Building SSA Form

This lecure is primarily based on Konskontinos Sagonos seb of? slides
(Advanced Compiler Techniques, (2AD518)
oF Uppsola Universiby, Jonuory February 2004)
Used with kind permission
T hurn based on Keibh Cooper

@
%
53}

SSA: Birth Points

Birth Points (a notion due to Tarjan)

Consider the flow of values in this example

x¢<17-4

The value x appears everywhere.
It takes on several values.

® Here, x can be 13, y-z, or 17-4.
® Here, it can also be a+b.

If each value has its own name ...

® Need a way to merge these
distinct values.

® Values are “born” at merge points.

SeW-X

A
hitp: //Lamp. epfL.ch/

Birth Points (cont)

Consider the flow of values in this example

xe17-4

® All birth points are join points
* Not all join points are birth points
® Birth points are value-specific ...

These ore all birth points for values |

A
hitp: //Lamp. epfLch/

31.03.04 16:41:33

SSA-form:
+ Each name is defined exactly once.
+ Each use refers to exactly one name.

What's hard?

¢ Straight-line code is trivial.
+ Splits in the CFG are trivial.
+ Joins in the CFG are hard.

Building SSA Form:
+ Insert ®-functions at birth points.
¢ Rename all values for uniqueness.

What is SSA?

zex*q

SeW-X

Ad
hitp: //Lamp. epfLch/ e

x«-a+b

Birth Points (cont)

Consider the flow of values in this example

xe17-4

New volue for x here

l7-4or3-:

New volue for x here

l30r(|7—4or3—:)

S¢W-X New volue for x here

atb or ((13 or (|7-4 or 5-:))

Ad
hitp: //Lamp. epf1Len/ e

SSA-form:
+ Each name is defined exactly once.
+ Each use refers to exactly one name.

What's hard?

¢ Straight-line code is trivial.
+ Splits in the CFG are trivial.
+ Joins in the CFG are hard.

SSA: ®-functions

Building SSA Form:
+ Insert ®-functions at birth points.
¢ Rename all values for uniqueness.

Static Single Assignment Form

A ®-function is a special kind
of copy that selects one of
its parameters.

The choice of parameter is
governed by the CFG edge
along which control reached
the current block.

yieln Vi e

v

Yy« ®(y;.y,)
However, real machines do
not implement a ®-function
in hardware.

http: //amp eprl o

Definitions

50

ng

SSA: Construction - Rea

&
=<
)
g
o
&
g
!

SSA Construction Algorithm
(High-level sketch)

1.Insert ®-functions.
2.Rename values.

. that’s all ...

- of course, there is some bookkeeping #o be done ...

A
hitp: //Lamp. epfLch/

Reaching Definitions

The equations
REACHES(N) = @

Domain is |DEFINITIONS|, same as
i\
number of operatlona\

REACHES(N) = Up, 51y DEFOUT(P) U (REACHES(P) N SURVIVED(P)) ;\

¢ REACHES(M) is the set of definitions that reach block N — J

¢ DEFOUT(N) is the set of definitions in A that reach the end of ’\/ —

¢ SURVIVED(N) is the set of definitions not obscured by a new def in N/

Computing REACHES (/)
¢ Use any data-flow method (i.e., the iterative method)
¢ This particular problem has a very-fast solution (Zadeck)

FK. Zodeck, anremenh A:Jq.ﬁow analysis in a shruchured
program editor,” Proceedings of the SIGAAN 84 Conf? on
Compiler Construction, June, 1984, poges 132-143.

A
hitp: //Lamp. epfL.ch/

SSA Construction Algorithm
(Less high-level)

1. Insert ®-functions
a.) calculate dominance frontiers

b.) find global names

for each name, build a list of blocks that define it

C.) insert ®-functions Compute list of blocks where each name
is assigned & use as a worklist

This adds to
the worklist !

Use a checklist to avoid putting blocks on the worklist twice;
keep another checklist to avoid inserting the same ®-function twice.

Vv global name n
V block B in which 7 is defined
V block2in B’'s dominance frontier
Creates the iterated { insert a ®-function for 1 in D
dominance frontier add D to n’s list of defining blocks

A
hitp: //Lamp. epfLch/

Problems

SSA: Construction -

31.03.04 16:41:33

SSA Construction Algorithm
(Less high-level)

1.Insert ®-functions at every join for every name.
2.Solve reaching definitions.

