Dead Code Elimination &
Constant Propagation
on SSA form

This lechure is primarily based on Konstantines Segenos set of slides
(Advanced Compiler Techniques, (28DsI18)
ot Uppsala University, January February 2004).

Used with kind permission
CEn Furm based on Keth Cooper's sldes)

Dead Code Eli

Dead Code Eliminati

Dead Code Elimination Using
SSA

Mark Sweep
for eachop i foreachopi
clear i’s mark if i is not marked then

ifi is critical then ifi is a branch then

marll(i rewrite with a jump to
add i to i’s nearest useful
while (%0) post-dominator

remove i from
(i has form “x<y op z”)
if def(y) is not marked then

if i is not a jump then
delete i

mark def(y) .
add def(y) to Notes:
if def(z) is not marked then ¢ Eliminates some branches.
mark def(z)
add def(z) to ® Reconnects dead branches to the

remaining live code.
for each b € RDF(block(i))
mark the block-ending
branchinb
add itto

® Find useful post-dominator by
walking post-dominator tree.

> Entry & exit nodes are useful

Advanced Compiler Techniques 020404

http://1anp. epfl. ch/teaching/advancedCompiler/

a,by,cy,n

Dead Code Elimination Using
SSA ;

ig

foreachopi 2:y=a;
BE i
4:

clear i’s mark i,
ifi is critical then x==
mark i
addito
while (#0)
remove i from
(i has form “x<y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to
if def(z) is not marked then 11:bg=0 (b, bs)
mark def(z) 12:6,=0(c,. . C5)
add def(z) to 1301520 (g, 15, 14)
for each b e RDF(block(i)) 14:14;<n
mark the block-ending —_—
branch in b 15:c3=Cotys| | 17:return c, e
add it to 16:1,=15+1; Examplo |
Advanced Compler Techniques 02,0404

http://1anp. epfl. ch/teaching/advancedCompiler/

=
2
O

51
a]

Dead Code Elimination Using
SSA

Dead code elimination
¢ Conceptually similar to mark-sweep garbage collection:
¢ Mark useful operations.
+ Everything not marked is useless.
¢ Need an efficient way to find and to mark useful operations.
+ Start with critical operations.
+ Work back up SSA edges to find their antecedents.
¢ Operations defined as critical:
+ I/0 statements,
+ linkage code (entry & exit blocks),
+ return values,
+ calls to other procedures.

Algorithm will use post-dominators & reverse dominance frontiers.

Advanced Compiler Techniques 02.04.04
http://1anp. epf1.ch/teach ng/advancedConpiler/

Dead Code Elimination

Dead Code Elimination

Dead Code Elimination Using
SSA

Handling Branches
¢ When is a branch useful?
+ When another useful operation depends on its existence

In the CFG, / is control dependent on / if

1. 3 a non-null path pfrom /to j such that jpost-
dominates every node on p after /

2. jdoes not strictly post-dominate /

¢ jcontrol dependent on i = one path from i leads to j, one doesn’t
¢ This is the reverse dominance frontier of j (RDF(j))

Algorithm uses RDF(r7) to mark branches as live

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Dead Code Elimination Using

ark
for eachop i
clear i’s mark
ifi is critical then
mark i
addito
while (# @)
remove i from
(i has form “x<y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to
if def(z) is not marked then 11: b= (b,,b.)
bg 2+ b5,
mark def(z) 12:6,=0(c,. . C5)
add def(z) to D iy isnis)
for each b e RDF(block(i)) 14:14;<n
mark the block-ending —_—

branchinb
add itto

17:return c7}\

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

16:1,=1;+1;

Dead Code Elimination Using
SSA

Mark
for eachop i
clear i’s mark
ifi is critical then
mark i
addito

while 20
remove i from
(i has form ‘op 2”)

if def(z) is not marked then
mark def(z)
add def(z) to

for each b € RDF(block(i))
mark the block-ending
branchinb
additto

a,b;,cy,n

2
1:x=17+a;

11:bg=d(b,, bs)
12:¢c,=®(cy,cy,C3)
13:193=0(1,1,,14)
14:143<n

17:return c,

Advanced Compiler Techniques 02.04.04
http://1anp. epf1.ch/teaching/advancedConpiler/

Dead Code Eli

Dead Code Eliminati

Dead Code Elimination Using
SSA

Mark
for eachop i
clear i’s mark
ifi is critical then
mark i
addito

while (#0)
remove i from
(i has form “op z”)

if def(2) is not marked then
mark def(z)
add def(z) to

for each b € RDF(block(i))
mark the block-ending
branchinb

additto

a,by,cy,n

11:bg=®(b,, bs)
12:¢,=D(cy, ¢y, Gl

13:13=0(i,1,,14)
14:13<n
_—
15:c3=Co+yi| | 17:return c7}\
16:1,=15+1;

