
Memory Management

Advanced Compiler Techniques
2004

Erik Stenman
EPFL

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/2

Memory Management

♦ The computer memory is a limited resource so the
memory use of programs has to be managed in some way.

♦ The memory management is usually performed by a
runtime system with help from the compiler.
♦ The runtime system is a set of system procedures linked to the

program.
♦ For C programs it can be as simple as a small library for

interacting with the operating system.
♦ For Erlang programs the runtime system implements almost all

the functionality normally provided by the OS.

M
em

or
y

M
an

ag
em

en
t

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/3

Memory Management

♦ In a language such as C there are three
ways to allocate memory:

1. Static allocation. The memory needed by
global variables (and code) is allocated at
compile time.

2. Stack allocation. Activation records are
allocated on the stack at function calls.

3. Heap allocation. Dynamically allocated by the
programmer by the use of malloc.

M
em

or
y

M
an

ag
em

en
t

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/4

Memory Organization

♦A typical layout of the
memory of a C
program looks like:

Stack

Heap (dynamic)

Uninitialized static data
(Global variables)

Constant static data

Code

M
em

or
y

M
an

ag
em

en
t

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/5

Dynamic Memory Management

♦ Heap allocation is necessary for data that lives longer than
the function which created it, and which is passed by
reference, e.g., lists in misc.

♦ Two design questions for the heap:
♦ How is space for data allocated on the heap?
♦ How and when is the space deallocated?

♦ Considerations in memory management design:
♦ Space leaks & dangling pointers.
♦ The cost for allocation and deallocation.
♦ Space overhead of the memory manager.
♦ Fragmentation.

D
yn

am
ic

 M
em

or
y

M
an

ag
em

en
t

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/6

Fragmentation

♦ The memory management system should try to avoid
fragmentation, i.e. when the free memory is broken up into
several small blocks instead of few large blocks.

♦ In a fragmented system memory allocation may fail
because there is no free block that is large enough even
though the total free memory would be large enough.

♦ We distinguish between:
♦ Internal fragmentation – the allocated block is larger than the

requested size (the waste is in the allocated data).
♦ External fragmentation – all free blocks are too small (the waste is

in the layout of the free data).

M
em

or
y

M
an

ag
em

en
t:

Fr
ag

m
en

ta
tio

n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/7

Memory Allocation

♦ The use of a free-list is a common scheme.
♦ The system keeps a list of unused memory blocks.
♦ To allocate memory the free-list is searched to find a block

which is large enough.
♦ The block is removed from the free-list and used to store

the data. If the block is larger than the need, it is split and
the unused part is returned to the free-list (to avoid internal
fragmentation).

♦ When the memory is freed it is returned to the free-list.
Adjacent memory blocks can be merged (or coalesced)
into larger blocks (to avoid external fragmentation).

M
em

or
y

M
an

ag
em

en
t:

A
llo

ca
tio

n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/8

Free-list

♦ The free-list can be stored in the
free memory since it is not used for
anything else. (We assume, or ensure,
that each memory block is at least two
words).

33

44

22
Free list:

This can be
stored as a
static global
variable.

M
em

or
y

M
an

ag
em

en
t:

A
llo

ca
tio

n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/9

Free-list

♦ Note that we need to know the size of a block
when it is deallocated. This means that even
allocated blocks need to have a size field in them.

♦ Thus the space overhead will be at least one word
per allocated data object. (It might also be
advantageous to keep the link.)

♦ The cost (time) of allocation/deallocation is
proportional to the search through the free-list.

M
em

or
y

M
an

ag
em

en
t:

A
llo

ca
tio

n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/10

Free-list

♦There are many different ways to
implement the details of the free-list
algorithm:
♦Search method: first-fit, best-fit, next-fit.
♦Links: single, double.
♦Layout: one list, one list per block size, tree,

buddy.