3.Rename each use to the def that reaches it.
(will be unique)

Ad
hitp: //Lamp. epfLch/ e

SSA Construction Algorithm
(Less high-level)

1. Insert ®-functions at every join for every name.
2. Solve reaching definitions.

3. Rename each use to the def that reaches it. (will be unique)

Builds maximal SSA

What's wrong with this approach?

¢ Too many ®-functions. (precision)
+ Too many ®-functions. (space)
+ Too many ®-functions. (time)
+ Need to relate edges to ®-functions parameters. (bookkeeping)

To do better, we need a more complex approach.

Ad
hitp: //Lamp. epf1Len/ e

SSA Construction Algorithm
(Less high-level)

2. Rename variables in a pre-order walk over dominator tree
(use an array of stacks, one stack per global name’

Staring with the root block, &

a.) generate unique names for each ®-function
and push them on the appropriate stacks

b.) rewrite each operation in the block
i. Rewrite uses of global names with the current version

(from the stack)

ii. Rewrite definition by inventing & pushing new nar‘ry Need the end-of-
1k . block name for

c.) fill in ®-function parameters of successor blocks this path

d.) recurse on &’s children in the dominator tree

e.) <on exit from block #> pop names generated in Zfrom stacks

Reset the state

1 counter per
name for
subscripts

http: //amp eprl o

Aside on Terminology:
Dominators

Definitions

X dominates) if and only if every path from the entry of the
control-flow graph to the node for) includes .’

¢ By definition, .+ dominates .+
¢ We associate a set of dominators (Dom) with each node
¢ |Dom(x)| 21

Immediate dominators

¢ For any node &, there must be a)’ in Dom(X) closest to X’
¢ We call this)V the immediate dominator of X’

¢ As a matter of notation, we write this as IDom(X)

dvanced Compiler Techniques

Ad
Nitp: //1amp. epf L. ch/teach i ng/ advancedComp Ler/

SSA Construction Algorithm
(Low-level detail)

Computing Dominance

+ First step in ®-function insertion computes dominance.

+ A node N dominates M iff Vis on every path from N, to M
¢ Every node dominates itself
¢ N’s immediate dominator is its closest dominator, IDOM(N)!

DOM(N;) = (A)
DOMN) = {M U (Mpe preseas DOM(P))
Computing DOM
¢ These equations form a rapid data-flow framework
+ lterative algorithm will solve them in d(G) + 3 passes

¢ Each pass does |N| unions & |E| intersections,
¢ EisO(N?) = O(N2) work

Initially, Dom(n) =

d(G) is the loop-connectedness of the graph w.r.ta DFST
«Maximal number of back edges in an acyclic path.
«Several studies suggest that, in practice, d(G) is small. (<3)
«For most CFGs, d(G) is independent of the specific DFST.
TIDOM(A/) # N, unless Nis Ny, by convention.

Advanced Compiler Techniques

Nitp: //1amp. epf L. ch/teach i ng/ advancedConp Ler/

Example

Dominance Tree
Progress of iterative solution for Dom

Iter- Dom(n)

ationfo] 1] 2 | 3 | 4 5 6 | 7
O o[W| W | N[W W N | N
1 [ofo.1]0.1.2[0.1.3[013.4[0.1.35[01,3.6[0.1
2 0l0.4]0.1,2[0.1,3]0.1,3.4]0,1,3.5[0.1.36[0.1

Results of iterative solution for Dom & IDom

[Jo[i]T 2T 3] a T 5 T 6 7]
| bom[o]o,1]0.1,2]0.1.3[0.1.3.4]0.1.35[0.1.3.6]0.1.7|
womfof o[1+ [+ | 3 [3 | 3 1]

There are asymptotically faster algorithms.

With the right data structures, the iterative
algorithm can be made faster.

See Cooper, Harvey, and Kennedy.

Advanced Compiler Techniques
Nitp: //Lamp . epf L. ch/teach i ng/ advancedComp Ler/

(]

on -1.a Compute Dominance Fror

SSA: Constrs

p-functions

%
1
o]
<
%)
]

31.03.04 16:41:33

Dominators (cont)

Dominators have many uses in program analysis & transformation:
Finding loops.
¢ Building SSA form.

¢ Making code motion decisions.