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

L T

Dead Code Elimination Using

Mark
foreachop i
clear i’s mark
ifi is critical then
mark i
addito

*0)

while (

if def(y) is not marked then
mark def(y)
add def(y) to

if def(z) is not marked then
mark def(z)
add def(z) to

for each b = RDF(b/ock(i))
mark the block-ending
branchinb
additto

SSA

a,by,cy,n
v
1l:x=17+a;
2:y=a;
BE i
4:

i

x==

11:bg=®(b,, bs)
12:¢,=d(c,, L Cok
13:13=0(i,1,,14)
14:13<n

s

17:return c7}\

15:c3=Cyt+y;
16:1,=1;+1;

L T

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

=
2
O

7}
a]

Dead Code Elimination Using

SSA

Mark
for eachop i
clear i’s mark
ifi is critical then
mark i
addito

while (#0)
remove i from
(i has form “op z”)

if def(z) is not marked then
mark def(z)
add def(z) to

for each b « RDF(block(i))
mark the block-ending
branchinb
add itto

a,b;,cy,n

Advanced Compiler Techniques 02.04.04
http://1anp. epf1.ch/teach ng/advancedConpiler/

Dead Code Elimination

Dead Code Elimination

Dead Code Elimination Using

Mark
for eachop i
clear i’s mark
ifi is critical then
mark i
addito

while (#0)
remove i from
(i has form “op z”)

if def(z) is not marked then
mark def(z)
add def(z) to

for each b ¢ RDE(Dlock(l))
mark the block-ending
branchinb
add itto

SSA

a,by,cy,n

11:bg=®(b,,bs)

14:13<n

[(SIS)3
=0 (1y,1,,1,)

s

15:c3=Cyt+y;
16:1,=1;+1;

L T

17:return c7}\

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Dead Code Elimination Using

Mark
foreachop i
clear i’s mark
ifi is critical then
mark i
addito

while (

* @)

if def(z) is not marked then
mark def(z)
add def(z) to

for each b = RDF(block(i))
mark the block-ending
branchinb
additto

SSA

ailg

14:

12:c

be=d (b, , bs)
D (Cy,Cy,C3
D (iyi,,1,)
i3<n

d

s

15:c3=Cyt+y;
16:1,=1;+1;

17:return c7}\

L T

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Dead Code Elimination Using
SSA

Mark
for eachop i
clear i’s mark
ifi is critical then
mark i
addito
while (+0)
remove | from
(i has form “xe-yop 27}
if def(y) is not marked then
mark def(y)
add def(y) to
if def(z) is not marked then|
mark def(z)
add def(z) to

for each b e RDF(&/ock(i))
mark the block-ending
branchinb
additto

a,b;,cy,n

2
1:x=17+a;

11:bg=d(b,, bs)
12:¢,=®(cy,Cq,)%
13:193=0(1,1,,14)
14:143<n

17:return c,

Advanced Compiler Techniques 02.04.04
http://1anp. epf1.ch/teaching/advancedConpiler/

Dead Code Eli

Dead Code Eliminati

Dead Code Elimination Using
SSA

Mark
for eachop i
clear i’s mark
ifi is critical then
mark i
addito

while (= @)

remove i from
(i has form “xc—y op z”)

if def(y) is not marked then
mark def(y)
add def(y) to

if def(z) is not marked then
mark def(z)
add def(z) to

a,by,cy,n

11:bg=®(b,, bs)
12:¢,=D(cy, ¢y, Gl
13:13=0(i,1,,14)
14:13<n

_—
|15'C3:Cz*Y1~ 17:return c,
A : X

4=13+1;

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

L T

Dead Code Elimination Using

Mark
foreachop i
clear i’s mark
ifi is critical then
mark i
addito

while (* @)
remove i from
(i has form "¢y op z”)

ef(731s net markad thewn
mark dof(y
atld defiy) to

if def(z) is not marked then
mark def(z)
add def(z) to

for each b < RDF(block(i))
mark the block-ending
branchinb
add itto

SSA

a,by,cy,n
v
1l:x=17+a;
2:y=a;
BE i
4:

i

x==

11:bg=®(b,, bs)
12:¢,=d(c,, L Cok
13:13=0(i,1,,14)
14:13<n

—_—
|153C3:Cz*Y1~ 17:return c7}\

16:1,=1;+1;

L T

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

=
2
O

51
a]

Dead Code Elimination Using
SSA

Mark
for eachop i
clear i’s mark
ifi is critical then
mark i
addito

while (+2)

remove i from
(i has form sy op z”)

if def(y) is not marked then
mark def(y)
add def(y) to

if def(z) is not marked then
mark def(z)
add def(z) to

for each b e RDF(block(i))
mark the block-ending
branchinb
add itto

a,b;,cy,n
2
1:x=17+a;
23 ;
15 3:
4:

Advanced Compiler Techniques 02.04.04
http://1anp. epf1.ch/teach ng/advancedConpiler/

Dead Code Elimination

Dead Code Elimination

Dead Code E

SSA

Mark
for eachop i
clear i’s mark
ifi is critical then
mark i
addito

while (

if def(y) is not marked then
mark def(y)
add def(y) to

if def(z) is not marked then
mark def(z)
add def(z) to

for each b ¢ RDF(block(i))
mark the block-ending
branchinb
additto

limination Using

a,by,cy,n

11:bg=®(b,,bs)

[(SIS)3
=0 (1y,1,,1,)
14:13<n

_—
15:¢c3=Covy X | 17:return c7}\
16:1,=1 g

i+l
I

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Dead Code Elimination Using

Mark
foreachop i
clear i’s mark
ifi is critical then
mark i
addito

while (

+8)

remove i from
(i has form “x¢-yop z”)
if def(y) is not marked then
mark def(y)
add def(y) to

for each b < RDF(block(i))
mark the block-ending
branchinb
additto

SSA

11:bg=®(b,, bs)
12:¢,=d(c,,Cy, Cok
O (iy,15,1,)
14:1;<n
—_—
15:¢c3=Cvy X | 17:return c7}\
16:1,=1;+1;
Advanced Compler Techniques (204,04

http://1anp. epfl. ch/teaching/advancedCompiler/

Dead Code Elimina

Dead Code Elimination Using
SSA

Mark
for eachop i
clear i’s mark
ifi is critical then
mark i
addito
while { + @)
remove i from
(i hras form "x¢—y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to
if def(z) is not marked then 11:bg=0 (b, bs)
mark dofte) 12:c2:®(c1,c1,c3)‘k
add def(z) to 13150 (ig, 100 i9)
fib & ROF{&loC 14:145<n A

=

the blg
anch
add itto

Advanced Compiler Techniques 02.04.04
http://1anp. epf1.ch/teaching/advancedConpiler/

Dead Code Elimination

Dead Code Elimination Using

Mark
for eachop i
clear i’s mark
ifi is critical then
mark i
addito

while (* @)
remove i from
(i has form “xc—y op z”)

aug <
if def(z) is not marked then

11:bg=®(b,,bs)

mark def(z)
add def(z) to

for each b < RDF(block(i))
mark the block-ending
branchinb
add itto

12:¢,=D(cy, ¢y, Gl
13:13=0(i,1,,14)
14:13<n R

s

1\ 17:return c7}\

Advanced Compiler Techniques 020404

Mark
for eachop i

clear i’s mark

ifi is critical then
mark i
addito

while (# @)

Lhaslonn e b ope
if def(y) is not marked then
mark def(y)
add def(y) to
if def(z) is not marked then
mark def(z)
add def(z) to

for each b ¢ ROF(block(i))
mark the block-ending
branchinb
additto

Dead Code Elimination Using
SSA

http://1anp. epf1.ch/teach ng/advancedConpiler/

Advanced Compiler Techniques 02.04.04

Dead Code Elimina

Mark
for eachop i

clear i’s mark

ifi is critical then
mark i
addito

while (@)

mark def(y)
add def(y) to

if def(z) is not marked then
mark def(z)

add def(z) to

for each b = RDF(B/ock(i))
mark the block-ending
branchinb
additto

Dead Code Elimination Using

SSA

11:bg=®(b,,bs)

D (cy,Cp, 3N
=0 (1y,1,,1,)
14:13<n R

s

1\ 17:return c7}\

Advanced Compiler Techniques 020404

http://1anp. epfl. ch/teaching/advancedCompiler/ http://1anp. epfl. ch/teaching/advancedCompiler/

Dead Code Elimination Using Dead Code Elimination Using

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

SSA SSA .5, cyn
Mark Mark ig x:I7+a:
foreachop i foreachop i 2
clear i’s mark clear i’s mark 3:3
g if i is critical then if i is critical then 4
T mark i a mark i
5 addito 5 addito
= while { = 0) = while 20)
3 remove i from e
Q (i has form “xc—y op z”)
o 3 n
g mark def(y)
add def(y) to
if def{z) is not marked then if def(z) is not marked then 11: b= (b,,b.)
m:;&;dff(zg 1= (Cy,CpL O mda:;dfef(zz (cy, ¢, C30R
daete EREICANERI N add defz) 1o EREICANERI N
for each b = RDF(block(i)) 14:1i5<n N for each b ¢ RDF(&lock(i)) 14:13<n N
mark the block-ending —_— mark the block-ending —_—
branchinb X |17:return c7}\ branch in b X |17:return c7}\
add itto : additto :

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Dead Code Elimination Using

Mark
for eachop i
clear i’s mark
ifi is critical then
mark i
addito
while { #0)
remove i from

if def(y) is not marked then
mark def(y)
add def(y) to
if def(z) is not marked then
mark def(z)
add def(z) to

for each b < RDF(block(i))
mark the block-ending
branchinb
add itto

SSA

a,b;,cy,n

2
1:x=17+a;

