
04/06/2004 09:57

1

Virtual Machines &
Interpretation Techniques

Advanced Compiler Techniques 2004
Erik Stenman

Partially based on slides from
Kostis Sagonas (http://user.it.uu.se/~kostis/Teaching/KT2-04/) and

Antero Taivalsaari (http://www.cs.tut.fi/~taivalsa/kurssit/VMDesign2003.html)

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/2

Virtual Machines

♦A virtual machine is an abstract computing
architecture independent of any hardware.

♦They are software machines that run on top
of real hardware, providing an abstraction
layer for language implementers.
♦ There are other types of virtual machines intended to
emulate some real hardware (e.g., VirtuTech-Simics,
VMware, Transmeta), but they are not the focus of
this course.

V
ir

tu
al

 M
ac

hi
ne

s

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/3

Characteristics of a VM

♦A VM has its own instruction set
independent of the host system.

♦A VM usually has its own memory
manager and can also provide its own
concurrency primitives.

♦Access to the host OS is usually limited and
controlled by the VM.

V
ir

tu
al

 M
ac

hi
ne

s

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/4

Advantages of VMs

♦ A VM bridges the gap between the high level language
and the low level aspects of a real machine.

♦ It is relatively easy to implement a VM, and it is easier to
compile to a VM than to a real machine.

♦ A VM can be modified when experimenting with new
languages.

♦ Portability is enhanced.
♦ Support for dynamic (down-)loading of software.
♦ VM code is usually smaller than real machine code.
♦ Safety features can be verified by the VM.
♦ Profiling and debugging are easy to implement.

V
ir

tu
al

 M
ac

hi
ne

s

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/5

Disadvantages of VMs

♦Lower performance than with a native code
compiler.
♦Overhead of interpretation.
♦Modern hardware is not designed for running

interpreters.

V
ir

tu
al

 M
ac

hi
ne

s

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/6

Some VM History

♦ VMs have been built and studied since the late 1950s.
♦ The first Lisp implementations (1958) used virtual machines with

garbage collection, sandboxing, reflection, and an interactive shell.
♦ Forth (early 70s) uses a very small and easy to implement VM with

high level of reflection.
♦ Smalltalk (early 70s) is a very dynamic language where everything

can be changed on the fly, the first truly interactive OO system.
♦ USCD Pascal (late 70s) popularized the idea of using pseudocode to

improve portability.
♦ Self (late 80s) a prototype-based Smalltalk flavor with an

implementation that pushed the limits of VM technology.
♦ Java (early 90s) made VMs popular and well known.

V
ir

tu
al

 M
ac

hi
ne

s

04/06/2004 09:57

2

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/7

VM Design Choices

♦ When designing a VM one has some design choices similar to the
choices when designing intermediate code for a compiler:
♦ Should the machine be used on several different physical architectures

and operating systems? (JVM)
♦ Should the machine be used for several different source languages?

(CLI/CLR (.NET))
♦ Some design choices are similar to those of the compiler backend:

♦ Is performance more important than portability?
♦ Is reliability more important than performance?
♦ Is (smaller) size more important than performance?

♦ And some design choices are similar to when designing an OS:
♦ How to implement memory management, concurrency, IO…
♦ Is low memory consumption, scalability, or security more important than

performance?

V
ir

tu
al

 M
ac

hi
ne

s

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/8

VM Components

♦ The components of a VM vary depending on
several factors:
♦ Is the language (environment) interactive?
♦ Does the language support reflection and or dynamic

loading?
♦ Is performance paramount?
♦ Is concurrency support required?
♦ Is sandboxing required?

♦ In this lecture we will only talk about the
interpreter of the VM.

V
ir

tu
al

 M
ac

hi
ne

s

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/9

VM Implementation

♦ Virtual machines are usually written in
“portable” (in the sense that compilers for most architectures already
exists) programming languages such as C or C++.

♦ For performance critical components assembly
language can be used.

