Loop Optimizations

_nwis lecture is)orimo\r‘i‘\jj)Do\secl on Kons)’o\n;'inos Sa onas se¥ o? slides

(Advonced Compiler -Tec"miques, (2QDs518)
o\)' Urn)osa\o\ Universi Y januarg)-q-—e))ruo‘r:j 2004),

Used ooiH'\ \?incl)oermission.

wn
L
o
=
©
i
£
-—
o
@
(o
o
@)
—]

Loop Optimizations

¢ Important because lots of execution
time occurs in loops

¢ First, we will identity loops

¢ We will study three optimizations
¢ Loop-invariant code motion
¢ Strength reduction
¢ Induction variable elimination

Advanced Compiler Techniques 09.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/

What is a Loop?

¢ Set of nodes

; ¢ Loop header v
z ¢ Single node /\
§ ¢ All iterations of
loop go through
header
¢ Back edge

Advanced Compiler Techniques 09.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/

Anomalous Situations

v

B ¢ Two back

o

5 edges, two

3 loops, one A
£ header

34 ¢ Compiler

—

merges loops

N

¢ No loop header,
no loop

Advanced Compiler Techniques 09.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/

Detining Loops With
Dominators

Recall the concept of dominators:

¢ Node n dominates a node m if all paths from the
start node to m go through n.

¢ The immediate dominator of m is the last dominator
of m on any path from start node.

¢ A dominator tree is a tree rooted at the start node:
¢ Nodes are nodes of control flow graph.

[92]
—
@)
=)
©
=
=
o
-
N
-
S
-+
]
N
£
<=
oF
O
oF
o
@)
—

¢ Edge from d to n if d is the immediate dominator of n.

Advanced Compiler Techniques 09.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/

n
oF
®)
<
18]
=
Ny
=
-
)
e
|
n
S
@)
=
)
N
=
-+
oF
@)
oF
o
@)
—

Identifying Loops

¢ A loop has a unique entry point - the header.
¢ At least one path back to header.

¢ Find edges whose heads (>) dominate tails (-),
these edges are back edges of loops.

¢ Given a back edge n—d:
¢ The node d is the loop header.

¢ The loop consists of n plus all nodes that can reach
n without going through d (all nodes “between” d
and n)

Advanced Compiler Techniques 09.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/

Loop Construction Algorithm

loop(d,n)
loop = J; stack = &; insert(n);
while stack not empty do

m = pop stack;
for all p € pred(m) do insert(p);
insert(m)
if m ¢ loop then
loop = loop U {m};
push m onto stack;

n
Q
®)
<
b0
=
Ny
i)
r
&}
e
||
n
a
o
i)
)
N
z
-+
(o%
@)
oF
o
@)
—

http://1lamp.epfl.ch/teaching/advancedCompiler/

Nested Loops

¢ If two loops do not have same header then

¢ Either one loop (inner loop) is contained in the
other (outer loop)

¢ Or the two loops are disjoint

¢ If two loops have same header, typically they
are unioned and treated as one loop

(0))]
Q.
@)
2
(oY0)
5
&
pi=
o
Q
e
—
n
c
@)
B
©
N
E
-
Q.
@)
Q.
(@)
@)
—

1

/\ Two loops:
{1,2} and {1, 3}

Unioned: {1,2,3}

Advanced Compiler Techniques 09.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/

—
)}
O
(9]
)
<
]
=
ol
N
L
S
)
]
=
£
-
o
O
o
o
©)
—

Loop Preheader

¢ Many optimizations stick code before loop.

¢ Put a special node (loop preheader) before

loop to hold this code.

N/
PN

N4

N

Advanced Compiler Techniques 09.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/

Loop Optimizations

¢ Now that we have the loop, we can
optimize it!
¢ Loop invariant code motion:

¢ Move loop invariant code to the header.

L
o
-.'::
o)
&
]
o
o
O
-+
ar
S
—
©
>
k=
on
o
@)
—
N
L
o
‘=
]
N
£
-+
(oF
O
o
o
@)
—

Advanced Compiler Techniques 09.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/

S
o
i
o)
&
o
o
o)
O
-
=
e
—
©
>
E
oF
o
o)
—
9p]
o
o
=
<
N
£
—-—
o
O
oF
o
)
—

Loop Invariant Code Motion

If a computation produces the same value in
every loop iteration, move it out of the loop.

for i = 1 to N
X = x +1
for j = 1 to N Il

ali,j] = 100*N + 10*1 + j + X

)

t1 = 100*N
for i=1toN
x=x+1
t2 =11 + 10*1 + x
for j=1toN
alij] = 2+]

Advanced Compiler Techniques 09.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/

