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Virtual Machines

¢ A virtual machine is an abstract computing
architecture independent of any hardware.

¢ They are software machines that run on top
of real hardware, providing an abstraction

layer for language implementers.
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Characteristics of a VM

¢ A VM has its own instruction set
independent of the host system.

¢ A VM usually has its own memory
manager and can also provide its own
concurrency primitives.

¢ Access to the host OS is usually limited and
controlled by the VM.

http://1lamp.epfl.ch/teaching/advancedCompiler/
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Advantages of VMs

A VM bridges the gap between the high level language
and the low level aspects of a real machine.

It is relatively easy to implement a VM, and it is easier to
compile to a VM than to a real machine.

A VM can be modified when experimenting with new
languages.

Portability is enhanced.

Support for dynamic (down-)loading of software.
VM code is usually smaller than real machine code.
Safety features can be verified by the VM.

Profiling and debugging are easy to implement.
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Disadvantages of VMs

¢ Lower performance than with a native code
compiler.
¢ Overhead of interpretation.

¢ Modern hardware is not designed for running
interpreters.
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Some VM History

VMs have been built and studied since the late 1950s.

The first Lisp implementations (1958) used virtual machines with
garbage collection, sandboxing, reflection, and an interactive shell.

Forth (early 70s) uses a very small and easy to implement VM with
high level of reflection.

Smalltalk (early 70s) is a very dynamic language where everything
can be changed on the fly, the first truly interactive OO system.

USCD Pascal (late 70s) popularized the idea of using pseudocode to
improve portability.

Self (late 80s) a prototype-based Smalltalk flavor with an
implementation that pushed the limits of VM technology.

Java (early 90s) made VMs popular and well known.

Advanced Compiler Techniques 04.06.04
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VM Design Choices

¢ When designing a VM one has some design choices similar to the
choices when designing intermediate code for a compiler:

¢ Should the machine be used on several different physical architectures
and operating systems? (JVM)

¢ Should the machine be used for several different source languages?
(CLI/CLR (.NET))

¢ Some design choices are similar to those of the compiler backend:
¢ Is performance more important than portability?
¢ Isreliability more important than performance?
¢ Is (smaller) size more important than performance?
¢ And some design choices are similar to when designing an OS:
¢+ How to implement memory management, concurrency, IO...

¢ Is low memory consumption, scalability, or security more important than
performance?
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VM Components

¢ The components of a VM vary depending on
several factors:
¢ Is the language (environment) interactive?

¢ Does the language support reflection and or dynamic
loading?

¢ Is performance paramount?

¢ Is concurrency support required?

¢ Is sandboxing required?

¢ In this lecture we will only talk about the
interpreter of the VM.

Advanced Compiler Techniques 04.06.04
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VM Implementation

¢ Virtual machines are usually written in
”portable” (in the sense that compilers for most architectures already
exists) programming languages such as C or C++.

¢ For performance critical components assembly
language can be used.

¢ Some VMs (Lisp, Forth, Smalltalk) are largely
written in the language itself.

¢ Many VMs are written specifically for gcc, for

reasons that will become clear in later slides.
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Interpreters

¢ Language runtime systems often uses two
kinds of interpreters:
1. Command-line interpreter.

¢ Reads and parses instructions in source form.
¢ Used in interactive systems.
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2. Instruction interpreter.

¢ Reads and executes instructions in some
intermediate form such as bytecode.
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Implementing Interpreters

¢ There are several ways to implement an interpreter.

¢ Pattern (or string) based interpretation.

¢ Interpreting source code (strings) directly is inefficient since most of the time is
spent in lexical analysis.

¢ A better alternative is to compile the source into e.g., an abstract syntax tree
and then do the interpretation over that tree. (Jumps and calls are expensive.)

¢ Token-based interpretation.

¢ Compiling the code into a linear representation of instructions, where each
instruction is represented by a token, e.g., bytecode.

¢ Address-based interpretation.

¢ Compiling the code into a linear representation where each instruction is
represented by the address that implements the instruction.

¢ There are several variants: Indirect threaded code, direct threaded code and
subroutine threading.
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Taxonomy of Interpreters

[ Interpreters ]
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Implementing Interpreters

¢ We will now look at some details of how to
implement an interpreter.

¢ We will start with a complete but simple
string based interpreter for a very simple
language. Then extend the language and
the interpreter to show the different ways
to implement interpreters.
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Interpreting while Parsing
(String-based Interpretation)

¢ For some really simple languages the
interpretation can be done during parsing.

¢ We can e.g., implement a simple calculator
directly in a parser generator.