♦ Some VMs (Lisp, Forth, Smalltalk) are largely
written in the language itself.

♦ Many VMs are written specifically for gcc, for
reasons that will become clear in later slides.

V
ir

tu
al

 M
ac

hi
ne

s:
 Im

pl
em

en
ta

tio
n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/10

Interpreters

♦ Language runtime systems often uses two
kinds of interpreters:

1. Command-line interpreter.
♦ Reads and parses instructions in source form.
♦ Used in interactive systems.

2. Instruction interpreter.
♦ Reads and executes instructions in some

intermediate form such as bytecode.

V
ir

tu
al

 M
ac

hi
ne

s:
 Im

pl
em

en
ta

tio
n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/11

Implementing Interpreters

♦ There are several ways to implement an interpreter.
♦ Pattern (or string) based interpretation.

♦ Interpreting source code (strings) directly is inefficient since most of the time is
spent in lexical analysis.

♦ A better alternative is to compile the source into e.g., an abstract syntax tree
and then do the interpretation over that tree. (Jumps and calls are expensive.)

♦ Token-based interpretation.
♦ Compiling the code into a linear representation of instructions, where each

instruction is represented by a token, e.g., bytecode.
♦ Address-based interpretation.

♦ Compiling the code into a linear representation where each instruction is
represented by the address that implements the instruction.

♦ There are several variants: Indirect threaded code, direct threaded code and
subroutine threading.

V
ir

tu
al

 M
ac

hi
ne

s:
 Im

pl
em

en
ta

tio
n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/12

Taxonomy of Interpreters

Interpreters

Pattern-based Token-based Address-based

String-based Tree-based Bytecode Indirect threaded
code

Direct threaded
code

Subroutine threaded
code

V
ir

tu
al

 M
ac

hi
ne

s:
 Im

pl
em

en
ta

tio
n

04/06/2004 09:57

3

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/13

Implementing Interpreters

♦We will now look at some details of how to
implement an interpreter.

♦We will start with a complete but simple
string based interpreter for a very simple
language. Then extend the language and
the interpreter to show the different ways
to implement interpreters.

V
ir

tu
al

 M
ac

hi
ne

s:
 Im

pl
em

en
ta

tio
n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/14

Interpreting while Parsing
(String-based Interpretation)

♦ For some really simple languages the
interpretation can be done during parsing.

♦ We can e.g., implement a simple calculator
directly in a parser generator.

♦ A parser generator is a program that takes a
description of a grammar and generates a
program that can parse the grammar.

♦ We will use CUP a parser generator for Java:
♦ http://www.cs.princeton.edu/~appel/modern/java/CUP/
♦ I will not go into the details of CUP.

St
ri

ng
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/15

A Calculator Language

♦Grammar:
Expr ::= Expr MINUS Term

| Expr PLUS Term
| Term

Term ::= Term TIMES Factor
| Term DIV Factor
| Factor

Factor ::= NUMBER | LPAR Expr RPAR

St
ri

ng
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/16

Simple Interpreter .cup

terminal PLUS, MINUS, TIMES, DIV, LPAR, RPAR;
terminal Integer NUMBER;

non terminal Program;
non terminal Integer Expression, Term, Factor;

precedence left PLUS, MINUS;
precedence left TIMES, DIV;

start with Program;

terminal PLUS, MINUS, TIMES, DIV, LPAR, RPAR;
terminal Integer NUMBER;

non terminal Program;
non terminal Integer Expression, Term, Factor;

precedence left PLUS, MINUS;
precedence left TIMES, DIV;

start with Program;

St
ri

ng
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/17

Interpreter .cup

Program ::= Expression:e
{: System.out.println(e.intValue()); :}
;