M
em

or
y

M
an

ag
em

en
t:

A
llo

ca
tio

n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/11

Deallocation

♦Deallocation can either be explicit or
implicit.

♦Explicit deallocation is used in e.g., Pascal
(new/dispose), C (malloc/free), and C++
(new/delete).

♦Implicit deallocation is used in e.g., Lisp,
Prolog, Erlang, ML, and Java.

M
em

or
y

M
an

ag
em

en
t:

D
ea

llo
ca

tio
n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/12

Explicit Deallocation

♦Explicit deallocation has a number of
problems:
♦ If done to soon it leads to dangling pointers.
♦ If done to late (or not at all) it leads to space

leaks.
♦ In some cases it is almost impossible to do it at

the right time. Consider a library routine to
append two destructive lists:
c = append(a,b);

M
em

or
y

M
an

ag
em

en
t:

D
ea

llo
ca

tio
n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/13

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
printList(b);

22

33

44

55

66

NILNIL

Explicit Deallocation

11

M
em

or
y

M
an

ag
em

en
t:

D
ea

llo
ca

tio
n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/14

Explicit Deallocation

♦ The programmer
now has to ensure
that a, b, and c are
all deallocated at the
same time. A mistake
would lead to
dangling pointers.

♦ If b is in use long
after a, and c, then
we will keep a live
too long. A space
leak.

list a = new List(1,2,3);
list b = new List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
printList(b);
free(c);M

em
or

y
M

an
ag

em
en

t:
D

ea
llo

ca
tio

n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/15

Implicit Deallocation

♦ With implicit deallocation the programmer does not
have to worry about when to deallocate memory.

♦ The runtime system will dynamically decide when
it is safe to do this.

♦ In some cases, and systems, the compiler can also
add static dealloctions to the program.

♦ The most commonly used automatic deallocation
method is called garbage collection (GC).

♦ There are other methods such as region based
allocation and deallocation.

M
em

or
y

M
an

ag
em

en
t:

D
ea

llo
ca

tio
n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/16

Garbage Collection (GC)

♦ Garbage collection is a common name for a set of
techniques to deallocate heap memory that is
unreachable by the program.

♦ There are several different base algorithms:
reference counting, mark & sweep, copying.

♦ We can also distinguish between how the GC
interferes or interacts with the program:
disruptive, incremental, real-time, concurrent.

G
ar

ba
ge

 C
ol

le
ct

io
n

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/17

The Reachability Graph

♦ The data reachable by the program form a
directed graph, where the edges are pointers.

♦ The roots of this graph can be in:
1. global variables,
2. registers,
3. local variables & formal parameters on the stack.

♦ Objects are reachable iff there is a path of edges
that leads to them from some root. Hence, the
compiler must tell the GC where the roots are.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 T
he

 re
ac

ha
bi

lit
y

gr
ap

h

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/18

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

The Reachability Graph

22

33

44

55

66

NILNIL

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 T
he

 re
ac

ha
bi

lit
y

gr
ap

h

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/19

roots: b

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

The Reachability Graph

22

33

44

55

66

NILNIL

11

The goal with the GC is to
deallocate these:

G
ar

ba
ge

 C
ol

le
ct

io
n:

 T
he

 re
ac

ha
bi

lit
y

gr
ap

h

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/20

Reference Counting

♦ Idea: Keep track of how many references there are
to each object.

♦ If there are 0 references deallocate the object.
♦ The compiler must add code to maintain the reference

count (refcount).
♦ Set the count to 1 when created.
♦ For an assignment x = y:

♦ if (x != null) x.refcount—;
♦ if (y!=null) y.refcount++;

♦ When a stack frame is deallocated decrease the refcount of each object
pointed to from the frame.