Dominator sets

Let's look of how }o com}au"'e dominators...
Advanced Compile Techniques
47/ Lamp.epr.ch/Leachi g/ avancedconp e/

Example

Control Flow Graph
Progress of iterative solution for Dom

Iter- Dom(n)

ationlo| 1] 2 | 3 4 6 7
0 [O[N][N [N N N N N
1 |o0]0.1]0.1.2[0.1.3]0.1,3.4]0.1.3,5]0.1,3.6[0.1.7
2 Jof0.1]0.1,2[0.1.3[0,1,3,4]0,1.3,5]0.1.3,6[0,1,7

Results of iterative solution for Dom & IDom

[of1] 23] 4« T 5 [e [7]
| bom[o]o,1]0.1,2]0.1.3[0.1.3.4]0,1.35[0.1.3.6]0.1.7|
womfof o[1+ [+ | 3 [3 | 3 1]
Advanced Compile Techniques
ttp://1amp. ep11.ch eaching) dvancedConp tary

Example

Dominance Frontiers . . . 5
Dominance Frontiers & ®-Function Insertion

B
0 *A ition at \/forces a - at A7iff
X D...) Mg Dom(A1) but N < Dom(P) for some 7e preds(/1)
/ \ * DF(/) is the fringe just beyond the region that .1~
B, By dominates.
/\ I) R P - A |
e [omJoJo.10.1.2[0.1,3]0.1,3.40.1,3.5]0.1.3.6]0.1.7]
Bs [ofF[-[-T7 171 6 [6 [7 1]
N/
...
/Xk ‘)(/) * DF(B,) is {Bg}, so < in B, forces a ®-function in 5B
X @(..) * « in B forces a ®-function in DF(B,) = {5;}
v

* « in B; forces a ®-function in DF(5;) = {B;}

* «in B, forces a ®-function in DF(B,) = @ (halt)

For each we insert the ¢

Advanced Compiler Techniques
Nitp: //1amp . epfL.ch/teach i ng/ advancedComp Ler/

]
g
o
g
a
£
o
T
]
<
9]
!

Rename va

i
k3t
V]
o
A

Example

Dominance Frontiers . : q
Computing Dominance Frontiers

/

* Only join points are in DF(1/) for some A/~
* Leads to a simple, intuitive algorithm for computing
dominance frontiers
For each join point .17
For each CFG predecessor of 17
Run up to IDOM(M) in the dominator tree, adding
M to DF(V) for each \ between M and IDOM(M)

(i.e., lpreds(i) > 1)

m./

[T[4 2TsT 4 [7]
\nom|n|o1|o12|n13|o134|n135|n136|u17|
[oF-[-T7 7] | 7 111

m\ /@

'\/'\

* For some we need post: i the
post-dominator tree, and reverse dominance
frontiers, RDF(\)

> Just dominance on the reverse CFG
> Reverse the edges & add unique exit node
* We will use these in dead code elimination

Advanced Compiler Techniques

ttp: //Lanp.ept1.chteaching) advinceaConpiiers

31.03.04 16:41:33

SSA Construction Algorithm
(Reminder)

1. Insert ®-functions at every join for every name
a.) calculate dominance frontiers
b.) find global names

for each name, build a list of blocks that define it
c.) insert ®-functions

Needs a little more detail

Vv global name n
V block B in which 7 is defined
V block2in B's dominance frontier
insert a ®-function for 7 in D
add D to n’s list of defining blocks

Advanced Compiler Techniques
ttp://1amp.ept1.ch teaching/advancedConpiter/

SSA Construction Algorithm
Finding global names
+ Different between two forms of SSA

Otherwise, we do not
need a ®-function
+ Minimal uses all names

¢ Semi-pruned SSA uses names that are /ive on entry to some block
¢ Shrinks name space & number of ®-functions
¢ Pays for itself in compile-time speed

+ For each “global name”, need a list of blocks where it is defined
¢ Drives ®-function insertion
+ B defines x implies a ®-function for x in every C e DF(B)

Pruned SSA adds a test to see if x is live at insertion point

Advanced Compiler Techniques

Nitp: //1amp. epf L. ch/teach i ng/ advancedConp Ler/

Example

With all the ®-functions

* Lots of new ops

* Renaming is next

Excluding
local names
avoids ®’s for
d « o(d.d) y&z
¢« @(c.c)
B <= 000

2« ®(a,a)
b « ®(b,b)
c « d(c,c)
d « ®(d,d)
y « a+b
z e cHd
ie it

i> 100 4

SSA Construction Algorithm
(Less high-level)