Expression ::= Expression:e PLUS Term:t
{: RESULT = new Integer(e.intValue() +

t.intValue()); :}
| Expression:e MINUS Term:t
{: RESULT = new Integer(e.intValue() -

t.intValue()); :}
| Term:t
{: RESULT = t; :}

Program ::= Expression:e
{: System.out.println(e.intValue()); :}
;

Expression ::= Expression:e PLUS Term:t
{: RESULT = new Integer(e.intValue() +

t.intValue()); :}
| Expression:e MINUS Term:t
{: RESULT = new Integer(e.intValue() -

t.intValue()); :}
| Term:t
{: RESULT = t; :}

St
ri

ng
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/18

Interpreter .cup

Term ::= Term:t TIMES Factor:f
{: RESULT = new Integer(t.intValue() *

f.intValue()); :}
| Term:t DIV Factor:f
{: RESULT = new Integer(t.intValue() /

f.intValue()); :}
| Factor:f
{: RESULT = f; :}

Factor ::= NUMLIT:n {: RESULT = n; :}
| LPAR Expression:e RPAR
{: RESULT = e; :}

Term ::= Term:t TIMES Factor:f
{: RESULT = new Integer(t.intValue() *

f.intValue()); :}
| Term:t DIV Factor:f
{: RESULT = new Integer(t.intValue() /

f.intValue()); :}
| Factor:f
{: RESULT = f; :}

Factor ::= NUMLIT:n {: RESULT = n; :}
| LPAR Expression:e RPAR
{: RESULT = e; :}

St
ri

ng
-b

as
ed

 In
te

rp
re

ta
tio

n

04/06/2004 09:57

4

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/19

Control Flow

♦ This approach works fine for simple expressions.
♦ Control flow constructs such as ‘if’ and ‘while’ are

harder to handle.
♦ For ‘while’ we would need to “reparse” the

statement that is to be repeated.
♦ Let us extend the language with control flow,

variables, and boolean values.

St
ri

ng
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/20

Tree-based (pattern-based)
Interpretation

♦ By representing the code by a data structure we
can “reexecute” the same piece of code several
times.

♦ This will lead to a slightly more complicated
interpreter, which will require at least two passes
over the code.

♦ The code will first be parsed and stored in the
internal representation, then the interpretation
will be performed.

♦ We can use an abstract syntax tree for
representing the code.

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/21

Design choices

♦ How is the program represented?
♦ As an Abstract Syntax Tree (AST) with the class Tree.

♦ How is data represented?
♦ We have different types of values, integers and

Booleans.
♦ The value of each expression is either an IntValue or a
BoolValue, subclasses of Value.

♦ How are variables represented?
♦ With a symbol table where each symbol can have a

value.

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/22

The Implementation

♦ The Interpreter itself can be implemented by a
Visitor on the AST.

♦ We need a Value class:
class Value {

static class IntValue extends Value {
int i;
public IntValue(int i) { this.i = i; }

}
static class BoolValue extends Value {
boolean b;
public BoolValue(boolean b) { this.b = b; }

}
}

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/23

Interpreting Expressions

public void caseOp(Op tree) {
switch (tree.op) {
case TRUE:
result = new BoolVal(true);
break;

case FALSE:
result = new BoolVal(false);
break;

case PLUS:
IntValue lval = (IntValue) interpret(tree.left);
IntValue rval = (IntValue) interpret(tree.right);
result = new IntValue(lval.i + rval.i);
break;

…

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/24

Semantic Analysis Needed

♦This assumes that types are
correct.
♦We could either have a prepass that

does the type analysis.
♦Or we could do the type checking at

the same time as interpreting.

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

04/06/2004 09:57

5

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/25

Analyzing While Interpreting

public void caseOp(Op tree) {
switch (tree.op) {
case PLUS:
Value lval = interpret(tree.left);
Value rval = interpret(tree.right);
if ((lval instanceof IntValue) &&

(rval instance of IntValue)) {
result = new IntValue(

((IntValue)lval).i +
((IntValue)rval).i);

} else error();
break;

…

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/26

Control Flow

♦Now we can try to interpret a control flow
construct.

