
1

Partial Redundancy
Elimination

This lecture is primarily based on Konstantinos Sagonas set of slides
(Advanced Compiler Techniques, (2AD518)

at Uppsala University, January-February 2004).
Used with kind permission.

(In turn based on Keith Cooper’s slides)

Advanced Compiler Techniques 21.04.04 15:26:02
http://lamp.epfl.ch/teaching/advancedCompiler/2

Common-Subexpression
Elimination

An occurrence of an expression in a program is a common subexpression if there is
another occurrence of the expression whose evaluation always precedes this one
in execution order and if the operands of the expression remain unchanged
between the two evaluations.

Local Common Subexpression Elimination (CSE) keeps track of the set of available
expressions within a basic block and replaces instances of them by references to
new temporaries that keep their value.

…
a=(x+y)+z;
b=a-1;
c=x+y;
…

Before CSE

…
t=x+y;
a=t+z;
b=a-1;
c=t;
…

After CSE

Re
pe

tit
io

n:
 C

SE

Advanced Compiler Techniques 21.04.04 15:26:02
http://lamp.epfl.ch/teaching/advancedCompiler/3

Available Expressions

♦ An expression x+y is available at a program point p if
♦ every path from the initial node to p evaluates x+y before

reaching p,
♦ and there are no assignments to x or y after the evaluation but

before p.

♦ Available Expression information can be used to do
global (across basic blocks) CSE.

♦ If an expression is available at the point of its use,
there is no need to re-evaluate it.

Re
pe

tit
io

n:
 A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques 21.04.04 15:26:02
http://lamp.epfl.ch/teaching/advancedCompiler/4

Computing Available
Expressions

♦ Represent sets of expressions using bit
vectors

♦ Each expression corresponds to a bit
♦ Run dataflow algorithm similar to reaching

definitions
♦ Notice that:

♦ A definition reaches a basic block if it comes from
ANY predecessor in CFG.

♦ An expression is available at a basic block only if it
is available from ALL block’s predecessors in the
CFG.

Re
pe

tit
io

n:
 A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques 21.04.04 15:26:02
http://lamp.epfl.ch/teaching/advancedCompiler/5

Expressions
1: x+y
2: i<n
3: i+c
4: x==0

0000

1001

1000

1000

1100 1100

a=x+y;
x==0

x=z;
b=x+y;

i<n

c=x+y;
i=i+c;

d=x+y

i=x+y;

Re
pe

tit
io

n:
 A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques 21.04.04 15:26:02
http://lamp.epfl.ch/teaching/advancedCompiler/6

Expressions
1: x+y
2: i<n
3: i+c
4: x==0

0000

1001

1000

1000

1100 1100

a=x+y;
t1=a;
x==0

x=z;
b=x+y;
t1=b;

i<n

c=t1;
i=i+c;

d=t1

i=t1;

Global CSE Transform

Must use same temp
for CSE in all blocks

Re
pe

tit
io

n:
 A

va
ila

bl
e

Ex
pr

es
si

on
s

2

Advanced Compiler Techniques 21.04.04 15:26:02
http://lamp.epfl.ch/teaching/advancedCompiler/7

Not all occurrences
of b+c are redundant!

Some occurrences of
b+c are redundant

Redundant Expressions
An expression is redundant at a point p if, on every

path to p
1. It is evaluated before reaching p, and
2. None of its constituent values is redefined before p

Example

a←b+c

a←b+c b←b+1
a←b+c

a←b+c
a←b+c
a←b+c

Re
du

nd
an

t E
xp

re
ss

io
ns

Advanced Compiler Techniques 21.04.04 15:26:02
http://lamp.epfl.ch/teaching/advancedCompiler/8

b←b+1
a←b+c a←b+c

a←b+c

Inserting a copy of “a←b+c” after the definition
of b can make it redundant.

Partially Redundant
Expressions

An expression is partially redundant at p if it is redundant along
some, but not all, paths reaching p.

Example

b←b+1 a←b+c

a←b+cPa
rt

ia
lly

 R
ed

un
da

nt
 E

xp
re

ss
io

ns

Advanced Compiler Techniques 21.04.04 15:26:02
http://lamp.epfl.ch/teaching/advancedCompiler/9

Another example:

Loop invariant expressions are partially redundant.
♦ Partial redundancy elimination performs code motion.
♦ Major part of the work is figuring out where to insert operations.

Loop Invariant Expressions

x←y*z

a←b+c
b + c is partially
redundant here

x←y*z
a←b+c

a←b+c

Pa
rt

ia
lly

 R
ed

un
da

nt
 E

xp
re

ss
io

ns

