
1

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/

Optimization Techniques

Advanced Compiler Techniques
2004

Erik Stenman
EPFL

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/

Optimization Techniques
Summary

♦ The most important aspect of an optimization is
that it is correct.

♦ The subject is confusing:
♦ The notion of optimality.
♦ Huge number of possible optimization.
♦ Many intricate and NP-complete problems.

♦ In this course we have tried to give an overview
of some common optimization techniques.

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/

Optimization Techniques
Summary

♦ Suggested method for compiler
optimization:

1. Look at the generated code – try to find
sources of inefficient code. (Better yet profile.)

2. Look in the literature for solutions to these
inefficiencies. (Most likely someone has
already solved the problem.)

3. Implement the solution.
4. Repeat from 1.

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/

Optimization Techniques
Summary

♦Some techniques are useful for many
different problems.
♦Dataflow analysis.
♦Dominators.
♦Liveness.
♦SSA form.
♦Reverse post order traversal.
♦Graph coloring.

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/

Optimization Techniques
Taxonomy

♦We can divide optimizations into:
♦Machine independent optimizations.

♦Decrease ratio of overhead to real work.
♦Example: dead code elimination.

♦Machine dependent optimizations.
♦Take advantage of specific machine properties.
♦Work around limitations of a specific machine.
♦Example: instruction scheduling.

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/

Optimization Techniques
Taxonomy

♦ We can further divide the optimizations on their
intended effect.
♦ Machine independent optimizations.

1. Eliminating redundant computations.
2. Move code to execute it less.
3. Eliminate dead code.
4. Specialize on context.
5. Enable other optimizations.

♦ Machine dependent optimizations.
1. Manage or hide latency.
2. Take advantage of special hardware features.
3. Manage finite resources.

2

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/

Taxonomy of Global Compiler
Optimizations

Machine Independent

Redundancy

Redundancy Elimination

Partial Redund. Eliminat.

Consolidation

Code motion

Loop-invariant Code Motion

Consolidation

Global Scheduling

Constant Propagation

Useless code

Dead Code Elimination

Partial D.C.E.

Constant Propagation

Algebraic Simplification

Create opportunities

Re-association

Replication

Inline expansion

Specialization

Replication

Strength Reduction

Constant Propagation

Method Caching

Inline expansion

Heap→stack allocation

Tail Recursion Elimination

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/

Taxonomy of Global Compiler
Optimizations

Machine Dependent

Hide Latency

Scheduling

Prefetching

Code layout

Data Packing

Manage Resources

Register allocation

Scheduling

Data packing

Coloring memory locations

Special features

Instruction selection

Peephole optimization

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/

Optimization Techniques
Summary

♦ The aim of the lectures have been to give you an
insight into and overview of some of the most
important concepts in optimizing compilers.

♦ You might also have discovered that the topic is
complex and often difficult.

♦ The project will probably really show you how
difficult it is.

♦ Hopefully the project will also show you how fun
it can be.