♦It turns out to be very easy, since we are
writing our interpreter in Java which
supports the same control flow constructs.

♦It becomes a bit complicated if the type
analysis has to be done at the same time.

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/27

While (assuming type analysis)

public void caseWhile(While tree){
while(((BoolValue)
interpret(tree.cond)).b) {
interpret(tree.body);

}
}

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/28

Interpreting While, While
Analyzing

public void caseWhile(While tree) {
Value cond=interpret(tree.cond);
while((cond instanceof BoolValue)

&& ((BoolValue) cond).b) {
interpret(tree.body);
cond=interpret(tree.cond);

}
}

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/29

Variables

♦ We need to keep track of the values of variables somehow.
A simple solution is to store these values with the symbols
in the symbol table.

♦ If we interpret an assignment we store the value in the
symbol.

♦ If we interpret an identifier we read the value from the
symbol.

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/30

Functions

♦These techniques can handle simple
languages without functions or more than
one scope.

♦In order to handle functions and especially
recursive functions and local scopes we
will need an environment.

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

04/06/2004 09:57

6

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/31

Environments

♦ In an environment we store all values of parameters (arguments) and local
variables of a function for one specific call.

♦ We create a new environment when we call a function or enter a local scope.
♦ We store actual arguments of the call in the environment.
♦ We initialize local variables.
♦ After returning from a function, or leaving the local scope, the environment is not

needed any more.
♦ The environment can be implemented as an array of values, the position in

the array of an identifier can be stored in the symbol table.
class Environment {

Environment outer; // For nested scope.
Value[] values;

}
♦ An environment is similar to how scopes are handled in the compiler.
♦ When compiling to native code the environment is stored on the stack as activation

records.

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/32

Function Calls

void caseFunCall {
// call interpreter recursively on
// function arguments;
Arguments args = interpret_args(tree.args);

// Create a new Environment
currentEnv = new Environment(currentEnv);

// Store the arguments in the new environment.
insert_args(args, currentEnv);

// Call the interpreter recursively on the
// body of the called function, using the new
// environment.
result = interpret(find_code(tree.funName));

// Restore the environment.
currentEnv = currentEnv.outer;

}

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/33

Disadvantages with
Tree-based Interpreters

♦ The tree representation has to be created
somehow each time we want to run the program.
♦ Parsing the source code each time is time consuming.
♦ Storing the whole tree is space consuming.

♦ The tree representation uses a lot of space at
runtime, which is infeasible for large programs.

♦ Using the stack of the host language adds to the
space need at runtime.

Pa
tte

rn
-b

as
ed

 In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/34

Token-based Interpreters

♦ By compiling the program to a special instruction set of a
virtual machine, and by adding tables that maps function
names to offsets in the instruction sequence, some of the
interpretation overhead can be reduced.

♦ Most VM instruction sets uses small integers to represent
everything in the instruction stream (opcodes, registers,
stack slots, functions, constants, etc.).

♦ By implementing the interpreter in C we can gain some
speed, it also allows us to do nasty pointer tricks.

To
ke

n-
ba

se
d

In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/35

Token-based Interpreters

♦ The fundamental instruction unit is the token.
♦ A token is a predefined numeric value that

represents a certain instruction.
♦ E.g., BREAK=0, LOADLITERAL = 1, ADD=2.

♦ The most common case is bytecode:
♦ The token with is 8 bits.
♦ The total instruction set is limited to 256 tokens.