11:bg= (b, , bs)

12:¢,=®(cy,Cq,)%
13:3=0 (1,15, 1) &
14:143<n N

17:return c,

Advanced Compiler Techniques 02.04.04
http://1anp. epf1.ch/teaching/advancedConpiler/

Dead Code Eli

Dead Code Eliminati

Dead Code Elimination Using

Mark
for eachop i
clear i’s mark
ifi is critical then
mark i
addito

while { # @)
remove i from
(i has form “xc—y op 2”)
if def(y) is not marked then
mark def(y)
add def(y) to

W

for each b = ROF(block(i))
mark the block-ending
branchinb
add itto

SSA

a,by,cy,n

9:bg=d (b;,b,)
10:1,=y;

11:bg=®(b,,bs)

12:¢,=D(cy, ¢y, Gl
13:15=0(1,,1,, 1) &
14:13<n R

_—
15:¢c3=Cvy X | 17:return c7}\
16:1,=1,+1;

L T

Advanced Compiler Techniques 020404

http://1anp. epfl. ch/teaching/advancedCompiler/

Dead Code Elimination Using

Mark
foreachop i
clear i’s mark
ifi is critical then
mark i
addito

W
remove i from
i has form “xe-yop z”
if def(y) is not marked then
mark def(y)
add def(y) to
if def(z) is not marked then
mark def(z)
add def(z) to

for each b = RDF(block(i))
mark the block-ending
branchinb
add itto

SSA

3,10,16

a,by,cy,n

v

1l:x=17+a;
2:y=a; =
3: Y
4:

i

x==

:be=® (b, , bs)
1= (Cy,CpL O
t13=0(i,1,, 1)K
1is<n

—_—
|153C3:Cz*Yi 17:return c7}\

16:1,=13+1;

L T

Advanced Compiler Techniques 020404

http://1anp. epfl. ch/teaching/advancedCompiler/

=
2
O

7}
a]

Dead Code Elimination Using

Mark
for eachop i
clear i’s mark
ifi is critical then
mark i
addito

while (+0)
remove i from
(i has form “xe-yop z7)
if def(y) is not marked then
mark def(y)
add def(y) to
3

. 10
24 } 0

for each b e RDF(&lock(i))
mark the block-ending
branchinb
additto

SSA

a,b;,cy,n

Advanced Compiler Techniques 02.04.04
http://1anp. epf1.ch/teach ng/advancedConpiler/

Dead Code Elimination

Dead Code Elimination

Dead Code Elimination Using

Mark
for eachop i
clear i’s mark
ifi is critical then
mark i
addito

while (+ @)
remove i from
(i has form “x¢-yop z”)
if def(y) is not marked then
mark def(y)
add def(y) to

for each b e ROF(&/ock(i))
mark the block-ending
branchinb
additto

SSA

a,by,cy,n

3,10,16

I

9:bg=d (b;,b,)
10:1,=y;

11:bg=®(b,,bs)

=0 (11,5, 1,)
14:13<n

(cl‘lcl.c3

V4

L T

_—
15:c3=Cy+y 7
16:1,=1;+1;

17:return c7}\

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Dead Code Elimination Using

Mark
foreachop i
clear i’s mark
ifi is critical then
mark i
addito

whi *
remove i from
i has form “xe-yop 2"
if def(y) is not marked then
mark def(y)
add def(y) to
if def(z) is not marked then
mark def(z)
add def(z) to

for each b < RDF(block(i))
mark the block-ending
branchinb
add itto

SSA

11:b,
12:c

14:4

=0 (b, bs)
D(c,, Lok
@ (15,1, 10K
3<n

16:1,=13+1;

L T

—_—
|153C :CzWi 17:return c7}\

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Dead Code Elimination Using

Mark
for eachop i
clear i’s mark
ifi is critical then
mark i
addito

while { + @)
remove i from

mark def(y)
add def(y) to

mark def(z)
add def(z) to

(i has form “xey op z”)
if def(y) is not marked then

if def(z) is not marked then

ach b 2 ROF(Block(il)

SSA

a,b;,cy,n

2
1:x=17+a;

11:bg=d(b,, bs)
12:¢,=®(cy,Cq,)%
13:93=0(1,,1,, 1)K
14:143<n N

Advanced Compiler Techniques 02.04.04
http://1anp. epf1.ch/teaching/advancedConpiler/

Dead Code Eli

Dead Code Eliminati

Dead Code Elimination Using

Mark
for eachop i

clear i’s mark

ifi is critical then
mark i
addito

while (

% 0)

