Instruction Scheduling

This lecku ly Konskant S, seb of slides

y 2004)

Simple Machine Model

¢ Instructions are executed in sequence.
+ Fetch, decode, execute, store results.
¢ One instruction at a time.
¢ For branch instructions, start fetching from
a different location if needed.
¢ Check branch condition.

¢ Next instruction may come from a new location
given by the branch instruction.

Execution Models

time (cycles)

Model 1
‘ IF ‘ DE ‘ EXE ‘MEM‘ WB ‘

IF ‘ DE‘EXE‘MEM‘ WB‘

One instruction finish every 5 cycles.

Cycle: 1 2 3 4 5 6 7 8 9 10
‘ IF DE EXE | MEM WB
IF DE EXE MEM WB Model 2
IF DE EXE | MEM WB

IF DE EXE | MEM | WB

IF DE EXE | MEM | WB

One instruction finish every cycle.

S

fachine Model

Instruction Scheduli

@

07/05/2004 09:20

Outline

¢ Modern architectures.

¢ Delay slots.

¢ Introduction to instruction scheduling.
¢ List scheduling.

¢ Resource constraints.

¢ Interaction with register allocation.
¢ Scheduling across basic blocks.

¢ Trace scheduling.

¢ Scheduling for loops.

¢ Loop unrolling.

¢ Software pipelining.

Advance
hitp: //Lamp. ept

Simple Execution Model
5 Stage pipe-line:

Cycle: 2 3 4 5

‘ fetch decode | execute | memory |write back|

Fetch: get the next instruction.
Decode: figure out what that instruction is.
Execute: perform ALU operation.

address calculation in a memory op
Memory: do the memory access in a mem. op.
Write Back: write the results back.

Advanc
hitp: //Lamp. ept

Handling Branch Instructions

Problem: We do not know the location of the
next instruction until later.
¢ after DE in jump instructions
+ after EXE in conditional branch instructions

Branch IF | DE | EXE \MEM | WB

7?? IF DE)E MEM | WB

7?? ﬁ DE EXE | MEM | WB
Inst \—. IF DE | EXE | MEM | WB

What to do with the middle 2 instructions?

Advanc
http: //Lamp. ept

07,/05,/2004 09:20

Handling Branch Instructions Handling Branch Instructions
What to do with the middle 2 instructions?
2. Delay the action of the branch

¢ Make branch affect only after two instructions

¢ Following two instructions after the branch get
executed regardless of the branch

What to do with the middle 2 instructions?

1. Stall the pipeline in case of a branch until we
know the address of the next instruction:
¢ wasted cycles

3 3

Instruction Scheduling: Delay slots
Instruction Scheduling: Delay slots

Cycle: 1 2 3 4 5 6 7 8
IF DE EXE MEM WB
Branch Branch IF DE | EXE \MEM | WB
¥ DE)1::?15 MEM | WB
Empty | Empty Pty | Empty | Empty Next seq inst IF DE)E MEM | WB
DE | EXE | MEM | WB
mpty | Empty | Empty | Empty | Empty Next seq inst @ DE | EXE | MEM | WB
1 IF DE EXE MEM WB .
Next inst Branch target inst _. 1IF DE EXE | MEM | WB

Branch Delay Slot(s) Filling the Branch Delay Slot

- Branches
- Branches

MIPS has a branch delay slot

¢ The instruction after a conditional branch gets executed
even if the code branches to target

Simple Solution: Put a no-op.

elay slots

Wasted instruction, just like a stall.

¢ Fetching from the branch target takes place only after
that

ble r3, foo

|:| Branch delay slot

What instruction to put in the branch delay
slot?

ble r3, 1bl

nop Branch delay slot

Instruction Scheduling: Delay slots

Instruction Schedu

niques 07/05/2004
vanceaConpi ter/

Filling the Branch Delay Slot Filling the Branch Delay Slot

branch.
¢ Don’t move a branch instruction!

* Move an instruction from above the branch. *

F prev—instr [Move an instruction dominated by the
z ble r3, 1bl z branch instruction.

s Branch delay slot ble r3, 1bl

3 . . . 3 dom_instr Branch delay slot
Bl ¢ Moved instruction executes iff branch executes. E v

3) R) 3

¢ Get the instruction from the same basic block as the 1bl:

¢ Instruction need to be moved over the branch.
¢ Branch does not depend on the result of the inst

07/05/2004
piler/

Ad
hitp: //amp.

o
A

Instruction Scheduling: Delay slots

- Loads

Instruction Scheduling: Delay slots

Instruction Scheduling: Delay slots - Example of filling

Filling the Branch Delay Slot

Move an instruction from the branch target.
¢ Instruction dominated by target.
¢ No other ways to reach target (if so, take care of them).

