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Overview

♦ In this second part of the course we will talk 
about how to implement:
♦ Objects and inheritance.
♦ FPLs: higher order functions, laziness.
♦ Concurrency: processes, message passing.
♦ Automatic memory management. (GC)
♦ Virtual Machines. (maybe also interpretation.)
♦ Just in time compilation.  
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Implementation of High Level 
Languages

♦We will look at some simple ways to 
implement concepts in HLL.

♦We will look at some more complex and 
more efficient implementations of these 
concepts.

♦We will also look at some general 
optimization techniques that can be used 
with great advantage in HLL.
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Implementation of 
Object Oriented Languages

♦In class based OO languages each object 
belongs to a class that defines the fields, 
methods, and the type of the object.
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class A {

int x=42;

int y=17;

int foo() {

return x;

}

}

A a = new A;

a.foo();

A a:

header:

x: 42

y: 17

foo: return x

VMT Code:fooStack

Heap
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Implementation of 
Object Oriented Languages

♦In class based OO languages each object 
belongs to a class that defines the fields, 
methods, and the type of the object.
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class A {

int x=42;

int y=17;

int foo() {

return x;

}

}

A a:

header:

x: 42

y: 17

foo: return x

VMT Code:fooStack

Heap

Reference to object: 
many/object.

A a = new A;

a.foo();
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Implementation of 
Object Oriented Languages

♦In class based OO languages each object 
belongs to a class that defines the fields, 
methods, and the type of the object.
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class A {

int x=42;

int y=17;

int foo() {

return x;

}

}

A a:

header:

x: 42

y: 17

foo: return x

VMT Code:fooStack

Heap

Representation of object: 
1/object.

A a = new A;

a.foo();
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Implementation of 
Object Oriented Languages

♦In class based OO languages each object 
belongs to a class that defines the fields, 
methods, and the type of the object.
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class A {

int x=42;

int y=17;

int foo() {

return x;

}

}

A a:

header:

x: 42

y: 17

foo: return x

VMT Code:fooStack

Heap

Virtual Method Table:

1/class.

A a = new A;

a.foo();
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Implementation of 
Object Oriented Languages

♦In class based OO languages each object 
belongs to a class that defines the fields, 
methods, and the type of the object.
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class A {

int x=42;

int y=17;

int foo() {

return x;

}

}

A a:

header:

x: 42

y: 17

foo: return x

VMT Code:fooStack

Heap

Code for functions (foo):

max 1/class.

A a = new A;

a.foo();
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Implementation of 
Object Oriented Languages

♦Object Oriented languages support 
inheritance.

♦Inheritance complicates the answer to some 
questions:
♦Where is the value of a field stored?
♦Where is the code for a certain method?
♦What type will a value have at runtime? 
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Single Inheritance:
Fields

♦With single inheritance we can order the 
fields in such a way that all fields of a class 
are stored after fields of the superclass.

♦This way we know at compile time the 
offset of each field.
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Single Inheritance:
Fields

♦Example:
class A           { int x = 0; }
class B extends A { int y = 0;

int z = 0; }
class C extends A { int r = 0; }
class D extends A { int s = 0; }
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Single Inheritance:
Fields

class A           {int x = 0;}
class B extends A {int y = 0;

int z = 0;}
class C extends A {int r = 0;}
class D extends B {int s = 0;}
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A a:

B b:

C c:

D d:

header:
x: 0

Stack

Heap

header:
x: 0
y: 0
z: 0

header:
x: 0
r: 0

header:
x: 0
y: 0
z: 0
s: 0

Offsets:

(A,B,C,D).x: 1

(B,D).y: 2

(B,D).z: 3

(C).r: 2

(D).s: 4
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Single Inheritance:
Methods

♦ If we only have single inheritance we can handle 
methods in much the same way as fields.

♦ We store addresses to methods in the VMT 
instead of in the object.

♦ We copy all the addresses of the super classes to 
the VMT of the subclasses.

♦ If a method is overridden we use the address of 
the new definition instead of the definition in the 
superclass.Im

pl
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Single Inheritance:
Methods

♦Example:
class A           { int f {…}; }
class B extends A { int g {…}; }
class C extends B { int f {…}; }
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Single Inheritance:
Methods
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class A {int f {…}; }
class B extends A {

int g {…}; }
class C extends B {

int f {…}; }
header:

f:

VMT (A)

Code:A_fHeap

A a = new A;
B b = new B;
C c = new C;
b.g();
c.f();

LD r1,SP(4) ; Get c

LD r2,r1(0) ; Get &VMT(C)

LD r3,r2(0) ; Get &C_f

call r3     ; Call C_f

header:

header:

f:
g:

VMT (B)

f:
g:

VMT (C)

Code:B_g

Code:C_f

LD r1,SP(8) ; Get b

LD r2,r1(0) ; Get &VMT(B)

LD r3,r2(4) ; Get &B_g

call r3     ; Call B_g
Advanced Compiler Techniques 5/14/2004
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Single Inheritance:
Testing Class Membership

♦Many OO languages allow you to test class 
membership of an object.

