
Bits & Pieces

Advanced Compiler Techniques
2004

Erik Stenman
EPFL

Advanced Compiler Techniques 2004-06-18
http://lamp.epfl.ch/teaching/advancedCompiler/2

Exceptions

♦ In languages that support exceptions there are
usually two ways to generate exceptions:
♦ Explicit, user controlled throwing of an exception, e.g.

throw MyException;
♦ Implicit, exceptions thrown when there is a runtime

error e.g. x = 0; 42/x;
♦ And two ways to handle the exceptions:

♦ Explicit catch of the exception, e.g. try E catch
MyException { … }

♦ “Program crash”.

Advanced Compiler Techniques 2004-06-18
http://lamp.epfl.ch/teaching/advancedCompiler/3

Exception Handlers

♦We can distinguish between two cases:
♦A local handler: When the code that throws the

expression is syntactically contained in the try.
♦A non-local return: When the try expression

contains a function call.

Advanced Compiler Techniques 2004-06-18
http://lamp.epfl.ch/teaching/advancedCompiler/4

Local Exception Handlers

♦ For an expression like:
try x/y;
catch ArithmeticException (e) { foo() };

♦ There are basically two ways to handle this:
1. Rewrite each operation in the try that can fail so that it explicitly

takes the address of the handler as an argument. (During
compilation a stack is needed to find the right handler if there are
nested tries.) (Erlang)

2. Register the address of the handler at load time, and associate
each instruction in the try with the handler address. If an
instruction fails, do a lookup at runtime with the current PC.
(Java)

Advanced Compiler Techniques 2004-06-18
http://lamp.epfl.ch/teaching/advancedCompiler/5

Non-local returns

♦ For an expression like:
try bar();
catch ArithmeticException (e) { foo() };

♦ There are basically two ways to handle this:
1. When entering a try expression put the address of the

handler on the stack (need a ‘permanent’ slot in the
activation record). Or even better: use a stack map that
maps the return address to the address of the exception
handler. (Erlang)

2. Register the address of the handler at load time, and
associate each instruction in the try with the handler
address. (Java)

Advanced Compiler Techniques 2004-06-18
http://lamp.epfl.ch/teaching/advancedCompiler/6

Non-local returns: Method 1

♦If an exception occurs look at the stack, if
there is an exception handler jump to it.

♦If there is no handler in the current frame,
unwind the stack until a handler is found.
When a handler i found, restore values
saved on the stack and jump to the handler.

Advanced Compiler Techniques 2004-06-18
http://lamp.epfl.ch/teaching/advancedCompiler/7

Non-local returns: Method 2

♦If an exception occurs lookup the current
address, if there is a handler jump to it.

♦If there is no handler unwind the stack and
do a lookup for each return address until a
handler is found. When a handler i found,
restore values saved on the stack and jump
to the handler.

Advanced Compiler Techniques 2004-06-18
http://lamp.epfl.ch/teaching/advancedCompiler/8

Complications in the Intermediate
Code

♦ Normally a function call does not need to end a
basic block. If a later phase in the compiler takes
care of saving of live registers, a call can be seen
as just another instruction.

♦ Function calls within an exception handler will
have two possible continuations, one for a normal
return and one for the case when an exception is
thrown.

Advanced Compiler Techniques 2004-06-18
http://lamp.epfl.ch/teaching/advancedCompiler/9

Linker & Loaders

♦ Linkers & Loaders links several compilation units
together into a program and loads it into
memory.

♦ The compilation units are stored in object files.
♦ Linkers and loaders perform several related but

conceptually separate actions.
♦ Program loading. (Loaders)
♦ Relocation. (Linker or loaders)
♦ Symbol resolution. (Linkers)

Advanced Compiler Techniques 2004-06-18
http://lamp.epfl.ch/teaching/advancedCompiler/10

Symbol Resolution

♦ Each object file contains a symbol table, which
contains:
♦ Global symbols defined by the unit.
♦ External symbols. (Referenced symbols)
♦ Segment names (e.g. text, data).
♦ Local symbols (for debugging).
♦ Line numbers (for debugging).

♦ First all names are stored in a global symbol table,
in the second phase during relocation references
to symbols are replaced by their addresses.