¢ If conditional branch, instruction should not have a lasting
effect if the branch is not taken.

ble r3, 1bl

instr Branch delay slot
1b1l:

st

Advane
http: //1amp. ep

Load Delay Slots

If the value of the load is used...what to do?

Always stall one cycle.

¢ Stall one cycle if next instruction uses the value.
¢ Need hardware to do this.

¢ Have a delay slot for load.
¢ The new value is only available after two instructions.
¢ If next inst. uses the register, it will get the old value.

Load IF DE EXE MEM ~ WB
297 IF DE EXE EM WB
Use of load IF DE» EXE MEM WB

r2 = *(rl + 4)
r3 = *(rl + 8)

noop
rd =r2 +r3
r5=r2-1
goto L1

noop

Assume 1 cycle delay on branches
and 1 cycle latency for loads ..

p://1amp. ep

»

Instruction Scheduling: Delay slots

of filling

Instruction Scheduling: Delay slots - Example

Instruction Scheduling: Delay slots - Example of filling

07/05/2004 09:20

Load Delay Slots

Problem: Results of the loads are not
available until end of MEM stage

Load IF DE EXE MEM ~ WB

IF DE™ EXE MEM WB
Use of load

If the value of the load is used...what to do??

Advanc
hitp: //Lamp. ept

ues 07/05/2004
opiter/

Example

r2 = *(rl + 4)
r3 = *(rl + 8)
rd =r2 +r3
r’s=r2 -1
goto L1

Advanc
hitp: //Lamp. ept

Example

r2 = *(rl + 4)
r3 = *(rl + 8)
noop

ré =r2 +r3
goto L1

noop

Advanc
http: //Lamp. ept

&0
b
g

i

|
P
=

2

a
&
@

@

Instruction Scheduling: Delay slots - Example of filling

Instruction Scheduling: Introduction

Example

r2 = *(rl + 4)
r3 = *(rl + 8)
rs=r2-1

goto L1
noop

Example

r2 = *(rl + 4)
r3 = *(rl + 8)

r’5=r2-1
goto L1
rd =r2 +r3

Final code after delay slot filling

Real Machine Model cont.

¢ Most modern processors have multiple
execution units (superscalar).
¢ If the instruction sequence is correct, multiple
operations will take place in the same cycles.

¢ Even more important to have the right
instruction sequence.

&0
b
g

i

|
P
=

2

a
&
@

@

Instruction Scheduling: Introduction

Instruction Scheduling: Introduction

07/05/2004 09:20

Example

r2 = *(rl + 4)
r3 = *(rl + 8)

r5=r2-1
goto L1
rd =r2 + r3

From a Simple Machine Model
to a Real Machine Model

¢ Many pipeline stages.
¢ MIPS R4000 has 8 stages.
¢ Different instructions take different amount of
time to execute.
e mult 10cycles
¢ div 69 cycles
¢ ddiv 133 cycles
¢ Hardware to stall the pipeline if an instruction
uses a result that is not ready.

Instruction Scheduling

Goal: Reorder instructions so that pipeline
stalls are minimized.

Constraints on Instruction Scheduling:
¢ Data dependencies.
+ Control dependencies .
¢ Resource constraints.

Data Dependencies

¢ If two instructions access the same variable, they
can be dependent.
¢ Kinds of dependencies:
¢ True: write
¢ Anti: read — write. (Write After Read, WAR)
¢ Anti (Output): write — write. (Write After Write, WAW)
¢ What to do if two instructions are dependent?
¢ The order of execution cannot be reversed.
¢ Reduce the possibilities for scheduling.

> read. (Read After Write, RAW)

Advanced
hitp: //1amp. epf L

plr Techniques 07/05/2001
cn <oConpiter/

Representing Dependencies

¢ Using a dependence DAG, one per basic block.
¢ Nodes are instructions, edges represent dependencies.

1: r2 = *(r1 + 4) 1 2
2: r3 = *(rl + 8)
3: r4 =r2+r3 /&/
4: r5=r2 - 1

2=l 4 3

Edge is labeled with latency:
v(i — j) = delay required between initiation times of
i and j minus the execution time required by i.

Adv 57/05/ 2001
hitp: //amp. ConpLer/

Another Example

r2 = *(rl + 4)
*(rl + 4) = r3
r3 =r2+r3 1
r’s =r2 -1

AW N =

| Dependencies

07/05/2004 09:20

Computing Data Dependencies

¢ For basic blocks, compute dependencies by
walking through the instructions.
¢ Identifying register dependencies is simple.
¢ is it the same register?
¢ For memory accesses.
¢ simple: base + offsetl ?= base + offset2
¢ data dependence analysis: a[2i] ?= a[2i+1]
¢ interprocedural analysis: global ?= parameter
¢ pointer alias analysis: p1 ?=p

iques 07/05/2004
<oConpiter/

Example

1: r2 = *(r1 + 4)
2:r3 = *(r2 + 4))
3: rd=r2 +r3 1 2
4: r5=1r2 - 1 /\/
2 2
2
4 3

Control Dependencies and
Resource Constraints

¢ For now, let’s only worry about basic
blocks.