¢ A parser generator is a program that takes a
description of a grammar and generates a
program that can parse the grammar.

¢ We will use CUP a parser generator for Java:
¢ http://www.cs.princeton.edu/~appel/modern/java/CUP/

¢ I will not go into the details of CUP.
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A Calculator Language

¢ Grammar:
Expr Expr MINUS Term

Expr PLUS Term

Term

‘erm TIMES Factor

‘erm DIV Factor

Factor

Factor ::= NUMBER | LPAR Expr RPAR
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Simple Interpreter .cup

terminal PLUS, MINUS, TIMES, DIV, LPAR, RPAR;

terminal Integer NUMBER,;

non terminal Program;
non terminal Integer Expression, Term,

precedence left PLUS, MINUS;
precedence left TIMES, DIV,

start with Program,;

Factor;

Advanced Compiler Techniques 04.06.04
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Interpreter .cup

Program ::= Expression:e
{: System.out.println(e.intValue()); :}
Expression ::= Expression:e PLUS Term:t
{: RESULT = new Integer(e.intValue() +
t.intValue()); :}
| Expression:e MINUS Term:t
{: RESULT = new Integer(e.intValue() -
t.intValue()); :}

o
o
n-.:j
S
-
]
—
o
—
Q
-+
e
—
o
)
[9p]
(¥}
3
V0]
a
o
—
-+
N

| Term:t
{: RESULT = t; :}

Advanced Compiler Techniques 04.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/




Interpreter .cup
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Factor

Term:t TIMES Factor:f

RESULT = new Integer(t.
f.

Term:t DIV Factor:f

RESULT = new Integer(t.
f.

Factor:f

RESULT = f; :}

NUMLIT:n {: RESULT = n;

LPAR Expression:e RPAR

RESULT = e; :}

intValue() *
intValue()); :}

intValue() /
intValue()); :}

L}
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Control Flow

¢ This approach works fine for simple expressions.

¢ Control flow constructs such as “if’ and ‘while” are
harder to handle.

¢ For ‘while” we would need to “reparse” the
statement that is to be repeated.

¢ Let us extend the language with control flow,
variables, and boolean values.

Advanced Compiler Techniques 04.06.04
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Tree-based (pattern-based)
Interpretation

¢ By representing the code by a data structure we
can “reexecute” the same piece of code several

times.

¢ This will lead to a slightly more complicated
interpreter, which will require at least two passes
over the code.

¢ The code will first be parsed and stored in the
internal representation, then the interpretation
will be performed.

¢ We can use an abstract syntax tree for
representing the code.
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Design choices

¢ How is the program represented?
¢ As an Abstract Syntax Tree (AST) with the class Tree.

¢ How is data represented?

¢+ We have different types of values, integers and
Booleans.

¢ The value of each expression is either an IntValue ora
BoolValue, subclasses of Value.

¢ How are variables represented?

¢ With a symbol table where each symbol can have a
value.

Advanced Compiler Techniques 04.06.04
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The Implementation

¢ The Interpreter itself can be implemented by a
Visitor on the AST.

¢ We need a Value class:
class Value {
static class IntValue extends Value {
int 1i;
public IntValue(int i) { this.i = 1; }
Y

static class BoolValue extends Value {

boolean b;
public BoolValue(boolean b) { this.b = b; }

}
}
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Interpreting Expressions

public void caseOp(Op tree) {

switch (tree.op) {

case [RUE:
result = new BoolVal(true);
break;

case FALSE:
result = new BoolVal(false);
break;

case PLUS:
IntValue 1lval = (IntValue) interpret(tree.left);

IntValue rval = (IntValue) interpret(tree.right);
result = new IntValue(lval.i + rval.i);

break;
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Semantic Analysis Needed

¢ This assumes that types are
correct.

¢ We could either have a prepass that
does the type analysis.

¢ Or we could do the type checking at
the same time as interpreting.
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Analyzing While Interpreting

public void caseOp(Op tree) {
switch (tree.op) {

case PLUS:
Value 1lval = interpret(tree.left);

Value rval = interpret(tree.right);

if ((lval instanceof IntValue) &&
(rval instance of IntValue)) {
result = new IntValue(

((IntValue)lval).i +
((IntValue)rval) .i);
} else error();
break;
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Control Flow

¢ Now we can try to interpret a control flow
construct.
¢ It turns out to be very easy, since we are

writing our interpreter in Java which
supports the same control flow constructs.