S
o
i
o)
&
o
o
o)
O
-
=
e
—
©
>
E
oF
o
o)
—
9p]
o
o
=
<
N
£
—-—
o
O
oF
o
)
—

Detecting Loop Invariant
Code

¢ A statement is loop-invariant it operands are
¢ Constant,
¢ Have all reaching definitions outside loop, or

¢ Have exactly one reaching definition, and that
definition comes from an invariant statement

¢ Concept of exit node of loop

¢ node with successors outside loop

Advanced Compiler Techniques 09.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/

Loop Invariant Code
Detection Algorithm

for all statements in loop

if operands are constant or have all reaching definitions
outside loop, mark statement as invariant

do
for all statements in loop not already marked invariant

if operands are constant, have all reaching definitions
outside loop, or have exactly one reaching definition from
invariant statement

then mark statement as invariant

S
o
i
o)
&
o
o
o)
O
-
=
e
—
©
>
E
oF
o
o)
—
9p]
o
o
=
<
N
£
—-—
o
O
oF
o
)
—

until there are no more invariant statements

Advanced Compiler Techniques 09.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/

S
o
i
o)
&
o
o
o)
O
-
=
e
—
©
>
E
oF
o
o)
—
9p]
o
o
=
<
N
£
—-—
o
O
oF
o
)
—

Loop Invariant Code Motion

¢ Conditions for moving a statement s: x = y+z
into loop header:

¢ s dominates all exit nodes of loop
¢ If it does not, some use after loop might get wrong value

¢ Alternate condition: definition of x from s reaches no use
outside loop (but moving s may increase run time)

¢ No other statement in loop assigns to x
¢ If one does, assignments might get reordered

¢ No use of x in loop is reached by definition other
than s

¢ If one is, movement may change value read by use

Advanced Compiler Techniques 09.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/

Order of Statements in
Preheader

Preserve data dependences from original program
(can use order in which discovered by algorithm)

b=2
1=0

— ::> a=b*b

S
o
i
o)
&
o
o
o)
O
-
=
e
—
©
>
E
oF
o
o)
—
9p]
o
o
=
<
N
£
—-—
o
O
oF
o
)
—

Advanced Compiler Techniques 09.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/

Induction Variables

Example:
for j = 1 to 100
*(&A + 4%j) = 202 - 2%*j

Basic Induction variable:
] =1, 2, 3, 4 ...

N
)
O

©
=

S
>

L
=
o)

Q

)
o

S
-

n

L

o
-'D

©
X
£
—

o
O

Q.

o

@)
—]

Induction variable &A+4%:
&A+4Y = &A+4, &A+8, &A+12, &A+16, ...

Advanced Compiler Techniques 09.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/

N
i
o)
-

—

©
>

L
=
45

Q

)
o

S
[

N

L
=
405

©
N
£
45

o
O

Q,

o

©)
—

What are induction variables?

¢ x is an induction variable of a loop L if

¢ variable changes its value every iteration of the
loop

¢ the value is a function of number of iterations of
the loop

¢ In programs, this function is normally a linear
function

Example: for loop index variable j, function d + c*

Advanced Compiler Techniques 09.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/

n
=
QO

(9]
g

@
>

S

o
lo

O

)
o

S
[

N

S

o
=

(@)
2
£
-+

o
@

o

o

©)
—

Types of Induction Variables

¢ Base induction variable:

¢ Only assignments in loop are of formi=1=*c

¢ Derived induction variables:

¢ Value is a linear function of a base induction
variable.

¢ Within loop, j = c*i + d, where i is a base induction
variable.

¢ Very common in array index expressions -
an access to a[i] produces code like p = a + 4*i.

Advanced Compiler Techniques 09.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/

L
=
-+

O

o)
o

Q
&~
<
e

e10)

ar

9]
B
N

|

n
=
o)
8

o

©
>

ar
2
)

@]

)
o

S
—_—

n

a
=
)

©
£
£
-+

(oF
O

o

o

o
—

-
©

Strength Reduction for
Derived Induction Variables

—

use of p

use of p

http://1lamp.epfl.ch/teaching/advancedCompiler/

Elimination of Superfluous
Induction Variables

) R e =
. vlo p <40
1 <

/\ /\.

i=i+1 p=p+4| |useofp

e
=
-+

(9]
=
£
&

|

n
=
QO
.S

—

(9]
>

ar
=
)

&)

)
o

e
S

N

-
=
)

()
g
£
)

o
O

o

o

@)
—]

http://1lamp.epfl.ch/teaching/advancedCompiler/

N
)
O

©
=

S
>

L
=
o)

Q

)
o

S
-

n

L

o
-'D

©
X
£
—

o
O

Q.

o

@)
—]

Three Algorithms

¢ Detection of induction variables:
¢ Find base induction variables.