¢ For now, let’s look at simple pipelines.

(]
g
g
@
a
o
)
5]
@

Instruction Scheduling: List scheduling

Instruction Scheduling: List scheduling

Example
Results available in
1: LA rl,array 1 cycle
2: LD r2,4(rl) 1 cycle
3: AND r3,r3,0x00FF 1 cycle
4: MULC ré,r6,100 3 cycles
5: ST r7,4(ré6)
6: DIVC r5,r5,100 4 cycles
7: ADD rd,r2,r5 1 cycle
8: MUL r5,r2,r4 3 cycles
9: ST r4,0(rl)
14 cycles!

1 /2 3 4 st st 5 6 st st st 78 9

List Scheduling Algorithm

¢ Create a dependence DAG of a basic block.
¢ Topological Sort.
= nodes with no predecessors.
Loop until is empty.
Schedule each node in when no stalling

+=nodes whose predecessors have all been
scheduled.

Heuristics for selection

Pick the node with the longest path to a leaf
in the dependence graph

Algorithm (for node x)
¢ If x has no successors d, =0
+d, =MAX(d, +c,) forall successorsy of x.

Use reverse breadth-first visiting order

Instruction Schedul

07/05/2004 09:20

A ¢ Optimal list scheduling is NP-complete.

List Scheduling Algorithm

¢ Idea:
¢ Do a topological sort of the dependence DAG.

+ Consider when an instruction can be scheduled
without causing a stall.

Schedule the instruction if it causes no stall and all
its predecessors are already scheduled.

¢ Use heuristics when necessary.

Heuristics for selection

Heuristics for selecting from the READY list:

1. pick the node with the longest path to a leaf
in the dependence graph.

2. pick a node with the most immediate
successors.

3. pick a node that can go to a less busy pipeline
(in a superscalar implementation).

Heuristics for selection

Pick a node with the most immediate
SUCCessors.

Algorithm (for node x):
¢ £, = number of successors of x

07/05/2004 09:20

) Example) Example
: Results available 1in : 1 3 4
& ri,array 1 cycle 1 LA rl,array . :
£ r2,4(ril) 1 cycle E2: LD r2,4(rl) l l
z r3,r3,0x00FF 1 cycle Ell3: AND r3,r3,0x00FF , 6 5
o ré,ré,100 3 cycles (4. MULC r6,r6,100
G r7,4(r6) % B r7.,4(r6) N /1
r5,r5,100 4 cycles Ef6: DIVC r5,r5,100 7
rd,r2,rs 1 cycle 87 ADD ra,r2,rs V X
r5,r2,r4 3 cycles 8: MUL r5,r2,ré4
r4,0(r1) flo: ST r4,0(r1) 8 9
_ Example _ Example
E d= = . E d= = .
1m0 (O B Ve (3 (08
:u ll 3 :u 1! 31416 ll 31
HI READY = { } d=4 d=7 P Hl READY ={ 6,1,4,3} d=4 a=7 =0
z 2) f=1 6 =1 (5 f=0 2 2) f=1 6) f=1 (5 =0
* N /1 * N /1
. 7)d3 E , “d=3
S =2 S =2
3/ N\ 3/ N
d=0 d=0 d=0 d=0
g 8 t=0 9 f=0 g 8 t=0 % f=0
_ Example _ Example
E d=5 - = e d=5 - -
1m0 (R B Ve (3 (8
11 31 11 31
E READY = { y 1, 4, 3 } d=4 d=7 d=0 :% READY = { y 4, 3 } d=4 d=0
_i 2 =1 6 | f=1 5 f=0 _i 2 =1 6 5 f=0
3 N 4 3 N
£ 7 d=3 £ 7 d=3
S =2 S =2
3/ N\ 3/ N\
d=0 d=0 d=0 d=0
g /7\‘ 8 t=0 % f=0 - 8 t=0 9 f=0
6 6 1

07,/05,/2004 09:20

0 —
T}
o -

il
II

<+ — In

S o
1L
O

oo H
[T H
df <
o
© G =
O
~ co
ST [T

1N\
o 38

HRINISU|

Example
1

oo t
0 :
el <

o

© G =
O
~ oo

T I

df\ ke
I i © o]

)