¢ It becomes a bit complicated if the type
analysis has to be done at the same time.
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While (assuming type analysis)

public void caseWhile(While tree){
while(((BoolValue)
interpret(tree.cond)).b) {
interpret(tree.body);
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Interpreting While, While
Analyzing

public void caseWhile(While tree) {
Value cond=interpret(tree.cond);
while((cond instanceof BoolValue)
&& ((BoolValue) cond).b) {
interpret(tree.body);
cond=interpret(tree.cond);
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Variables

¢ We need to keep track of the values of variables somehow.
A simple solution is to store these values with the symbols
in the symbol table.

¢ If we interpret an assignment we store the value in the
symbol.

¢ If we interpret an identifier we read the value from the
symbol.
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Functions

¢ These techniques can handle simple
languages without functions or more than

one scope.
¢ In order to handle functions and especially

recursive functions and local scopes we
will need an environment.
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Environments

In an environment we store all values of parameters (arguments) and local
variables of a function for one specific call.
We create a new environment when we call a function or enter a local scope.
¢+ We store actual arguments of the call in the environment.
¢+ We initialize local variables.
¢ After returning from a function, or leaving the local scope, the environment is not
needed any more.
The environment can be implemented as an array of values, the position in
the array of an identifier can be stored in the symbol table.
class Environment {
Environment outer; // For nested scope.

Value[] values;

}

An environment is similar to how scopes are handled in the compiler.
When compiling to native code the environment is stored on the stack as activation
records.

Advanced Compiler Techniques 04.06.04
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Function Calls

void caseFunCall {
// call interpreter recursively on
// function arguments;
Arguments args = interpret_args(tree.args);

// Create a new Environment
currentEnv = new Environment(currentEnv) ;

// Store the arguments in the new environment.
insert_args(args, currentEnv);
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// Call the interpreter recursively on the

// body of the called function, using the new
// environment.

result = interpret(find _code(tree.funName));

// Restore the environment.
currentEnv = currentEnv.outer;

Advanced Compiler Techniques 04.06.04
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Disadvantages with
Tree-based Interpreters

¢ The tree representation has to be created
somehow each time we want to run the program.

¢ Parsing the source code each time is time consuming.
¢ Storing the whole tree is space consuming.

¢ The tree representation uses a lot of space at
runtime, which is infeasible for large programs.

¢ Using the stack of the host language adds to the
space need at runtime.
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Token-based Interpreters

¢ By compiling the program to a special instruction set of a
virtual machine, and by adding tables that maps function
names to offsets in the instruction sequence, some of the
interpretation overhead can be reduced.

¢ Most VM instruction sets uses small integers to represent
everything in the instruction stream (opcodes, registers,
stack slots, functions, constants, etc.).

¢ By implementing the interpreter in C we can gain some
speed, it also allows us to do nasty pointer tricks.
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Token-based Interpreters

¢ The fundamental instruction unit is the foken.

¢ A token is a predefined numeric value that
represents a certain instruction.
¢ E.g.,, BREAK=0, LOADLITERAL =1, ADD=2,

¢ The most common case is bytecode:

¢ The token with is 8 bits.
¢ The total instruction set is limited to 256 tokens.
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Basic Structure of a Token-based
Interpreter

byte *pc = &program[0O] ;
while(TRUE) {
byte opcode = pc[0O];
switch(opcode) {

case LOADLITERAL:
destReg = pc[l];
value = getTwoBytes (&pc[2]);
regs[destReg] = value,;
pc += 4;
break;
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case JUMP:
jumpAddress = getFourBytes(&pc[1l]);
pc = &program[jumpAddress]
break;

Advanced Compiler Techniques 04.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/




Alignment

¢ Most modern machines loads data at least one
word at the time (usually 4 bytes). By makin
sure that instructions are aligned on word offsets
we get better performance.

opcode | addro© addrl addr?2 addr3
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opcode addro addrl addr2 addr3

Note: The padding is done by the loader,
no extra space is needed in the external
representatlon' Advanced Compiler Techniques 04.06.04
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Token-based Interpreter
with Aligned Instructions

byte *pc = &program[0O] ;
while(TRUE) {
byte opcode = pc[0O];
switch(opcode) {

case LOADLITERAL:
destReg = pc[l];
value = getTwoBytes (&pc[2]);
regs[destReg] = value,;
pc += 4;
break;

case JUMP:

jumpAddress = getFourBytes (&pc[4]);

pc = &program[jumpAddress]
break;
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Token-based Interpreter
with Abstract Encoding

#define LOADLITTERAL SIZE 4

byte *pc = &program[0]; #define JUMP_SIZE 8
while(TRUE) { #define LOADLITTERAL_ARG1 1
ts’vyﬁicﬁi’goggd:)p‘{:[@]? #define LOADLITTERAL ARG2 2