To
ke

n-
ba

se
d

In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/36

Basic Structure of a Token-based
Interpreter

byte *pc = &program[0];
while(TRUE) {
byte opcode = pc[0];
switch(opcode) {
…
case LOADLITERAL:
destReg = pc[1];
value = getTwoBytes(&pc[2]);
regs[destReg] = value;
pc += 4;
break;

case JUMP:
jumpAddress = getFourBytes(&pc[1]);
pc = &program[jumpAddress]
break;

}
}

To
ke

n-
ba

se
d

In
te

rp
re

ta
tio

n

04/06/2004 09:57

7

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/37

Alignment

♦ Most modern machines loads data at least one
word at the time (usually 4 bytes). By making
sure that instructions are aligned on word offsets
we get better performance.

opcode addr0 addr1 addr2 addr3

opcode addr0 addr1 addr2 addr3

Note: The padding is done by the loader,
no extra space is needed in the external
representation.

To
ke

n-
ba

se
d

In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/38

Token-based Interpreter
with Aligned Instructions

byte *pc = &program[0];
while(TRUE) {
byte opcode = pc[0];
switch(opcode) {
…
case LOADLITERAL:
destReg = pc[1];
value = getTwoBytes(&pc[2]);
regs[destReg] = value;
pc += 4;
break;

case JUMP:
jumpAddress = getFourBytes(&pc[4]);
pc = &program[jumpAddress]
break;

}
}

To
ke

n-
ba

se
d

In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/39

Token-based Interpreter
with Abstract Encoding

byte *pc = &program[0];
while(TRUE) {
byte opcode = pc[0];
switch(opcode) {
…
case LOADLITERAL:
destReg = pc[LOADLITTERAL_ARG1];
value = getTwoBytes(&pc[LOADLITTERAL_ARG2]);
regs[destReg] = value;
pc += LOADLITTERAL_SIZE;
break;

case JUMP:
jumpAddress = getFourBytes(&pc[JUMP_ARG1]);
pc = &program[jumpAddress]
break;

}
}

#define LOADLITTERAL_SIZE 4
#define JUMP_SIZE 8
#define LOADLITTERAL_ARG1 1
#define LOADLITTERAL_ARG2 2
#define JUMP_ARG1 4

To
ke

n-
ba

se
d

In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/40

Token-based Interpreter
with Abstract Control

byte *pc = &program[0];
while(TRUE) {
loop:
byte opcode = pc[0];
switch(opcode) {
…
case LOADLITERAL:
destReg = pc[LOADLITTERAL_ARG1];
value = getTwoBytes(&pc[LOADLITTERAL_ARG2]);
regs[destReg] = value;
pc += LOADLITTERAL_SIZE;
NEXT;

case JUMP:
jumpAddress = getFourBytes(&pc[JUMP_ARG1]);
pc = &program[jumpAddress]
NEXT;

}
}

#define NEXT goto loop

To
ke

n-
ba

se
d

In
te

rp
re

ta
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/41

Indirectly Threaded Interpreter

♦ In an indirectly threaded interpreter we do not switch on the tokens.
Instead we use the tokens as indices into a table containing the
addresses of the instruction implementations.

♦ The term threaded code refers to a code representation where every
instruction is implicitly a function call to the next instruction.

♦ A threaded interpreter can be very efficiently implemented in
assembler.

♦ In GNU C (gcc) we can use labels as values and take the address of a
label with &&labelname.

♦ We can actually write the interpreter in such a way that it uses
indirectly threaded code if compiled with gcc and a switch for
compatibility.

In
di

re
ct

ly
 T

hr
ea

de
d

C
od

e

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/42

Indirectly Threaded Interpreter

byte *pc = &program[0];
while(TRUE) {
loop:

byte opcode = pc[0];
switch(opcode) {
…

case LOADLITERAL:
loadlitteral_label:

destReg = pc[LOADLITTERAL_ARG1];
value = getTwoBytes(&pc[LOADLITTERAL_ARG2]);
regs[destReg] = value;
pc += LOADLITTERAL_SIZE;
NEXT;

case JUMP:
jump_label:

jumpAddress = getFourBytes(&pc[JUMP_ARG1]);
pc = &program[jumpAddress]
NEXT;

}
}

static void *label_tab[] {
...
&&loadlitteral_label;
&&jump_label;

}
#define NEXT \
goto **(void **)(label_tab[*pc])

In
di

re
ct

ly
 T

hr
ea

de
d

C
od

e

04/06/2004 09:57

8

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/43

Directly Threaded Interpreter

♦In a directly threaded interpreter we do not
use tokens at all during runtime.