<+

[

A —
<

=

=4

arduwrexg - Surnpayps 1517 :Bulnpaypg uoHINYSU]

N Oo
T 5
o - O
<« — 1
)
oo co I
o [T H
o - o - 2
[
G i i =
O
= TT
9}
! N
o
m — ~ ©
]
&
= P
=~
<
inad (o]
]
>
D Ll
= |
b
[~

ardurexg - Surnpayds 11T BUINPaYS UoRINLS

Example
1

T OTF
I

1
O s
<+ = 1n
%)

oo oo ¥

I [N £

LRl LR 3
3

G i iGN =
O
~ oo

T I

df\ ke
I i © o]

{2,43}

>
a
<
)
4

apdurexq - Surnpayps 117 SurNpatds uonoNTSU

oo oo
o o
o o -
I
G i i
O
= TT
Q
= -
o
m — ~ ©
]
e
o
=
I
&
<
o
o ~
[}
A =
rAm .,
" o
[~

6 (=,
I TS
o - T

<+ — In
o

ardurex - Surnpayds st S

o (=
i 5
o - T

<+ — In
o

TT TT
-Ff o -
I
G i i =
O
~ oo
w0

o -

(39)

=
pl ~ ©
g
]
X
R

©
<«
~
1l

P
=)
<
=
&~

apdurexq - Surnpayps 111 SurNpatds uooNLSU

07,/05,/2004 09:20

Example

1 3

T
oo
'y
-
I
oo
'y

5
READY ={7,3} A READY = {7, 3,5}

o
1}
(=]
o
1}
(=]

e
1l
N

N3
A

@
- S
I
oo
K=}
. R
I
oo
@
- S
I
oo
K=}
. Q
I
oo

Instruction Scheduling: List scheduling - Example

Instructic

Example Example

1 3

-
I

oo
'y

g - Example

-
I

oo
'y

ling

8,9
READY ={, 3,5} READY ={3,5]

o
1}
(=]
o
1}
(=]

0
(8]

7

/ 1

d=0
f=0

W
-~
I
N
d

A,

K=}
. R
I
oo
@
- S
I
oo
o
.
gyl
oo

Instruction Scheduling: List scheduling - Example

Instruction Sched

Example Example

1 3 1 3 4

T
oo
'y

READY ={3,5,8,9} READY ={5, 8,9}

o
1}
(=]
o
1}
(=]

st scheduling - Example

K=}
.
gyl
oo
K=}
. Q
gyl
oo

%z
i
0
@
80
&
3

07/05/2004 09:20

Example) Example
1 3 4 E— 1 3 4
| READY ={ ", 8,9} - H READY = (8,9}
6 5) =0 z 2 6 5
d=0 d=0 é d=0 d=0
......... 8)0 2)¢=0 : /\ 8)g=0 2)¢=0
6|1|2/a]7|3]|5 6|1|(2/a]7|3]|5

g - Example

alin,

READY ={ ", 9} READY ={9}

@
- S
I
oo
K-}
. R
Iyl
oo
@
o
.
Iyl
oo

Instruction Scheduling: List scheduling - Example

Instructic

Example) Example
1 3 4 E 1 3 4
I READY ={ " } H READY ={ }
2 6 5 2 2 6 5
d=0
8 9 92 : 8 9
6|1]2]4a]7[3[5]8]09 612473589

10

_ Example

éf Results available in
El1: LA rl,array 1 cycle
Ed2: LD r2,4(rl) 1 cycle
EN3: AND r3,r3,0x00FF 1 cycle
—‘j 4: MULC ré,r6,100 3 cycles
5. ST r7,4(r6)

6. DIVC r5,r5,100 4 cycles
E47: ADD rd,r2,r5 1 cycle
Z; 8: MUL r5,r2,ra 3 cycles
f; 9: ST r4,0(rl)

i 1 2 3 4 st st 5 6 st st st 7 8 9
£ 14 cycles
6 | 1|/2 4|7/ 3|5 8|9 s,

9 cycl

Resource Constraints of a
Superscalar Processor

Example:
¢ 1 integer operation, e.g.,
ALUop dest, srcl, src2# in 1 clock cycle

duling: Resource Constraints

In parallel with

¢ 1 memory operation, e.g.,
LD dst, addr #in 2 clock cycles
ST src, addr #in 1 clock cycle

Instruction Sche

List Scheduling Algorithm with
Resource Constraints

¢ Represent the superscalar architecture as
multiple pipelines
¢ Each pipeline represents some resource
¢ Example:

duling: Resource Constraints

¢ One single cycle ALU unit.
¢ One two-cycle pipelined memory unit.