2. Rename variables in a pre-order walk over dominator tree
(use an array of stacks, one stack per global name)
Staring with the root block, B
a.) generate unique names for each ®-function
and push them on the appropriate stacks
b.) rewrite each operation in the block
i. Rewrite uses of global names with the current version
(from the stack)
ii. Rewrite definition by inventing & pushing new name
c.) fill in ®-function parameters of successor blocks
d.) recurse on B’s children in the dominator tree
e.) <on exit from block B> pop names generated in 5 from stacks

Advancd CompilrTehmiques
Nitp: //Lamp . epf L. ch/teach i ng/ advancedComp Ler/

Rename vai

i
k3
V]
o
A

SSA Construction Algorithm
(Less high-level)

Rename(B)
for each ®-function in B, x « ®(..)
rename x as NewName(x)

Adding all the details ...

for each global name i
counter{i] « 0
stack[i] « @

call Rename(3,)

for each operation “x«y op z”inB
rewrite y as fop(stack[y])
rewrite z as fop(stack[z])
rewrite x as NewName(x)

NewName(v)
i « counter{v]
counter{v] < counterfv] + 1
push v; onto stack[v]
return v;

for each successor of 5in the CFG
rewrite appropriate ® parameters

for each successor S of Bin dom. tree
Rename(S)

for each operation “x«y op z”in B
pop(stack[x])

Advanced Compiler Techniques
Nitp: //1amp . epfL.ch/teach i ng/ advancedComp Ler/

name vai

ol

SSA: Construction -

2 K

)
5]

name vaj

Re

K

ruction -

Example

Before processing 5,

:fz i has not been defined

TATTTTT
&

°
8

Compiler Techniques

Advanced
Nitp: //1amp. epf L. ch/teach i ng/ advancedComp Ler/

Gi| 8, « o(ay,2)
b, « ®(b.b)
¢« B(ce.0) End of B,
d, « ®(d,.d)
i « i)
a,
¢
b«
c e
d
« C e
d « (d,d) a b c d i
€« ®(c,c)
b eee Counters | 3|2 |3 |22
&, Stacks i
7 e oG o [Do [Co | do | o
b « ®(b,b) a | b |c |[d
€« @(c,c)
4« o(d,d) a, c,
Yy« ath —
Z c+d
i il
i> 100 }

Advanced Compiler Techniques
Nitp: //1amp. epf L. ch/teach i ng/ advancedConp Ler/

Example

Before starting 5,

<« @©(d,d) a b c d i

<« o(c.0)

b eee Counters | 3 |3 4|3 |2
a « (a;,a) Stacks B | Do | Cdo| iy
b « ®(b,,b) a |b |c |d|i
C « ®(cy.0)
d « @(d,,d) a, c,
y « a+b .
Z « c+d
1o i+l
i> 100 |

Advanced Compiler Techniques
Nitp: //Lamp . epf L. ch/teach i ng/ advancedComp Ler/

Rename vai

ol

Re

onstruction -

Rename va

K

)
5]

31.03.04 16:41:33

Example

End of B,
Hicw || “kc]
Hleceen TN
B ¢ 000 Counters 1
N stacke [To,ToTw]

TATETTT
&

°
8

Adva
hitp: //Lamp. epfLch/tea

4 Compiler Techniques

i/ savancedConpiTer/

« (3,,3)
« ®(b,.b)
« 0(c;.0)
< (d,d)
« a+b
« cHd
< i+l
i> 100 |

« ©(d,d)
« ®(c.c)
<= 000

a b ¢ d i
Counters | 3 |3 4|3 |2
Stacks o | by | co | do | o
a | b |c |d|i
a, |b,|c |d
Cs

Advanced Compiler Techniques
tp: //Lamp. epf 1. ch/teaching/ advancedComp Ler/

« ©(d,d)
« ®(c.c)
<= 000

End of 5,
a b ¢ d i
Counters | 4 |3 |4 |4 |2
Stacks a | bo | S | do | i
a | b |ec |d|i
a, c, |d,
a,
Advanced Compiler Techniques
Dt4p: /Lanp.cpr.ch/teaching/ avancedconper s