♦Instead the loader replaces each token with
the address of the implementation of the
instruction.

♦This means the opcodes will take one word
or four bytes at runtime, slightly increasing
the code size.

D
ir

ec
tly

 T
hr

ea
de

d
C

od
e

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/44

Directly Threaded Interpreter

byte *pc = &program[0];
while(TRUE) {
loop:

byte opcode = pc[0];
switch(opcode) {
…

case LOADLITERAL:
loadlitteral_label:

destReg = pc[LOADLITTERAL_ARG1];
value = getTwoBytes(&pc[LOADLITTERAL_ARG2]);
regs[destReg] = value;
pc += LOADLITTERAL_SIZE;
NEXT;

case JUMP:
jump_label:

jumpAddress = getFourBytes(&pc[JUMP_ARG1]);
pc = &program[jumpAddress]
NEXT;

}
}

static void *label_tab[] {
...
&&loadlitteral_label;
&&jump_label;

}
#define NEXT \
goto **(void **)(pc)

D
ir

ec
tly

 T
hr

ea
de

d
C

od
e

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/45

Subroutine Threaded Interpreter

♦The only portable way to implement a
threaded interpreter in C is to use
subroutine threaded code.

♦Each instruction is implemented as a
function and at the end of each instruction
the next function is called.

Su
br

ou
tin

e
Th

re
ad

ed
 C

od
e

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/46

Subroutine Threaded Interpreter
(with tail-calls)

byte *pc = &program[0];
NEXT;

…
void loadlitteral(void) {
destReg = pc[LOADLITTERAL_ARG1];
value = getTwoBytes(&pc[LOADLITTERAL_ARG2]);
regs[destReg] = value;
pc += LOADLITTERAL_SIZE;
NEXT;

}
void jump(void) {
jumpAddress = getFourBytes(&pc[JUMP_ARG1]);
pc = &program[jumpAddress];
NEXT;

}

static void *label_tab[] {
...
&loadlitteral;
&jump;

}
#define NEXT ((void (*)())*pc)()

Su
br

ou
tin

e
Th

re
ad

ed
 C

od
e

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/47

Subroutine Threaded Interpreter

byte *pc = &program[0];
while (TRUE) NEXT;

…
void loadlitteral(void) {

destReg = pc[LOADLITTERAL_ARG1];
value = getTwoBytes(&pc[LOADLITTERAL_ARG2]);
regs[destReg] = value;
pc += LOADLITTERAL_SIZE;

}
void jump(void) {

jumpAddress = getFourBytes(&pc[JUMP_ARG1]);
pc = &program[jumpAddress];

}

static void *label_tab[] {
...
&loadlitteral;
&jump;

}
#define NEXT ((void (*)())*pc)()

Su
br

ou
tin

e
Th

re
ad

ed
 C

od
e

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/48

Subroutine Threaded Interpreter

(void (*)()) pc = &program[0];
while (TRUE) *pc++;

…
void loadlitteral(void) {

destReg = ((int *)pc)[LOADLITTERAL_ARG1];
value = getTwoBytes(&pc[LOADLITTERAL_ARG2]);
regs[destReg] = value;
pc += LOADLITTERAL_SIZE;

}
void jump(void) {

jumpAddress = getFourBytes(&pc[JUMP_ARG1]);
pc = &program[jumpAddress];

}

#define LOADLITTERAL_SIZE 1
#define JUMP_SIZE 1
#define LOADLITTERAL_ARG1 0
#define LOADLITTERAL_ARG2 1
#define JUMP_ARG1 0

Su
br

ou
tin

e
Th

re
ad

ed
 C

od
e

04/06/2004 09:57

9

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/49

Stack-based vs. Register-based VM

♦ A VM can either be stack-based or register-based.
♦ In a stack-based machine most operands are on the

stack. The stack can grow as needed.
♦ In a register-based machine most operands are in

(virtual) registers. The number of registers is limited.
♦ Most VMs are stack-based.