♦In Java there is “o instanceof C”.
♦An object is a member of all its 

superclasses.
♦We need to be able to find the superclass of 

a class. Let us extend our implementation 
with class descriptors.
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Single Inheritance:
Class Membership
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class A {int f {…}; }
class B extends A {

int g {…}; }
class C extends B {

int f {…}; }

header:

super:
f:VMT

Code:A_f

HeapA a = new A;
B b = new B;
C c = new C;
c instance of A; header:

header:

super:
f:
g:

super:
f:
g:

Class C

Code:B_g

Code:C_f

Class A

Class B

VMT

VMT

Now we can do 
c instance of A as:

t = c.header
L:    if t == A goto True

t = t.super
if t != nil  goto L
res = false
goto End

True: res = true
End:  Advanced Compiler Techniques 5/14/2004
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Single Inheritance:
Testing Class Membership

♦Searching through the class hierarchy is 
inefficient.

♦We can trade space for speed.
♦Let each class descriptor have a display of 

all superclasses. I.E., a direct link to each 
superclass.Im

pl
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Single Inheritance:
Class Membership
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class A {}
class B extends A { }
class C extends B { }

header:

level: 1
s

VMT
HeapA a = new A;

B b = new B;
C c = new C;
c instance of A; header:

header:

level: 2
ss
s

level: 3
sss
ss
s

Class C

Class A

Class B

VMT

VMT

Now we can do 
c instance of A as:

t1 = c.header
res = t1[0] >= 1 \\ A_level
if !res goto End
t2 = t1[2]  \\ 2<-A_level+1 
res = (t2 == A)

End:
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Multiple Inheritance

♦In languages with multiple inheritance, i.e., 
where it is possible to extend several parent 
classes with a class, all the operations we 
have seen become more difficult.

♦Java’s hybrid approach with interfaces 
complicates these issues in the same way as 
multiple inheritance.Im
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Multiple Inheritance:
Graph Coloring

♦ One way to handle the layout of fields would be 
to use graph coloring. (This can also be used for 
methods.)

♦ All identical fields would have to occupy the 
same offset in the object.

♦ For some objects there would be holes in the array 
of fields. To reduce the wasted space the fields 
can be compacted in the object by storing the 
offsets in the class descriptor.
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Multiple Inheritance:
Graph Coloring

class A             {int x = 0;}
class B             {int y = 0;

int z = 0;}
class C extends A,B {int r = 0;}
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A a:

B b:

C c:

header:
x: 0

Stack

Heap

header:
-----
y: 0
z: 0

header:
x: 0
y: 0
z: 0
r: 0

Offsets:

(A,C).x: 1

(B,C).y: 2

(B,C).z: 3

(C).r: 4
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Multiple Inheritance:
Graph Coloring

class A             {int x = 0;}
class B             {int y = 0;

int z = 0;}
class C extends A,B {int r = 0;}
A a = new A;
B b = new B;
B d = new B;
C c = new C;
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A a:

B b:

B d:

C c:

header:
x: 0

Stack

Heap

header:
y: 0
z: 0

header:
x: 0
y: 0
z: 0
r: 0

Offsets:

(A,C).x: header[0]

(B,C).y: header[1]

(B,C).z: header[2]

(C).r: header[3]

x: 1

Class A

----
y: 1
z: 2

Class B

x: 1
y: 2
z: 3
r: 4

Class C
header:
y: 0
z: 0
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Multiple Inheritance:
Graph Coloring

♦One problem with global graph coloring is 
that it is global: you need the whole 
program – must be done at link time.

♦If dynamic linking is possible this approach 
becomes even harder.
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Multiple Inheritance:
Hashing

♦ Second approach: Hashing.
♦ Instead of a global compile- or link time solution we can 

calculate a hash value for each name at compile time.
♦ At runtime we use the hash value as an offset into a hash 

table in the class descriptor. 
♦ This hash table contains the offset to fields in the object. 

(This also works for method addresses.)
♦ This can be costly if there are many collisions in the hash 

table.Im
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Multiple Inheritance:
Trampolines

♦Third approach: Trampoline functions.
♦We give each object several headers, one 

for each extended class.
♦We add trampoline functions that changes 

the view of the object from one class to 
another in an efficient way.