31.03.04 16:41:33

— Example Example
i 2, « 0(ap,2)
b, « ®(b.b)
End of B, End of B;
p p
5 5
2
o o
)
- |
2 ¢ :ﬁEff? a b c d i a b d i
S b eee Counters |4 |3 |4[5]|2 Counters |4 |3 |5|5|2
j Stacks a | b | S | do | i Stacks a | bo | S | do | i
@ a b |c|d]i a b |c|d]i
a, c, |d, a, c, | d,
a; , a; C:
Advanced Compilr Techniques Advanced Compilr Techniques
Dt/ 1amp o1 eaen me evonceompTiers Dt/ 1amp o1 eaen me evonceCompTiers

End of 5, Before B,
& &
o o
))
£ g
2 a b c d i 2 a b c d i
3 Counters |4 |4 |6 |6 |2 3 Counters |4 |4 6|6 |2
Stacks o | by | co | do | o Stacks o | by | co | do | o
a, |b,|c [d a, | b |c |d|i
a, | b, |c|d a,)
a, c | ds
Advanced Compile Techniques Advanced Compile Techniques
ttp://1amp. ep11.ch eaching) dvancedConp ary ttp://1amp. ep11.ch eaching) dvancedConp tary

i > 100

Example Example

Zi|a, « @(ay,a,)
by « @®(by.b,) "
o« 0cpco) End of B, After renaming
d, « ®(dg.dg) .
i i e Dy * Semi-pruned SSA form
g a2« g
o G < g * We’re done
s 5, s
] & <= 000]
=] 5, 5 =]
] < d, « Z “ -]
k3t k3
E s D(d,) a b c d i
s € 0(c;.Cy)
by « - Counters | 5 |5 7|7 |3 Counters
— Stacks i Stacks
2, « ©(a,.3,) B | bo |G |do| o 2, « ©(a,.3,)
b, < ®(b,,b;) a, |b |c [a |i b, < ®(b,,b;)
Cg ¢ ®(cy.C5) Cg ¢ ®(cy.C5)
e « ©(d;,d:) a | b |c|d 36:3“’5;&'“5) Semi-pruned = only names
a, Cs 2« cordy live in 2 or more blocks are
i, « 14l “global names”.

Compiler Techniques

< Adva
Nitp: //1amp . epfL.ch/teach i ng/ advancedComp Ler/

Advanced Compiler Techniques
Nitp: //Lamp . epf L. ch/teach i ng/ advancedComp Ler/

SSA: Construction - Conclusion

SSA: Deconstruction

SSA Construction Algorithm
(Pruned SSA)

What's this “pruned SSA” stuff?

¢ Minimal SSA still contains extraneous ®-functions.
+ Inserts some ®-functions where they are dead.

+ Would like to avoid inserting them.

Two ideas

¢ Semi-pruned SSA: discard names used in only one block.
+ Significant reduction in total number of ®-functions.
+ Needs only local liveness information.

¢ Pruned SSA: only insert ®-functions where their value is live.
+ Inserts even fewer d-functions, but costs more to do.
+ Requires global live variable analysis.

In practice, both are simple modifications to step 1.

(cheap o compute)

(more expensive)

dvanced Compiler Techniques

Ad
Nitp: //1amp. epf L. ch/teach i ng/ advancedComp Ler/

SSA Deconstruction

At some point, we need executable code.
¢ Few machines implement ® operations.
¢ Need to fix up the flow of values.

Basic idea.
+ Insert copies ®-function pred’s.
+ Simple algorithm.
+ Works in most cases.
¢ Adds lots of copies.
+ Most of them coalesce away.

Advanced Compiler Techniques

Nitp: //1amp. epf L. ch/teach i ng/ advancedConp Ler/

g
i
B
o
o
%2}

31.03.04 16:41:33

SSA Construction Algorithm

We can improve the stack management.

¢ Push at most one name per stack per block. (save push & pop)
¢ Thread names together by block.

+ To pop names for block B, use B's thread.

This is a good use for a scoped hash table.

+ Significant reductions in pops and pushes.

+ Makes a minor difference in SSA construction time.

Scoped table is a clean, clear way to handle the problem.

Advanced Compiler Techniques
Nitp: //1amp. epfL.ch/teach i ng/ advancedComp Ler/