♦ When refcount reaches 0 deallocate the object and decrease refcount of
each child.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/21

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

44

55

66

NILNIL

22

11

11

11

22

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/22

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

44

55

66

NILNIL

11

11

11

11

22

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/23

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

44

55

66

NILNIL

11

11

11

11

22

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/24

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

44

55

66

NILNIL

00

11

11

11

22

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/25

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

44

55

66

NILNIL

00

11

00

11

22

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/26

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

44

55

66

NILNIL

00

11

00

00

22

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/27

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

44

55

66

NILNIL

00

11

00

00

11

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/28

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

44

55

66

NILNIL

00

11

00

00

11

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/29

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b;

44

55

66

NILNIL

11

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/30

Reference Count

♦ Advantages of reference count:
♦ Rather easy to implement.
♦ Storage reclaimed immediately.

♦ Disadvantages of reference count:
♦ Space overhead: 1 word per object.
♦ Keeping track of the reference counts is very

expensive. (Each simple pointer copy becomes several
instructions.)

♦ There is one more problem…

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/31

list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

11

11

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

NILNIL

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/32

list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

22

11

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/33

list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

33

11

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/34

list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

22

11

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/35

list a = List(1,2,3);
list b = NIL;
list c = append(a,a);
printList(c);
decRefCount(c);
decRefCount(a);
doLotsOfStuff();
return b; 22

33

11

11

11

11

G
ar

ba
ge

 C
ol

le
ct

io
n:

 R
ef

er
en

ce
 c

ou
nt

in
g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/36

Reference Count

♦ Big disadvantage with reference count:
♦ The refcount of cyclic structures never reaches zero!

♦ There are ways to solve this, but they are very
complicated.

♦ Due to this fact reference count is very seldom used
in practice. There is one nice use, as we shall see later…

♦ In a pure language or a language without destructive updates there
are no cyclic structures, making reference counting a viable option.G

ar
ba

ge
 C

ol
le

ct
io

n:
 R

ef
er

en
ce

 c
ou

nt
in

g

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/37

Mark & Sweep

♦ A mark & sweep GC is made up of two
phases:

1. First all reachable objects are marked.
2. Then the heap is swept clean of dead objects.

♦ The mark phase is done by a depth first
search through the reachability graph
starting from the roots.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/38

Depth First Mark Algorithm

mark(x) {
if(! marked(x)) {

setMark(x);
for each field f of x

mark(*f)
}

}

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/39

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Mark

22

33

44

55

66

NILNIL

11

mark(b)

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/40

The Sweep

♦ The Sweep phase goes through the whole heap
from start to finish and adds unmarked objects to
the free-list.

p = heapStart;
while (p<heapEnd) {
if(marked(*p)) clearMark(*p);
else free(p);
p += size(*p);

}

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/41

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

22

33

44

55

66

NILNIL

11

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/42

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

22

33

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/43

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

22

33

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/44

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

33

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/45

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

33

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/46

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/47

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/48

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/49

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/50

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/51

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

Example: Sweep

44

55

66

NILNIL

p

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/52

Cost of Mark & Sweep

♦ The mark phase takes time proportional to the amount of
reachable data (RR).

♦ The sweep phase takes time proportional to the size of the
heap (HH).

♦ The work done by the GC is to recover HH-RR words of
memory.

♦ Them amortized cost of GC (overhead/allocated word) is:
c1RR + c2HH

HH-RR
♦ If RR ≈ HH the cost is very high. The cost goes down as the

number of dead words increases.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/53

Mark & Sweep

♦ Where do we store the mark bits?
♦ We will discuss data representation a bit more at the end of the

lecture. With some representations there will always be a tag or a
header word in each heap object where the mark bit can be stored.

♦ They can be stored in a separate bitmap table:
♦ If we have a 32-bit architecture and the smallest heap

object is 2 words. (The three least significant bits == 0)
♦ Then we can have 536,870,911 objects and need

67,108,863 bytes to store these bits.
♦ This might seem to be a lot, but it is only 1.562% of the

total heap.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/54

Tuning Mark & Sweep

♦There is one problem with the mark phase:
♦While doing the depth first search we need to

keep track of other paths to search.
♦ If this is done with recursive calls we will need

one allocation record for each level we descend
in the reachability graph.