3
if def(y) is not marked then
mark def(y)
add def(y) to
if def(z) is not marked then
mark def(z)
add def(z) to

for each b < RDF(block(i))
mark the block-ending
branchinb
additto

SSA

a,by,cy,n

11:bg=®(b,, bs)
12:¢,=D(cy, ¢y, Gl
13:13=0 (1,15, 1)K
14:13<n R

_—
|15'C3:F1*Yi 17:return c7}\

1 4=i3+1;

L T

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Mark

foreachop i
clear i’s mark
ifi is critical then
mark i
addito

while { +0)
remove i from
(i has form “x¢yop z”)

if def(y) is not marked the
mark def(y)
add def(y) to
“ifdef(z) is not marked then
mark def(z)
add def(z) to

for each b < RDF(block(i))
mark the block-ending
branchinb
additto

SSA

Dead Code Elimination Using

a,by,cy,n
v
1l:x=17+a;
2:y=a; %
3:1,=0; 3
4 x==! -

11:bg=®(b,, bs)
12:¢,=D(cy, ¢y, Gl
13:43=0(i,1,, 1)K

14:13<n

—_—
|153C3:Cz*Yi 17:return c7}\

16:1,=13+1;

L T

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

=
2
O

7}
a]

Mark

for eachop i
clear i’s mark
ifi is critical then
mark i
addito

while { + @)

remove i from
(i has form “x¢-y op z”)

if def(y) is not marked then
mark def(y)
add def(y) to

if def(z) is not marked then
mark def(z)
add def(z) to

for each b ¢ ROF(block(i))
mark the block-ending
branchinb
additto

SSA

Dead Code Elimination Using

a,b;,cy,n

Advanced Compiler Techniques 02.04.04
http://1anp. epf1.ch/teach ng/advancedConpiler/

Dead Code Elimination

Dead Code Elimination

Mark

for eachop i
clear i’s mark
ifi is critical then
mark i
addito

while (= @)

f(y) is not marked then
mark def(y)
add def(y) to

if def(z) is not marked then
mark def(z)
add def(z) to

for each b ¢ RDF(block(i))
mark the block-ending
branchinb
add itto

SSA

Dead Code Elimination Using

a,by,cy,n

11:bg=®(b,,bs)

[(SIS)3
370,15, 1)K
14:13<n A

|16:1

_—
153(3:Cz*Yi 17:return c7}\
=i,+1;

iyt

L T

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Mark

foreachop i
clear i’s mark
ifi is critical then
mark i
addito

while (% @)

ey }
if def(y) is not marked then
mark def(y)
add def(y) to
if def(z) is not marked then
mark def(z)
add def(z) to

for each b < RDF(block(i))
mark the block-ending
branchinb
additto

SSA

Dead Code Elimination Using

11:bg=®(b,, bs)
12:¢,=d(c,,Cy, Cok
@ (15,1, 10K
14:1;<n

16:1,=13+1;

—_—
|153C :CzWi 17:return c7}\

L T

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Dead Code Elimi

Mark

Dead Code Elimination Using
SSA

for eachop i
clear i’s mark
ifi is critical then
mark i
addito
[[while {)
remove i from
(i has form “xe-yop z7)
if def(y) is not marked then

mark def(y)
add def(y) to
if def(z) is not marked then 11: b= (b, ,by)

- D¢ Aolt
markd;af(z) 12:¢,=®(cy,Cq,)%
add def{z) to 1301520115, i)k

for each b < ROF(block(i)) 14:145<n "

mark the block-ending
branchinb
add itto

Advanced Compiler Techniques 02.04.04
http://1anp. epf1.ch/teaching/advancedConpiler/

Dead Code Elimination

Dead Code Elimination

Dead Code Elimination Using

Sweep
foreachopi
ifiis not marked then
ifi is a branch then
rewrite with a jump to
i’s nearest useful
post-dominator
if i is not a jump then
delete i

11:bg=®(b,, bs)
12:¢,=d(c,,Cy, Cok
13:13=0 (1,15, 1)K
14:13<n

17:return c7}\

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Dead Code Elimination Using
SSA

a,by,cy,n

Sweep
foreachopi
i not marked then
ifi is a branch then
rewrite with a jump to
i’s nearest useful
post-dominator
if i is not a jump then
delete i

16=0(C, €y, G
13:13=0 (1,15, 1)K
14:13<n

17:return c7}\

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Dead Code Elimination Using
SSA

a,b;,cy,n

v

Sweep i %fxil‘_/m::
foreachop i . 3.y—a.l d
if i is not marked then - Cd

ifiis a branch then
rewrite with a jump to
i’s nearest useful
post-dominator
ifi is not a jump then
delete i

Advanced Compiler Techniques 02.04.04
http://1anp. epf1.ch/teach ng/advancedConpiler/

Dead Code Elimina

1e Eliminal

Dead Code Elimination Using
SSA

Sweep i
foreachopi
ifiis not marked then
ifi is a branch then
rewrite with a jump to
i’s nearest useful
post-dominator
if i is not a jump then
delete i