Advanced Compiler Techniques 2004-06-18
http://lamp.epfl.ch/teaching/advancedCompiler/11

Relocation

♦ All object files are usually assumed to start at
address zero. The relocation phase rewrites the
code using the actual offset of each segment.

♦ Relocation can be done both at link time and at
load time.

♦ Each object file contains a relocation table, a list of
all places in the file that needs to be relocated.

♦ This list must contain information about
addressing modes (e.g. PC relative) and what
instruction to relocate (e.g. jmp or sethi).

Advanced Compiler Techniques 2004-06-18
http://lamp.epfl.ch/teaching/advancedCompiler/12

Loading

♦ Assuming that linking has been done, the
loading is quite simple:

1. Read the header of the object file to find out the
memory need of the program.

2. Allocate memory.
3. Read the program into the allocated memory.
4. Create stack space.
5. Set up runtime information (such as program

arguments).
6. Jump to the first instruction in the program.

Advanced Compiler Techniques 2004-06-18
http://lamp.epfl.ch/teaching/advancedCompiler/13

Dynamic Linking and Loading

♦ Dynamic linking defers much of the linking until runtime.
This makes sharing of libraries much easier and makes it
possible to load and unload parts of the program at
runtime.

♦ These advantages comes at the price of higher runtime,
since linking has to be done each time the program is run.

♦ There is also a constant problem of versioning. A statically
linked program will always have the same version of
libraries, but a dynamically linked will usually always
have the latest version. This is both a blessing and a
problem.

Advanced Compiler Techniques 2004-06-18
http://lamp.epfl.ch/teaching/advancedCompiler/14

Linking and Loading in VMs

♦ Modern virtual machines usually uses dynamic
linking and loading and can support code
updates. (Java supports dynamic loading, classes
are loaded as they are needed. Erlang supports
dynamic updates, a module can be replaced by a
new version in a running system.)

♦ Most of the loader can usually be written in the
high level language itself and can be customized
and replaced by the user.

Advanced Compiler Techniques 2004-06-18
http://lamp.epfl.ch/teaching/advancedCompiler/15

Q & A

Q When allocating memory from a free list, why
not use worst fit?

Α Worst fit always allocates from the largest free
block, and is commonly implemented using a
size-ordered free block chain (largest first). The
problem is that in practice, this tends to work
quite badly because it eliminates all large blocks,
so large requests cannot be met.

Advanced Compiler Techniques 2004-06-18
http://lamp.epfl.ch/teaching/advancedCompiler/16

Summary

♦ The goal of this course was for you to learn about compilation
techniques used to obtain high performance on modern computer
architectures, and techniques used to implement high level
languages.

♦ In the course we have talked about:
♦ Optimization techniques

♦ Intermediate representations (CFGs and SSA), [interprocedural] and
intraprocedural data-flow analysis, dependence analysis.

♦ Optimization across basic blocks, procedures, [and complete programs].
♦ Optimization techniques such as CSE, dead code elimination, constant and

copy propagation, constant folding, code motion and loop transformations.
♦ Instruction scheduling, register allocation.

♦ Implementation of high level languages
♦ Implementation of objects, higher order functions, [coroutines], and processes.
♦ Memory management and uniprocessor garbage collector techniques.
♦ Virtual machines and the efficient implementation of their interpreters.

Advanced Compiler Techniques 2004-06-18
http://lamp.epfl.ch/teaching/advancedCompiler/17

Type Systems

♦ If you are still around here next semester I can recommend a course related to
programming language implementation given by Sebastian Maneth.

♦ The study of type systems has important applications in software
engineering, language design, high-performance compilers, and security.

♦ The course “Type Systems” has the following goals:
♦ The student will learn the basic principles of type systems as they appear in

modern programming languages.
♦ The acquired knowledge will be sufficient to design small type systems, and it will

also sharpen the student's awareness of typeful programming as such. The latter is
an indispensable skill when programming in strongly typed languages.

♦ The course will cover simple types, lambda-calculus, normalization,
references, exceptions, subtyping, recursive types, polymorphism, and
advances features of the Scala type system

Bibliographie: "Types and Programming Languages“ B. Pierce, MIT Press, 2002. ISBN 0-262-16209-1