♦Solutions: Explicit stack or pointer reversal.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/55

Mark & Sweep

♦Advantages with mark & sweep:
♦Can reclaim cyclic structures.
♦Standard version is easy to implement.
♦Can have relatively low space overhead.

♦Disadvantages:
♦Fragmentation can become a problem.
♦Allocation from a free-list can be costly.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 M
ar

k
&

 S
w

ee
p

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/56

Copying Collector

♦The idea of a copying garbage collector is to
divide the memory space in two parts.

♦Allocation is done linearly in one part
(from-space).

♦When that part is full all reachable objects
are copied to the other part (to-space).

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/57

Before GC

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

22

33

44

55

66

NILNIL

11

from-space to-space

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/58

After GC

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

22

33

44

55

66

NILNIL

11

to-space from-space

44

55

66

NILNIL

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/59

Forwarding Pointers

♦Given a pointer p that point to from-space
make it point to to-space:
♦ If p points to a from-space record that contains

a pointer to to-space, then *p is a forwarding-
pointer that indicates where the copy is. set
p=*p.

♦ If *p has not been copied, copy *p to location
next, *p=next, p=next, next+=size(*p).

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/60

Cheney’s Copying Collector

♦ Cheney’s algorithm uses breadth-first to traverse
the live data.

♦ The algorithm is non-recursive, requires no extra
space or time consuming tricks (such as pointer
reversal), and it is very simple to implement.

♦ The disadvantage is that breadth-first does not
give as good locality of references as depth-first.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/61

Cheney’s Copying Collector

♦ The algorithm:
1. Forward all roots.
2. Use the area between scan as next as a queue for copied

records whose children has yet not been forwarded.
scan = next = start of to-space
for each root r { r = forward(r); }
while scan < next {
for each field f of *scan
scan->f = forward(scan->f)

scan += size(*scan)
}

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/62

Before GC

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

22

33

44

55

66

NILNIL

11

from-space to-space

scan
next

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/63

Forward Roots

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

22

33

55

66

NILNIL

11

from-space to-space

scan

next

44

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/64

Scanning

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

22

33

66

NILNIL

11

from-space to-space

scan

next

44

55

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/65

Scanning

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

22

33

NILNIL

11

from-space to-space

scan

next

44

55

66

NILNILG
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/66

Scanning

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

22

33

NILNIL

11

from-space to-space

scan

next

44

55

66

NILNILG
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/67

Scanning

list a = List(1,2,3);
list b = List(4,5,6);
list c = append(a,b);
printList(c);
doLotsOfStuff();
return b;

22

33

NILNIL

11

from-space to-space

44

55

66

NILNILG
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/68

Cost of Copying GC

♦ The GC takes time proportional to the amount of
reachable data (RR).

♦ The work done by the GC is to recover HH/2 /2 - RR words of
memory.

♦ The amortized cost of GC (overhead/allocated word) is:
c1RR

((HH/2) - RR
♦ If HH is much larger than R R then the cost approaches zero.then the cost approaches zero.
♦ The GC is often self-tuning so that HH = 4RR giving a GC

cost of c1 per allocated word.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/69

Copying GC

♦ Advantages of copying GC:
♦ Can handle cyclic structures.
♦ Very easy to implement.
♦ Extremely fast allocation (no free-list) just a check and heap

pointer increment.
♦ Automatic compaction: no fragmentation.
♦ Only visits live data – time only proportional to live data.

♦ Disadvantages of copying GC:
♦ Double the space overhead since two heaps are needed.
♦ Long lived live data might be copied several times.
♦ Copying all the live data might lead to long stop times.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 C
op

yi
ng

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/70

Generational GC

♦ Empirical observation: most objects die young.
The longer an object lives the higher the
probability it will survive the next GC.