> #define JUMP_ARG1 4

case LOADLITERAL:
destReg = pc[LOADLITTERAL ARG1];
value = getTwoBytes (&pc[LOADLITTERAL ARG2]);
regs[destReg] = value,;
pc += LOADLITTERAL SIZE;
break;
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case JUMP:
jumpAddress = getFourBytes (&pc[JUMP ARG1]);

pc = &program[jumpAddress]
break;
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Token-based Interpreter
with Abstract Control

#define NEXT goto loop

byte *pc = &program[0O] ;
while(TRUE) {
loop:
byte opcode = pc[0O];
switch(opcode) {

case LOADLITERAL:
destReg = pc[LOADLITTERAL ARG1];
value = getTwoBytes (&pc[LOADLITTERAL ARG2]);
regs[destReg] = value;
pc += LOADLITTERAL SIZE;
NEXT;
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case JUMP:
jumpAddress = getFourBytes (&pc[JUMP_ARG1]) ;
pc = &program[jumpAddress]
NEXT;
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Indirectly Threaded Interpreter

¢ In an indirectly threaded interpreter we do not switch on the tokens.
Instead we use the tokens as indices into a table containing the
addresses of the instruction implementations.

¢ The term threaded code refers to a code representation where every
instruction is implicitly a function call to the next instruction.

¢ A threaded interpreter can be very efficiently implemented in
assembler.

¢ In GNU C (gcc) we can use labels as values and take the address of a
label with &&1labelname.

¢ We can actually write the interpreter in such a way that it uses
indirectlt})/ threaded code if compiled with gcc and a switch for
compatibility.
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Indirectly Threaded Interpreter

static void *label tab[] {
byte *pc = &program[0]; e c .
while (TRUE) { &&1.oad11tter?1_1abe1,
byte opcode = pc[0]; }
sWitch(opcode) o #define NEXT \
" case LOADLITERAL: goto **(void **)(label_tab[*pc])

loadlitteral label:
destReg = pc[LOADLITTERAL_ARG1];
value = getTwoBytes (&pc[LOADLITTERAL ARG2]);
regs[destReg] = value;
pc += LOADLITTERAL SIZE;
NEXT;
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case JUMP:

jump_label:
jumpAddress = getFourBytes (&pc[JUMP_ARG1]);
pc = &program[jumpAddress]
NEXT;
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Directly Threaded Interpreter

¢ In a directly threaded interpreter we do not
use tokens at all during runtime.

¢ Instead the loader replaces each token with
the address of the implementation of the
instruction.

¢ This means the opcodes will take one word
or four bytes at runtime, slightly increasing
the code size.

http://1lamp.epfl.ch/teaching/advancedCompiler/



Directly Threaded Interpreter

static void *label tab[] {

byte *pc = &program[0]; e c .
while (TRUE) { &&loadlitteral label;

Loop: &&jump_label;
byte opcode = pc[0]; }
switch(opcode) { #define NEXT \

case LOADLITERAL: goto **(void **) (pc)
loadlitteral_label:

destReg = pc[LOADLITTERAL ARG1];

value = getTwoBytes (&pc[LOADLITTERAL ARG2]);

regs[destReg] = value;

pc += LOADLITTERAL_ SIZE;

NEXT;
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case JUMP:

jump_label:
jumpAddress = getFourBytes (&pc[JUMP_ARG1]);
pc = &program[jumpAddress]
NEXT;
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Subroutine Threaded Interpreter

¢ The only portable way to implement a
threaded interpreter in C is to use
subroutine threaded code.

¢ Each instruction is implemented as a
function and at the end of each instruction
the next function is called.
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Subroutine Threaded Interpreter
(with tail-calls)

static void *label tab[] {

byte *pc = &program([0]; &loadlitteral;
NEXT ; &jump;

}
#define NEXT ((void (*)())*pc) ()

void loadlitteral(void) {
destReg = pc[LOADLITTERAL ARG1];
value = getTwoBytes (&pc[LOADLITTERAL ARG2]);
regs[destReg] = value;
pc += LOADLITTERAL SIZE;
NEXT ;
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}

void jump(void) {
jumpAddress = getFourBytes (&pc[JUMP_ARG1]);
pc = &program[jumpAddress];
NEXT;

}
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Subroutine Threaded Interpreter

static void *label tab[] {

byte *pc = &program[0]; &loadlitteral;
while (TRUE) NEXT; &jump;