11:bg=®(b,, bs)
D(c,, Lok
=0 (i1, 1)K
14:13<n R

17:return c7}\

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Dead Code Elimination Using
SSA

a,b;,cy,n
v
Sweep i ;:x:17+a::
foreachopi - 3.3
if i is not marked then 2

rewrite with a jump to
i’s nearest useful
post-dominator
if i is not a jump then
delete i

(€y,¢1,¢5
370,15, 1)K

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Dead Code Elimi

Dead Code Elimination Using
SSA

a,b;,cy,n

Sweep
foreachopi
if i is not marked then
ifi is a branch then
rewrite with a jump to
i’s nearest useful
post-dominator

#iis notajump then
delete |

11:bg=d(b,, bs)
12:¢,=®(cy,Cq,)%
13:93=0(1,,1,, 1)K
14:143<n N

Advanced Compiler Techniques 02.04.04
http://1anp. epf1.ch/teaching/advancedConpiler/

Dead Code Elimination

Dead Code Elimination

Dead Code Elimination Using

Sweep
foreachopi
if i is not marked then
ifiis a branch then
rewrite with a jump to
i’s nearest useful
post-dominator
if i is not a jump then
delete i

11:bg=®(b,, bs)
12:¢,=d(c,,Cy, Cok
13:13=0 (1,15, 1)K
14:13<n

17:return c7}\

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Dead Code Elimination Using
SSA

Sweep i
foreachopi
if i is not marked then
ifi is a branch then
rewrite with a jump to
i’s nearest useful
post-dominator
if i is not a jump then
delete |

a,by,cy,n

16=0(C, €y, G
13:13=0 (1,15, 1)K
14:13<n

17:return c7}\

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Dead Code Elimination Using
SSA

a,b;,cy,n

v

Sweep ie %fxil‘_/m::
foreachop i a 3.y—a.l d
if i is not marked then - Cd

ifiis a branch then
rewrite with a jump to
i’s nearest useful
post-dominator
ifi is not a jump then
delete i

Advanced Compiler Techniques 02.04.04
http://1anp. epf1.ch/teach ng/advancedConpiler/

Dead Code Elimina

1e Eliminal

Dead Code Elimination Using
SSA

Sweep i
foreachopi
if i is not marked then
ifi is a branch then
rewrite with a jump to
i’s nearest useful
post-dominator
if i is not a jump then
delete i

11:bg=®(b,, bs)
D(c,, Lok
=0 (i1, 1)K
14:13<n R

17:return c7}\

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Dead Code Elimination Using
SSA

a,b;,cy,n
v
Sweep i ;:x:17+a::
foreachopi 3.3
if i is not marked then 2

ifi is a branch then
rewrite with a jump to
i’s nearest useful
post-dominator
if i is not a jump then
delete i

(C1,Cy,C3
=0 (1y,1,,1,)

Vit

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Dead Code Elimina

Dead Code Elimination Using

Sweep
for eachopi

if i is not marked then

ifi is a branch then
rewrite with a jump to
i’s nearest useful
post-dominator

ifiis nota jump then
delete |

11:bg=d(b,, bs)

12:¢c,=®(cy,Cy,C3)]
13:93=0(1,,1,, 1)K
14:143<n N

I

17:return c,

Advanced Compiler Techniques 02.04.04
http://1anp. epf1.ch/teaching/advancedConpiler/

Dead Code Elimination

Dead Code Elimination

Dead Code Elimination Using

Sweep
foreachopi
it i is not marked then
ifi is a branch then
rewrite with a jump to
i’s nearest useful
post-dominator
if i is not a jump then
delete |

11:bg=®(b,, bs)
12:¢,=d(c,,Cy, Cok
13:13=0 (1,15, 1)K
14:13<n

17:return c7}\

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Dead Code Elimination Using
SSA

What's left?
¢ Algorithm eliminates useless definitions & some useless branches
¢ Algorithm leaves behind empty blocks & extraneous control-flow

Algorithm from: Cytron, Ferrante, Rosen,
Wegman, & Zadeck, Efficiently Computing
Static Single Assignment Form and the

Control Dependence Graph, ACM TOPLAS 13(4),
October 1991

q with a correction due to Rob Shillner
Two more issues

¢ Simplifying control-flow
¢ Eliminating unreachable blocks
Both are CFG transformations (no need for SSA)

Advanced Compiler Techniques 020404

http://1anp. epfl. ch/teaching/advancedCompiler/

Dead Code Elimina

Dead Code Elimination Using
SSA

a,b;,cy,n
2
Sweep ic0 ;xil‘_/m :
for eachopi . y=as
if i is not marked then

ifiis a branch then
rewrite with a jump to
i’s nearest useful
post-dominator
ifi is not a jump then
delete i