♦ Stack machines are simpler to implement.
♦ Stack machines are easier to compile to.
♦ Less encoding/decoding to find the right register.
♦ Virtual registers are no faster than stack slots.

V
ir

tu
al

 M
ac

hi
ne

s:
 In

st
ru

ct
io

n
Se

t

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/50

Interpreter Tuning

♦Common interpreter optimizations include:
♦Writing the interpreter loop and key

instructions in assembler.
♦Keeping important variables in hardware

registers (pc, stack-top, heap-top). (GNU C
allow global register variables.)

♦Top of stack caching.
♦Splitting the most used instruction into a

separate interpreter loop.

V
ir

tu
al

 M
ac

hi
ne

s:
 T

un
in

g

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/51

Interpreter Tuning

♦ More advanced interpreter optimizations includes:
♦ Instruction merging: A common sequence of VM instructions is

replaced by a single instruction.
♦ Reduced interpretation overhead.
♦ Enhances code locality.
♦ More compact bytecode.
♦ Gives C compiler bigger code block to optimize.

♦ Instruction specialization: A special case VM instruction is
created, typically with some arguments hard-coded.
♦ Eliminates argument decoding cost.
♦ More compact bytecode.
♦ Reduces register pressure.

V
ir

tu
al

 M
ac

hi
ne

s:
 T

un
in

g

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/52

Just-in-time Compilation

♦ Native code is still faster than code interpreted in VMs. To
get the best performance native code compilation is
necessary. But bytecode is a nice format to distribute
portable code.

♦ Solution: dynamic compilation or just-in-time (JIT)
compilation.

♦ Native code takes more space than virtual machine code
(4-8x). Don’t compile everything to native code (some code
is never executed).

♦ Compilation takes time, dynamic compilation has to be
fast. No time for advanced optimization (unless the
bytecode compiler has inserted hints in the bytecode).

JIT
 C

om
pi

la
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/53

JIT – What to Compile

♦Only compile a method if the total
execution time is reduced.

♦How do we know this?
♦Use the past to predict the future:

♦Use profiling to detect what and when to
compile. There are two basic approaches:
♦Invocation counters.
♦Sample based profiling.

JIT
 C

om
pi

la
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/54

Invocation Counters

♦Associate a counter with each function.
♦When a function is called increment the

counter.
♦If the counter reaches a limit compile the

function. Reset or use decay to only
compile high-frequency functions.

♦Hard to predict behavior, no control over
time spent in compiler.

JIT
 C

om
pi

la
tio

n

04/06/2004 09:57

10

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/55

Sample Based Profiling

♦Measure time spent in interpreter,
compiler, and in compiled code.

♦Harder to implement.
♦Gives better picture of the hot-spots.JIT

 C
om

pi
la

tio
n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/56

JIT Integration

♦ Integrating a JIT system where native code can
coexist with interpreted code in the VM is not
trivial.

♦ Context switches between native and interpreted
code has to be fast. (They can occur at function
calls, returns, and when exceptions are thrown.)

♦ Ensuring proper tail-calls with a mixed execution
environment is also tricky.

JIT
 C

om
pi

la
tio

n

Advanced Compiler Techniques 04.06.04
http://lamp.epfl.ch/teaching/advancedCompiler/57

Summary

♦ Virtual machines provides an abstraction from
real hardware and make programming language
implementation easier and languages more
portable.

♦ A direct threaded interpreter gives the best
performance.

♦ Virtual machines have been used for half a
century but research didn’t really take off until
the JVM came along.