¢ Each base induction variable has a family of
derived induction variables, each of which is a
linear function of base induction variable.
¢ Strength reduction for derived induction

variables.

¢ Elimination of superfluous induction
variables.

Advanced Compiler Techniques 09.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/

Output of Induction Variable
Detection Algorithm

¢ Set of induction variables:
¢ base induction variables.
¢ derived induction variables.
¢ For each induction variable j, a triple
<i,c,d>:
¢ 11s a base induction variable.
¢ the value of j is i*c+d.
¢] belongs to family of 1.

N
)
O

©
=

S
>

L
=
o)

Q

)
o

S
-

n

L

o
-'D

©
X
£
—

o
O

Q.

o

@)
—]

Advanced Compiler Techniques 09.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/

Induction Variable Detection
Algorithm

Scan loop to find all base induction variables
do

Scan loop to find all variables k with one assignment of
form k =j*b where j is an induction variable with triple
<i,c,d>

make k an induction variable with triple <i,c*b,d*b>

Scan loop to find all variables k with one assignment of
form k = jtb where j is an induction variable with triple
<i,c,d>

make k an induction variable with triple <i,c,b+d>
until no more induction variables are found

N
i
o)
-

—

©
>

L
=
45

Q

)
o

S
[

N

L
=
405

©
N
£
45

o
O

Q,

o

©)
—

Advanced Compiler Techniques 09.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/

Strength Reduction

t = 202
for 3 =1 to 100
t =t - 2
*(abase + 4*3) =t

Basic Induction variable:

] =1/\1/v 2-/\1/v 3/ \1/v 4,
Induction variable 202 - 2%
t =202, 200, 198, 196,

Induction variable abase+4*j:
abase+4*j = abase+4, abase+8, abase+12, abase+16,
\4_/ \4_/ \4_/ Advanced Compiler Techniques 09.06.04

http://1lamp.epfl.ch/teaching/advancedCompiler/

L
=
-+

O

o)
o

Q
&~
<
e

e10)

ar

9]
B
N

|

n
=
o)
8

o

©
>

ar
2
)

@]

)
o

S
—_—

n

a
=
)

©
£
£
-+

(oF
O

o

o

o
—

Strength Reduction Algorithm

for all derived induction variables j with triple
<i,c,d>
Create a new variable s
Replace assighment j = i*c+d with] = s

Immediately after each assignmenti=1+e,
insert statement s = s + c*e (c*e is constant)

place s in family of i with triple <i,c,d>
Insert s = c*i+d into preheader

S
=
-+

&)

o)
o

]
~
<
e

e10)

o

]
B
N

|

n
=
QO
8

—

©
>

ar
2
)

O

)
o

o
—_—

n

S
=
)

S
£
£
-+

(oF
O

o

o

)
—

Advanced Compiler Techniques 09.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/

L
=
-+

O

o)
o

Q
&~
<
e

e10)

ar

9]
B
N

|

n
=
o)
8

o

©
>

ar
2
)

@]

)
o

S
—_—

n

a
=
)

©
£
£
-+

(oF
O

o

o

o
—

N
(o2}

Strength Reduction for
Derived Induction Variables

—

use of p

use of p

http://1lamp.epfl.ch/teaching/advancedCompiler/

S

=

Example

5

o~

=

ol0)

5

7) | double A[256], B[256]1[256] ||double A[256], B[256][256]
(1 =1 j =1

S a = &\ + 8

S b = & + 2056 // 2048+8
B | while(j<100) while(j<100)

B [AL§] = BI3II]] *a = *b

S| i-=13+2 j =3 +2

I5 a =a + 16

g b =b + 4112 // 4096+16
£

£

@)

3

3

Advanced Compiler Techniques 09.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/

Induction Variable

Elimination
Choose a base induction variable 1 such that
only uses of i1 are in
termination condition of the formi<n
assignment of the formi=1+m

Choose a derived induction variable k with
<i,c,d>

Replace termination condition with k < c*n+d

S
=
<=

©
k=
£
&

|

n
=
QO
BE

—

©
>

a
=
20

&)

)
o

e
=

N

S
=
<5

S
gl
£
)

(oW
O

oF

o

@)
—]

Advanced Compiler Techniques 09.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/

Summary
Loop Optimization

¢ Important because lots of time is spent
in loops.

¢ Detecting loops.

¢ Loop invariant code motion.

¢ Induction variable analyses and
optimizations:
¢ Strength reduction.
¢ Induction variable elimination.

)
—
S
&
&
)
N
N
-
=
-—
)
N
£
-—
oF
O
oF
o
@)
—

Advanced Compiler Techniques 09.06.04
http://1lamp.epfl.ch/teaching/advancedCompiler/

