

ed
 C

od
e



Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/46

Subroutine Threaded Interpreter 
(with tail-calls)

byte *pc = &program[0];
NEXT;

…
void loadlitteral(void) {

destReg = pc[LOADLITTERAL_ARG1];
value = getTwoBytes(&pc[LOADLITTERAL_ARG2]);
regs[destReg] = value;
pc += LOADLITTERAL_SIZE;
NEXT;

}
void jump(void) {

jumpAddress = getFourBytes(&pc[JUMP_ARG1]);
pc = &program[jumpAddress];
NEXT;

}

static void *label_tab[] {
...
&loadlitteral;
&jump;

}
#define NEXT ((void (*)())*pc)()
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Subroutine Threaded Interpreter

byte *pc = &program[0];
while (TRUE) NEXT;

…
void loadlitteral(void) { 
destReg = pc[LOADLITTERAL_ARG1];
value = getTwoBytes(&pc[LOADLITTERAL_ARG2]);
regs[destReg] = value;
pc += LOADLITTERAL_SIZE;

}
void jump(void) {
jumpAddress = getFourBytes(&pc[JUMP_ARG1]);
pc = &program[jumpAddress];

}

static void *label_tab[] {
...
&loadlitteral;
&jump;

}
#define NEXT ((void (*)())*pc)()
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Subroutine Threaded Interpreter

(void (*)()) pc = &program[0];
while (TRUE) *pc++;

…
void loadlitteral(void) { 
destReg = ((int *)pc)[LOADLITTERAL_ARG1];
value = getTwoBytes(&pc[LOADLITTERAL_ARG2]);
regs[destReg] = value;
pc += LOADLITTERAL_SIZE;

}
void jump(void) {
jumpAddress = getFourBytes(&pc[JUMP_ARG1]);
pc = &program[jumpAddress];

}

#define LOADLITTERAL_SIZE 1
#define JUMP_SIZE 1
#define LOADLITTERAL_ARG1 0
#define LOADLITTERAL_ARG2 1
#define JUMP_ARG1 0
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Stack-based vs. Register-based VM

♦ A VM can either be stack-based or register-based.
♦ In a stack-based machine most operands are on the 

stack. The stack can grow as needed.
♦ In a register-based machine most operands are in 

(virtual) registers. The number of registers is limited.
♦ Most VMs are stack-based.

♦ Stack machines are simpler to implement.
♦ Stack machines are easier to compile to.
♦ Less encoding/decoding to find the right register.
♦ Virtual registers are no faster than stack slots. 
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Interpreter Tuning

♦Common interpreter optimizations include:
♦Writing the interpreter loop and key 

instructions in assembler.
♦Keeping important variables in hardware 

registers (pc, stack-top, heap-top). (GNU C 
allow global register variables.)

♦Top of stack caching.
♦Splitting the most used instruction into a 

separate interpreter loop.
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Interpreter Tuning

♦ More advanced interpreter optimizations includes:
♦ Instruction merging: A common sequence of VM instructions is 

replaced by a single instruction.
♦ Reduced interpretation overhead.
♦ Enhances code locality.
♦ More compact bytecode.
♦ Gives C compiler bigger code block to optimize.

♦ Instruction specialization: A special case VM instruction is 
created, typically with some arguments hard-coded.
♦ Eliminates argument decoding cost.
♦ More compact bytecode.
♦ Reduces register pressure.
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Just-in-time Compilation

♦ Native code is still faster than code interpreted in VMs. To 
get the best performance native code compilation is 
necessary. But bytecode is a nice format to distribute 
portable code.

♦ Solution: dynamic compilation or just-in-time (JIT) 
compilation.

♦ Native code takes more space than virtual machine code 
(4-8x). Don’t compile everything to native code (some code 
is never executed).

♦ Compilation takes time, dynamic compilation has to be 
fast. No time for advanced optimization (unless the 
bytecode compiler has inserted hints in the bytecode).
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JIT – What to Compile

♦Only compile a method if the total 
execution time is reduced.

♦How do we know this? 
♦Use the past to predict the future:

♦Use profiling to detect what and when to 
compile. There are two basic approaches: 
♦Invocation counters.
♦Sample based profiling.
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Invocation Counters

♦Associate a counter with each function.
♦When a function is called increment the 

counter.
♦If the counter reaches a limit compile the 

function. Reset or use decay to only 
compile high-frequency functions.

♦Hard to predict behavior, no control over 
time spent in compiler.
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Sample Based Profiling

♦Measure time spent in interpreter, 
compiler, and in compiled code.

♦Harder to implement.
♦Gives better picture of the hot-spots.JIT
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JIT Integration

♦ Integrating a JIT system where native code can 
coexist with interpreted code in the VM is not 
trivial.

♦ Context switches between native and interpreted 
code has to be fast. (They can occur at function 
calls, returns, and when exceptions are thrown.)

♦ Ensuring proper tail-calls with a mixed execution 
environment is also tricky. 
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Summary

♦ Virtual machines provides an abstraction from 
real hardware and make programming language 
implementation easier and languages more 
portable.

♦ A direct threaded interpreter gives the best 
performance.

♦ Virtual machines have been used for half a 
century but research didn’t really take off until 
the JVM came along.