♦ The benefit of GC is highest for young objects.
♦ Idea: Keep young objects in a small space which

is GC more often than the whole heap.
♦ With such a generational GC each collection takes

less time and yields proportionally more space.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 G
en

er
at

io
na

l

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/71

Generational GC

♦ In a generational GC we want to collect the
younger generation without having to look at
older generations.

♦ But we have to consider all pointers from older
generations to younger generations as roots.
♦ (In a language without destructive updates this is not a

problem, since there are no such pointers.)
♦ These inter-generational references must be

remembered. The compiler has to ensure that all
store operations in an older generation are
checked.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 G
en

er
at

io
na

l

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/72

Cost of Generational GC

♦ It is common for the youngest generation to have less than
10% live data.

♦ With a copying collector HH//RR =10 in this generation.
♦ The amortized cost of a minor collection is:

c1RR
(10 (10 RR) - RR

♦ Performing a major collection can be very expensive.
♦ Maintaining the remembered set also takes time. If a

programs does many updates of old objects with pointers
to new objects a generational GC can be more expensive
than a non-generational GC.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 G
en

er
at

io
na

l

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/73

Incremental GC

♦ An incremental (or concurrent) GC keeps the stop-
times down by interleaving GC with program
execution.
♦ The collector tries to free memory while the program,

called the mutator changes the reachability graph.
♦ An incremental GC only operates at request from

the mutator.
♦ A concurrent GC can operate in between any two

mutator instructions.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 In
cr

em
en

ta
l

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/74

Data Layout

♦ The compiler and the runtime system has to agree on a data layout.
The GC needs to know the size of records, and which fields of a
record contains pointers to other records.

♦ In statically typed or OO languages, each record can start with a
header word that points to a description of the type or class.

♦ In many functional languages the set of data types can not be
extended; for such languages one can use a tagging scheme where
unused bits in a pointer indicate what data type it points to.

♦ Another approach is to not give any information to the collector about
which fields are pointers. The collector must then make a conservative
guess, and treat all words that looks like pointers to the heap as such.
Since it is unsafe to change such pointers a conservative collector has to
be non-moving.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 D
at

a
la

yo
ut

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/75

The Root Set

♦ The set of registers and stack slots that contain
live data can be described by a pointer map (stack
map).

♦ For each pointer that is live after a function call
the pointer map identifies its register or stack slot.

♦ The return address can be used as a key in a hash
map to find the pointer map.

♦ To mark/forward the roots the GC starts at the
top of the stack and scans downwards frame by
frame. (In a generational collector the stack scan
can also be made generational.)

G
ar

ba
ge

 C
ol

le
ct

io
n:

 T
he

 ro
ot

 s
et

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/76

Finalizers

♦ Some languages (notably OO) has finalizers, that is, some code that
should be executed before some data is deallocated.

♦ This is, e.g., useful to make sure that an object frees all resources
(open files, locks, etc) before dying.

♦ Whit a copying collector the handling of finalizers becomes more
difficult. Such a GC does not normally visit the dead data. So all
finalizers has to be remembered and after GC a check has to be done
to see if any freed data triggers a finalizer.

♦ A mark & sweep collector does not have this problem, but just as wit
a copying collector it might take a long time after the last use before
garbage is actually collected.

♦ If one wants to ensure that a finalizer is executed as soon as the object
dies then one has to use reference counting.

G
ar

ba
ge

 C
ol

le
ct

io
n:

 F
in

al
iz

er
s

Advanced Compiler Techniques 28.05.04
http://lamp.epfl.ch/teaching/advancedCompiler/77

Summary

♦Manual allocation is unsafe and should not
be used. (It also comes at a cost,
maintaining a free-list is not for free.)

♦Garbage collection solves the problem of
automatic memory management.

♦In most cases a generational copying
collector will be the most efficient solution.