@
3

ALUop
MEM 1
MEM 2

07,/05,/2004 09:20

Resource Constraints

®
%
S

¢ Modern machines have many resource
constraints.
¢ Superscalar architectures:
¢ can run few parallel operations.
¢ but have constraints.

List Scheduling Algorithm with
Resource Constraints

¢ Represent the superscalar architecture as
multiple pipelines.

irce Constraints

¢ Each pipeline represents some resource.

Instruction Sch

List Scheduling Algorithm with
Resource Constraints

¢ Create a dependence DAG of a basic block.
¢ Topological Sort
READY = nodes with no predecessors
Loop until READY is empty
Letn € READY be the node with the highest
priority
Schedule n in the earliest slot
that satisfies precedence + resource constraints
Update READY

11

16

Example
(Slightly different rom revious example.)
LA rl,array d=4 d=0 d=2
LD r2,4(rl) 1)f=1 3 %=0 4)f=1
AND r3,r3,0xQ8FF 1] 2|
LD ré6,8(sp) 2 d=3 6 d=2 5 d=0
ST r7,4(r6) \fjl £=1 £=0
ADD r5,r5,100 1
ADD rd,r2,r5 2 ” d=1
MUL r5,r2,r4 f=2
ST r4,0(r1) }/ \1.
EADY ={7,6,4,3} 8 950 (9 420
ALUop 1
EM 1
EM 2
Example
LA rl,array d=0 d=2
LD r2,4(rl) a 3 %=0 4)f=1
AND r3,r3,0x00FF 1 2
LD ré6,8(sp) d=3 d=2 d=0
ST r7,4(ré) 2\fj1 ‘/6 £=1 (5)f=0
ADD r5,r5,100 1
ADD rd,r2,r5 2 ” d=1
MUL r5,r2,r4 f=2
ST ra,0(rl) }/ \1.
EADY ={2,6,4,3} 8 950 (9 420
wwor [
EM 1
EM 2 2
Example
LA rl,array d=0 d=2
LD r2,4(r1) a 8)%=0 4 f=1
AND r3,r3,0x00FF 1 2
LD ré6,8(sp) d=0
ST r7,4(r6) 2 6 5)f=0
ADD r5,r5,100 2 1
ADD rd,r2,r5 ” d=1
MUL r5,r2,r4 f=2
ST ra,0(rl) }/ \1.
= . d=0 d=0
EADY ={4,3} - 7 8)90 (g)d=¢

S

@
3
4

Instruction Sch

esource Constraints

Instruction Schex

e
@
3

ing: Resource

07/05/2004 09:20

Example
1: LA rl,array d=0 d=2
2: LD r2,4(r1) a 3 §=0 4 =1
3: AND r3,r3,0xQ0FF 1 2|
4: LD ré6,8(sp) d=3 d=2 d=0
5: ST r7,4(r6) z\fjl 6)t=1 (5)f=0
6: ADD r5,r5,100 1
7: ADD rd,r2,r5 2 ” d=1
8: MUL r5,r2,r4 =2
9: ST ra,0(rl) }/ \1.
- . d=0 d=0
EADY ={6,4,3} 2 8)90 (9)d=t
ALUop 1
EM1
EM 2
Example
LA rl,array d=0 d=2
LD r2,4(rl) a 3 %=0 4)f=1
AND r3,r3,0xQ0FF 1 2|
LD ré6,8(sp) d=2 d=0
ST r7,4(r6) 2 ‘/6 f=1 (5 f=0
ADD r5,r5,100 1
ADD rd4,r2,r5 2 ” d=1
MUL r5,r2,r4 f=2
. ST ra,0(rl) }/ \1.
= d=0 d=0
EADY ={6,4, 3} 8)90 (9)40
ALUop 1 6
EM1 2
EM 2 2
Example
LA rl,array d=0 d=2
LD r2,4(rl) a 3 %=0 4)f=1
AND r3,r3,0xQ0FF 1 2|
LD ré6,8(sp) d=0
ST r7,4(r6) 2 6 5 =0
ADD r5,r5,100 2 1
ADD rd4,r2,r5 ” d=1
MUL r5,r2,r4 f=2
ST ra,0(rl) }/ \1.
= d=0 d=0
EADY ={4,7,3} 8 %00 9)%
ALUop 1 6
EM1 4 2
EM 2 42