Advanced Compiler Techniques 02.04.04
http://1anp. epf1.ch/teach ng/advancedConpiler/

Dead Code Elimination Using
SSA

i=12..17

Sweep
foreachopi
if i is not marked then
ifi is a branch then
rewrite with a jump to
i’s nearest useful
post-dominator
if i is not a jump then
delete i

D (cy,Cp, 0K
370,15, 1)K
14:13<n R

17:return c7}\

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Constant Propagation

Safety
¢ Proves that name always has known value
¢ Specializes code around that value
+ Moves some computations to compile time
+ Exposes some unreachable blocks

(= code motion)
(= dead code)

Opportunity
¢ Value # | signifies an opportunity

Profitability
+ Compile-time evaluation is cheaper than run-time evaluation
¢ Branch removal may lead to block coalescing

+ If not, it still avoids the test & makes branch predictable

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Constant Prop

Conditional Constant Propagation

nal Constant Propagation

Sparse Constant Propagation
Using SSA

V expression, e ToP if its value is unknown
Value(e) «———
@
V SSA edge s = <u,v>
if Value(u) # TOP then
add s to
while (# @)
remove s = <u,v> from
let o be the operation that uses v
if Value(o) = BOT then
t < result of evaluating o Value(x,) AValue(x,) Value(x;)
if t # Value(o) then A ... AValue(x,)
V SSA edge <0,x> Where

add <o,x> to TOP Ax=x v x

c; ifits value is known (the constant c,)
BOT if its value is known to vary

i.e.,ois“a<bop v’ or“a«vopb”

Evaluating a ®-node:
D(X1,X9,X3, +.0 Xp) IS

CiAC=C; ife=¢;

Same result, fewer A operations c;AC=BOT ifc#c

Performs A only at ® nodes BOT AX=BOT Vx

Advanced C
htep://1anp. epfl.ch/te

Sparse Conditional Constant
Propagation

0.8 Optimi
Optimism .
g « 12 ¢ This version of the algorithm is
while (..) an optimistic formulation

;e (75, 75)
X ¢« 1, * 17
J« 71,

¢ Initializes values to TOP

® Prior version used L (implicit)

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Sparse Conditional Constant
Propagation

Optimism Optimism
* This version of the algorithm is

Clear an optimistic formulation

that/is
always
12 at
defof x

¢ Initializes values to TOP

® Prior version used L (implicit)

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Constant Propagation

Constant Prop

Conditional Constant Propagation

Sparse Constant Propagation
Using SSA

TOP

AN

G, G ¢ ¢ €, C,

How long does this algorithm take to halt? = 9H m Cn
¢ Initialization is two passes

¢ |ops| +2x |ops| edges i
¢ Value(x) can take on 3 values

+ TOP, ¢, BOT

+ Each use can be on twice

¢ 2x |args| =4x |ops| evaluations, pushes & pops

This is an optimistic algorithm:
¢ Initialize all values to TOP, unless they are known constants
+ Every value becomes BOT or ¢, unless its use is uninitialized

Adva
htep://1anp.epfL

Sparse Conditional Constant
Propagation

Optimism

* This version of the algorithm is
an optimistic formulation

¢ Initializes values to TOP

® Prior version used L (implicit)

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Sparse Conditional Constant
Propagation

Optimism Optimism
12 5, ¢ 12 CeelEs ¢ This version of the algorithm is
while (..) initializations an optimistic formulation

L7« ®(ig,7;5)
1 X e 7; *17
L]«
1L 7, « .

¢ Initializes values to TOP

® Prior version used L (implicit)

1L 7: <]

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

10

nstant Propaga

Sparse Conditional Constant
Propagation

Optimism Optimism
12 7, « 12 o * This version of the algorithm is
while (..) OptimisHe an optimistic formulation

initializations
TOP 7, « ®@(7y,7;)

ToP x 7, * 17 Leadsto: * Initializes values to TOP

TOP j « 7, iy=12ATOP=12 " A (i .

Tor 7, . 2125172204 Prior version used L (implicit)
i =12

TOP 7; « J i3=12

i1=12A12=12

In general, optimism helps inside loops.

M.N. Wegman & F.K. Zadeck, Constant propagation with conditional
branches, ACM TOPLAS, 13(2), April 1991, pages 181-210.