}
#define NEXT ((void (*)())*pc) ()

void loadlitteral(void) {
destReg = pc[LOADLITTERAL_ ARG1];
value = getTwoBytes (&pc[LOADLITTERAL ARG2]) ;
regs[destReg] = value;
pc += LOADLITTERAL SIZE;

Y

void jump(void) {
jumpAddress = getFourBytes (&pc[JUMP_ARG1]);
pc = &program[jumpAddress];

Y

)
gs:
©)
O
s
)
o
©
)
—
i=
F
)
=
=
=
©)
—
S
=
N

Advanced Compiler Techniques 04.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/




)
gs:
©)
O
s
)
o
©
)
—
i=
F
)
g=
=
=
©)
—
S
=
N

Subroutine Threaded Interpreter

(void (*)()) pc = &program[0O];
while (TRUE) *pc++;

void loadlitteral(void) {

#define
#define
#define
#define
#define

LOADLITTERAL_SIZE 1
JUMP_SIZE 1
LOADLITTERAL_ ARGl 0
LOADLITTERAL_ARG2 1
JUMP_ARG1 0

destReg = ((int *)pc) [LOADLITTERAL ARG1];
value = getTwoBytes (&pc[LOADLITTERAL ARG2]);

regs[destReg] = value;
pc += LOADLITTERAL SIZE;

}
void jump(void) {

jumpAddress = getFourBytes (&pc[JUMP_ARG1]);

pc = &program[jumpAddress];
Y
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Stack-based vs. Register-based VM

¢ A VM can either be stack-based or register-based.

¢ In a stack-based machine most operands are on the
stack. The stack can grow as needed.

¢ In a register-based machine most operands are in
(virtual) registers. The number of registers is limited.

¢ Most VMs are stack-based.

¢ Stack machines are simpler to implement.

¢ Stack machines are easier to compile to.

¢ Less encoding/decoding to find the right register.
¢ Virtual registers are no faster than stack slots.
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Interpreter Tuning

¢ Common interpreter optimizations include:

¢ Writing the interpreter loop and key
instructions in assembler.

¢ Keeping important variables in hardware
registers (pc, stack-top, heap-top). (GNU C
allow global register variables.)

¢ Top of stack caching.

¢ Splitting the most used instruction into a
separate interpreter loop.
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Interpreter Tuning

¢ More advanced interpreter optimizations includes:
¢ Instruction merging: A common sequence of VM instructions is
replaced by a single instruction.
¢ Reduced interpretation overhead.
¢ Enhances code locality.
¢ More compact bytecode.
¢ Gives C compiler bigger code block to optimize.
¢ Instruction specialization: A special case VM instruction is
created, typically with some arguments hard-coded.
¢ Eliminates argument decoding cost.
¢ More compact bytecode.
¢ Reduces register pressure.
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Just-in-time Compilation

Native code is still faster than code interpreted in VMs. To
get the best performance native code compilation is
necessary. But bytecode is a nice format to distribute
portable code.

Solution: dynamic compilation or just-in-time (JIT)
compilation.

Native code takes more space than virtual machine code

(4-8x). Don’t compile everything to native code (some code
is never executed).

Compilation takes time, dynamic compilation has to be
fast. No time for advanced optimization (unless the
bytecode compiler has inserted hints in the bytecode).
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JIT - What to Compile

¢ Only compile a method if the total
execution time is reduced.

¢ How do we know this?

¢ Use the past to predict the future:
¢ Use profiling to detect what and when to
compile. There are two basic approaches:

¢ Invocation counters.
¢ Sample based profiling.
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Invocation Counters

¢ Associate a counter with each function.

¢ When a function is called increment the
counter.

¢ If the counter reaches a limit compile the
function. Reset or use decay to only
compile high-frequency functions.

¢ Hard to predict behavior, no control over
time spent in compiler.
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Sample Based Profiling

¢ Measure time spent in interpreter,
compiler, and in compiled code.

¢ Harder to implement.
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¢ Gives better picture of the hot-spots.
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JIT Integration

¢ Integrating a JIT system where native code can
coexist with interpreted code in the VM is not
trivial.

¢ Context switches between native and interpreted
code has to be fast. (They can occur at function
calls, returns, and when exceptions are thrown.)

¢ Ensuring proper tail-calls with a mixed execution
environment is also tricky.
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Summary

¢ Virtual machines provides an abstraction from
real hardware and make programming language
implementation easier and languages more
portable.

¢ A direct threaded interpreter gives the best
performance.

¢ Virtual machines have been used for half a
century but research didn’t really take off until
the JVM came along.
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