Advanc
http: //Lamp. ept

12

Example
: LA ril,array d=0
: LD r2,4(r1) a 8 J¢=0 (4
: AND r3,r3,0x00FF 1 2
1 LD ré,8(sp) d=0
;ST r7,4(r6) 2 6 5)f=0
ADD r5,r5,100 2 1
ADD rd,r2,r5 ” d=1
: MUL r5,r2,r4 f=2
. ST ra,0(rl) }/ \1.
= . d=0 d=0
EADY={7,3} - 5 8)90 (9)d=¢
ALUop 1 6
EM1 4 2
EM 2 4 2
Example
: LA ril,array d=0
: LD r2,4(r1) a 8 J¢=0 (4
: AND r3,r3,0x00FF 1 2
1 LD ré,8(sp) d=0
;ST r7,4(r6) 2 6 5)f=0
ADD r5,r5,100 2 1
ADD rd,r2,r5 7
: MUL r5,r2,r4
. ST ra,0(rl) 1 1
= d=0 d=0
EADY={3,5} - 89 8)90 (9)d=¢
LUop 1 6 7
EM1 4 2
EM 2 4 2
Example
: LA rl,array
: LD r2,4(r1) a £ <
: AND r3,r3,0x00FF 1 2
1 LD ré,8(sp) d=0
;ST r7,4(r6) 2 6 5)f=0
: ADD r5,r5,100 2 1
: ADD rd,r2,r5 7
: MUL r5,r2,r4
9: ST ra,0(rl) 1 1
= d=0 d=0
EADY ={5,8,9} 8 50 (9)90
LUop 1 6 3 7
EM1 4 2 5
e 2

S

@
3
4

Instruction Sch

esource Constraints

Instruction Schex

ing: Resource

g
)
2

07/05/2004 09:20

Example
LA rl,array d=0
LD r2,4(rl) a 3 ¢=0 (4
AND r3,r3,0x00FF 1 2
LD ré6,8(sp) d=0
ST r7,4(r6) 2 6 5)£=0
ADD r5,r5,100 2 1
ADD rd,r2,r5 ” d=1
MUL r5,r2,r4 f=2
ST ra,0(rl) }/ \1.

- d=0 d=0
EADY={7,3,5} 8 £=0 9 £=0
N
EM1 4 2
EM 2 1 |

Example
LA rl,array d=0
LD r2,4(rl) a 3 ¢=0 (4
AND r3,r3,0x00FF 1 2
LD ré6,8(sp) d=0
ST r7,4(r6) 2 6 5)£=0
ADD r5,r5,100 2 1
ADD rd,r2,r5 7
MUL r5,r2,r4
ST ra,0(rl) 1 1
EADY ={3,5,8,9} 8 950 (9 420
ALUop 1 6 3 7
EM1 4 2
EM 2 4 2
Example
LA rl,array
LD r2,4(rl) a £ <
AND r3,r3,0x00FF 1 2
LD r6,8(sp)
ST r7.,4(ré) 2 6 5
ADD r5,r5,100 2 1
ADD rd,r2,r5 7
MUL r5,r2,r4
ST ra,0(rl) 1 1

= d=0 d=0
EADY ={8,9} 8)90 (9)d=¢
uop 1 6 3 [s
EM1 4 2 5
EM 2 4 2

13

07/05/2004 09:20

Example Example
Bl LA rl,array Bl LA rl,array
: P r2,4(r1) 1 3 4 : P r2,4(r1) 1 3 4
2 PR r3,r3,Ox00FF 1 2 2 Py r3,r3,Ox00FF 1 2
Fl4: LD ré6,8(sp) Fl4: LD ré6,8(sp)
: r7,4(ré) 2 6 5 : r7,4(ré) 2 6 >
k6. ADD r5,r5,100 2 1 k6. ADD r5,r5,100 2 1
Ed7: ADD rd4,r2,rs 7 Ed7: ADD rd4,r2,rs 7
8: MUL r5,r2,r4 ENS8: MUL r5,r2,r4
o s r4,0(r1) d i o s r4,0(r1) d i
EIREADY = {9} 8 9 420 EIREADY = { } 8 9
Bivor 1 6 3 s Bhivop 1 6 3 7 8
EM1 4 2 5 9 EM1 4 2 5 9
EM 2 4 2 EM 2 4 2
Register Allocation Examole
) and Instruction Scheduling) p
Bl ¢ If register allocation is performed before : IR r2,0(r1) 31
instruction scheduling;: | 2 A0 332 2 X\
< _ ; . EE r2,4(rs)
2 ¢ the choices for scheduling are restricted. B 4: AapD ré,ré,r2 N
3
i E ALUop 2 4 4
MEM1 1 3
MEM 2 1 3
Example Example
; 1 ; 1
M 1w r2,0(r1) 3 M 1w r2,0(r1) 3|
B 2: ADD r3,r3,r2 o\ 1 B 2: ADD r3,r3,r2 >
s 3: LD r2,4(r5) s 3: LD r4,4(r5)
é"‘ 4: ADD ré6,ré,r2 K _;' 4: ADD ré,r6,r4
@ False dependencies E
i (Anti-dependencies) l 3 g l 3
3 4 £ ALUop 2|4 4
o . MEM1 1 3
How about using a different register?
MEM 2 1|3

14

=
g

Register Allocation
and Instruction Scheduling

¢ If register allocation is performed before
instruction scheduling:

¢ the choices for scheduling are restricted.