Advanced Compiler Techniques 02.04.04
http://1anp. epf1.ch/teaching/advancedConpiler/

Sparse Conditional Constant
Propagation

2 while ((v}) # @)
<Ny while(+ @)
V block b remove b from

clear b’s mark
V expression e in b
Value(e) < TOP

mark b
evaluate each ®-function in b
evaluate each op in b, in order
while(+0)

remove s = <u,v>from
let o be the operation that contains v
t « result of evaluating o
if t # Value(o) then

Value(o) « t

v SSA edge <o,x>

if x is marked, then
add <o,x> to

Initialization Step

To evaluate a branch
if arg is BOT then
put both targets on
else if arg is TRUE then
put TRUE target on
else if arg is FALSE then
put FALSE target on

To evaluate a jump

place its target on Propagation Step

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Sparse Conditional Constant
Propagation

More subtle points:
¢ TOP * BOT — TOP
+ If TOP becomes 0, then 0 * BOT — 0.
+ This prevents non-monotonic behavior for the result value.
+ Uses of the result value might go irretrievably to 0.
+ Similar effects with any operation that has a “zero”.

¢ Some values reveal simplifications, rather than constants
¢ BOT * ¢, — BOT, but might turn into shifts & adds (c; =2, BOT 2 0)
+ Removes commutativity. ssociation)
+ BOT**2 — BOT * BOT. (vs. series or call to library)

¢ cbr TRUE — L,,L, becomes br — L,
+ Method discovers this; it must rewrite the code, too!

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

g
S

Ell

nal Constant Propagation

ditional Constant Propagation

Sparse Conditional Constant
Propagation

What happens when it propagates a value into a branch?
¢ TOP = we gain no knowledge.
¢ BOT = either path can execute.
+ TRUE or FALSE = only one path can execute.

But, the algorithm
does not use this ...

Working this into the algorithm.

¢ Use two worklists: &
3 determines values.
. governs reachability.

¢ Don’t propagate into operation until its block is reachable.

Advanced Compiler Techniques 02.04.04
http://1anp. epf1.ch/teach ng/advancedConpiler/

Sparse Conditional Constant
Propagation

There are some subtle points:

¢ Branch conditions should not be TOP when evaluated.
+ Indicates an upwards-exposed use. (no initial value - undefined)
+ Hard to envision compiler producing such code.

¢ Initialize all operations to TOP.
+ Block processing will fill in the non-top initial values.
+ Unreachable paths contribute TOP to ®-functions.

¢ Code shows CFG edges first, then SSA edges.
+ Can intermix them in arbitrary order. (correctness)
+ Taking CFG edges first may help with speed. (minor effect)

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

Sparse Conditional Constant
Propagation

Unreachable Code Optimism

117 * Initialization to TOP is still

if (i>0) then important.
j«10

else ¢ Unreachable code keeps TOP.
12629 * A with TOP has desired result.

J3<® (i1, 32

kej3*17

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

11

al Constant Propagation

mization

<
%)
&
50
@
5
@

Sparse Conditional Constant

Propagation

Unreachable Code Optimism
W iy alpaths * Initialization to TOP is still

if (i>0) then executs important.
10 j¢10

else * Unreachable code keeps TOP.
2 Joc20 * A with TOP has desired result.
L 3@y, 30)
L kejy*17

Ad iler Techniques 02.04.04
hetp://anp_ept 1. ch teaching) advancedconpiler/

Sparse Conditional Constant

Propagation
Unreachable Code Optimism
17 ie17 With SCC * Initialization to TOP is still

if (i>0) then marking important.

TP j,<10 blocks

else * Unreachable code keeps TOP.
TOP 120 * A with TOP has desired result.
TOP j3¢®@(j;, 5)

170 kej;*17

Ad hiques 020404
hetp://Lanp_ept 1. ch teaching) advancedconpiler/

Sparse Conditional Constant

Propagation
Unreachable Code Optimism
ie17 With SCC * Initialization to TOP is still
if (i>0) then marking important.
10 j,10 blocks
else ¢ Unreachable code keeps TOP.
ToP j}({@

* A with TOP has desired result.
10 j5e®(y, 1))

170
gt Cannot get this any other way:
* DEAD code cannot test (i > 0).

¢ DEAD marks j, as useful.

Advanced Compie Techiques 20408
http://1anp. epfl.ch/teaching/advancedConpil

Sparse Conditional Constant

Propagation
Unreachable Code Optimism
ie17 With SCC * Initialization to TOP is still
if (i>0) then marking important.
10 j,10 blocks
else ¢ Unreachable code keeps TOP.
TOP 5#<20

* A with TOP has desired result.
10 j5e®(y, 1))

170 kejy*17

T gani. copbinig oo ophnizchors <o lod bo gncars
o T Fmamg B, =) Larbinabion o runming ther separabely

This lgorithm is one example of that general principle.
Combining register allocation & instruction scheduling is another

Advanced Compie Techiques 20404
http://1anp. epf1.ch/teaching/advancedConpil

Using SSA Form for
Optimizations

In general, using SSA conversion leads to:
¢ Cleaner formulations.

¢ Better results.

¢ Faster algorithms.

We've seen two SSA-based algorithms.
¢ Dead-code elimination.
¢ Sparse conditional constant propagation.

Advanced Compiler Techniques 020404
http://1anp. epfl. ch/teaching/advancedCompiler/

12