¢ If instruction scheduling is performed
before register allocation:
¢+ register allocation may spill registers.
¢ will change the carefully done schedule!!!

Adva

Moving across basic blocks

Downward to adjacent basic block

A

Control Dependencies

Constraints in moving instructions across basic blocks

if (.. .)
if (.. .) d = *(al)
a=bopc
Not allowed if e.g. Not allowed if e.g.
if (c 1= 0) if(valid_address(al))
a=b/c d = *(al)

2
7}
2

ss basic blocks

<
b
@

Instruction Scheduling: Acro:

07/05/2004 09:20

Scheduling across basic blocks

¢ Number of instructions in a basic block is
small.
¢ Cannot keep a multiple units with long
pipelines busy by just scheduling within a
basic block.
¢ Need to handle control dependencies.
¢ Scheduling constraints across basic blocks.
¢ Scheduling policy.

Moving across basic blocks

Upward to adjacent basic block

A path from C that does not reach A?

Outline

* & O & o o

.

¢ Trace scheduling

¢ Scheduling for loops
¢ Loop unrolling

¢ Software pipelining

15

Trace Scheduling

¢ Find the most common trace of basic
blocks.
¢ Use profile information.
¢ Combine the basic blocks in the trace and
schedule them as one block.
¢ Create compensating (clean-up) code if the
execution goes off-trace.

on Scheduling: Trace Scheduling

Trace Scheduling

n Scheduling: Trace Scheduling

Trace Scheduling

Instruction Sch

Instruction Scheduling: Trace Scheduling

07/05/2004 09:20

50

g
9]
=

&

Trace Scheduling

Trace Scheduling

Instruction Scheduling: Trace Scheduling

Trace Scheduling

16

a
2
O
&
3
3

Instruction Scheduling: Loop Scheduling

Instruction Scheduling: Loop Scheduling

Large Basic Blocks via

Code Duplication
¢ Creating large extended basic blocks by
duplication.
¢ Schedule the larger blocks.
*_A *—A
B_ | [¢] . B | [¢]
\E j/ | |
D . D | . D |
E [E] [E]

Loop Example

Machine:
¢ One load/store unit
¢load 2 cycles
#store 2 cycles
¢ Two arithmetic units
¢add 2 cycles
¢branch 2 cycles (no delay slot)
¢ multiply 3 cycles
¢ Both units are pipelined (initiate one op each
cycle)

iques 07/05/ 2004
vanceaConpi ter/

Loop Example

Assembly Code

1d r6, (r2)

mul r6, r6, r3

st r6, (r2)

add r2, r2, 4

ble r2, r5, loop
Schedule (9 cycles per iteration)

st

Mem m
mul ble
ALU1 mul ble
mul
ALU2 add
add

&
g

&
i
@

@

Instruction Scheduling: Loop Scheduling

Instruction Scheduling: Loop Scheduling

07/05/2004 09:20

Scheduling for Loops

¢ Loop bodies are typically small.

4 But a lot of time is spend in loops due to
their iterative nature.

¢ Need better ways to schedule loops.

Loop Example

Source Code
for i =1 to N
A[i] = A[i] * b

Assembly Code

loop:
1d r6, (r2)
mul r6, r6, r3
st r6, (r2)

add r2, r2, 4
ble r2, r5, loop

Loop Unrolling

Oldest compiler trick of the trade:
Unroll the loop body a few times

Pros:

¢ Creates a much larger basic block for the body.

¢ Eliminates few loop bounds checks.
Cons:

¢ Much larger program.

¢ Setup code (# of iterations < unroll factor).

¢ Beginning and end of the schedule can still have
unused slots.

17

50
g
3
&
<
@

Instruction Scheduling: Loop Scheduling

Instruction Scheduling: Loop Scheduling

Loop Example
loop: loop:
1 ré, (r2) 1d r6,(r2)
mul r6, r6, r3 mul r6, r6, r3
st r6, (r2) st r6,(r2)
add r2, r2, 4 add r2, r2, 4
ble r2, r5, loop 1d r6,(r2)
mul r6, r6, r3
st r6,(r2)
add r2, r2, 4
Schedule (8 cycles per iteration) ble r2, r5, loop
Mem “] 2 st £] 2 st
ALU1 m mul m mul ae ble
mul mul
ALU2 add — add =
Loop Example
loop: loop:
{h ré, (r2) 1d r6, (r2)
mul ré, r6, r3 mul ré, r6, r3
st r6, (r2) st r6, (r2)
add r2, r2, 4 add r2, r2, 4
1d r6, (r2) 1d r7, (r2)
mul r6, r6, r3 mul r7, r7, r3
st r6, (r2) st r7, (r2)
add r2, r2, 4 add r2, r2, 4
ble r2, r5, loop ble r2, r5, loop
Loop Example
loop: loop:
1d r6, (r2) 1d r6, (rl)
mul r6, r6, r3 mul r6, r6, r3
st r6, (r2) st r6, (rl)
add r2, r2, 4 add r2, rl1, 4
1d r7, (r2) d r7, (r2)
mul r7, r7, r3 mul r7, r7, r3
st r7, (r2) st r7, (r2)
add r2, r2, 4 add ri1, r2, 4
ble r2, r5, loop ble rl, r5, loop

50
g
3
&
<
@

Instruction Scheduling: Loop Scheduling

Instruction Scheduling: Loop Scheduling

07/05/2004 09:20

Loop Unrolling

¢ Rename registers.

¢ Use different registers in different iterations.

Loop Unrolling

¢ Rename registers.

¢ Use different registers in different iterations.

¢ Eliminate unnecessary dependencies.
¢ again, use more registers to eliminate true, anti
and output dependencies.
¢ eliminate dependent-chains of calculations
when possible.

Loop Example

loop: loop:
1d r6, (rl) 1d r6, (rl)
mul r6, r6, r3 mul r6, r6, r3
st r6, (rl) st r6, (rl)
add r2, ri1, 4 add r2, rl1, 4
1d r7, (r2) 1d r7, (r2)
mul r7, r7, r3 mul r7, r7, r3
st r7, (r2) st r7, (r2)
add rl1, r2, 4 add ri,
ble r1, r5, loop ble r1, r5, loop

18

Loop Example

£ loop: loop:

2 1d r6, (rl) 1d ré6,
) mul r6, r6, r3 mul ré6,
g st r6, (rl) st ré,
B add r2, rl1, 4 add r2,
£ 1d r7. (r2) d r7,
2 mul r7, r7, r3 mul r7,
g st r7, (r2) st r7,
g add ri, add rl,
3 ble r1, r5, loop ble ri,

(rl)

ré, r3
(rl)

rl, 4
(r2)

r7, r3
(r2)

rl, 8
r5, loop

Ad
nttp: //1amp.

Software Pipelining

tware Pipelining

5}
@

¢ Try to overlap multiple iterations so that

the slots will be filled.

¢ Find the steady-state window so that:

¢ all the instructions of the loop body is
executed.

¢ but from different iterations.

iques 07/05/ 2004
vanceaConpi ter/

Loop Example

Assembly Code

loop:
1d ré, (r2)
mul ré, ré, r3
st ré, (r2)
add r2, r2, 4
ble r2, r5, loop

Schedule (2 cycles per iteration)

1d3

st 1d3

mul2 |ble
mul2

add

Ad
hitp: //amp.

&
g

&
i
@

@

07/05/2004 09:20

Loop Example

5 . loop
Schedule (4.5 cycles per iteration)

Mem Id Id st

ALU1 mul mul

ALU2 add add

Loop Example
Assembly Code
loop:
1d ré, (r2)
mul ré, ré, r3
st ré, (r2)
add r2, r2, 4
ble r2, r5, loop
Schedule
Id 1d2 st 1d3 Id4 st2 st3
Id 1d2 st 1d3 Id4 st2 st3
mul mul2 ble] mul3 mul4 | ble2
mul mul2 ble | mul3 mul4 | ble2
mul mul2 mul3 mul4
add add2 add3
add add2 add3

Loop Example
4 iterations are overlapped. a3
¢ values of r3 and r5 don’t change st 1d3
mul2 |ble
¢ 4 regs for &Ali] (r2) mul2
¢ each addr. incremented by 4*4
. add
¢ 4 regs to keep value A[i] (16)
loop:
¢ Same registers can be reused ld r6, (r2)
after 4 of these blocks '2%1 I':g E?j) 7
generate code for 4 blocks, add r2. r2, 4
otherwise need to move . ble r2, r5, loop

Software Pipelining

¢ Optimal use of resources.
¢ Need a lot of registers.

¢ Values in multiple iterations need to be kept.
¢ Issues in dependencies.

¢ Executing a store instruction in an iteration before
branch instruction is executed for a previous iteration
(writing when it should not have).

¢ Loads and stores are issued out-of-order (need to
figure-out dependencies before doing this).

¢ Code generation issues.
¢ Generate pre-amble and post-amble code.
¢ Multiple blocks so no register copy is needed.

07/05/2004 09:20

20