Im
pl

em
en

ta
tio

n 
of

 O
O

: M
ul

tip
le

 In
he

ri
ta

nc
e

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/27

Multiple Inheritance:
Trampolines

class A  {
int x = 0;
int f() {…}}

class B  {
int y = 0;
inf g() {… y …}}

class C extends A,B {
int z = 0;}

C c1 = new C();
A a  = (A) c1;
C c2 = (C) a;
B b  = (B) c2;

C c3 = (C) b;
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tramp: 
f: 

header:
x: 0
header:
y: 0
z: 0

C VMT-A

tramp: 
tramp_g: 

C VMT-B

return r1

r1 = r1 – 8
return r1

Code: tramp

Code: tramp

Code: f

Code: g
c1 = 
a  = c1;
c2 = a.tramp(); /* = a */
b  = c2+8;
c3 = b.tramp(); /* = b-8 */

r1 = r1 + 8
call g

Code: tramp_g
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Multiple Inheritance:
Trampolines

class A  {
int x = 0;
int f() {…}}

class B  {
int y = 0;
inf g() {… y …}}

class C extends A,B {
int z = 0;}

C c1 = new C();
A a  = (A) c1;
C c2 = (C) a;
B b  = (B) c2;

C c3 = (C) b;
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tramp: 
f: 

header:
x: 0
header:
y: 0
z: 0

C VMT-A

tramp: 
tramp_g: 

C VMT-B

return r1

r1 = r1 – 8
return r1

Code: tramp

Code: tramp

Code: f

c1 = 
a  = c1;
c2 = a.tramp(); /* = a */
b  = c2+8;
c3 = b.tramp(); /* = b-8 */

Code: g

r1 = r1 + 8
call g

Code: tramp_g
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Multiple Inheritance:
Trampolines

class A  {
int x = 0;
int f() {…}}

class B  {
int y = 0;
inf g() {… y …}}

class C extends A,B {
int z = 0;}

C c1 = new C();
A a  = (A) c1;
C c2 = (C) a;
B b  = (B) c2;
C c3 = (C) b;
c1.z;   // c1[16] 
c1.x;   // c1[4]  
c1.z;   // c1[12]
c1.g(); // t=c[8]; t2=t[8]; call t2; 
a.f();  // t=a[0]; t2=t[8]; call t2;
b.g();  // t=b[0]; t2=t[8]; call t2;
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tramp: 
f: 

header:
x: 0
header:
y: 0
z: 0

C VMT-A

tramp: 
tramp_g: 

C VMT-B

return r1

r1 = r1 – 8
return r1

Code: tramp

Code: tramp

Code: f

Code: g

r1 = r1 + 8
call g

Code: tramp_g

…
y // r1[4]
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Optimizing OO-Programs

♦ In modern machines a jump to a known address 
is much faster than a jump to an address fetched 
from a table.

♦ Dynamic dispatch also makes inlining and 
interprocedural analysis harder.

♦ Possible solutions: Whole program optimization, 
link time optimization, JIT compilation, or 
runtime optimizations.

♦ When we have the whole program we can turn 
many dynamic properties into static properties.
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Inline caching

♦Many dynamic calls actually go to the same 
class all the time.

♦For each call site remember the actual 
target of the last call.

♦Next time jump directly to this location, 
and check if we end up in the right place.Im
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Polymorphic Inline Caching

♦If a call site is polymorphic inline caching 
can lead to degraded performance.

♦Solution: Polymorphic inline caching, 
remember more than one target address.
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Polymorphic Inline Caching

♦Polymorphic inline caching can be 
implemented with an if then else search 
tree:

v.f()

if c.header < C {
if c.header < B A.f() else B.f()

} else {
if c.header < D C.f() else D.f()

} 
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OO: Summary 

♦ Implementing OO efficiently means 
implementing inheritance efficiently.

♦ There are several possible solution available and 
there is still research going on in this area.

♦ One of the most successful techniques for 
optimizing OO is to do it at runtime using JIT 
compilation – something we will look closer at 
later in the course.
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Implementation of Functional 
Programming Languages

♦ There is no common agreement on exactly what a 
functional programming language is. But usually 
such a language should have at least one of the 
following concepts:
♦ No statements – only functions (or expressions).
♦ Higher order functions.
♦ Pureness (no side effects).
♦ Laziness.
♦ Automatic memory management (Garbage collection.)
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Higher Order Functions

♦ In Misc (and in C) you have “second”-order functions. 
♦ That is, functions are also values in the language: you can take

their addresses and pass them around and apply them.
def apply(f: (Int) => Int, x: Int): Int = f(x);

♦ These functions can be represented with just a function pointer,
i.e., the address of the function.

♦ Functions that take functions as arguments are called 
higher order functions.

♦ For a language to have interesting higher order functions 
you need to be able to create new functions at runtime. 
E.g., in Scala you can write:

val f:(Int => Int) = x => x + 1;
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Higher Order Functions

♦ To get really interesting functions at runtime you 
need to be able to capture the free variables of the 
function.
♦ A free variable is a variable that is not bound by the 

definition of the function. (y is free in x => x+y.) 
def f(y:Int):(Int => Int) = x=>x+y;

♦ In order to do this we need closures.
♦ A closure is a data structure that contains a 

function pointer and a way to access all free 
variables of the body of the function.
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Higher Order Functions

♦ In an OO language a closure can be implemented as an object with a 
single method and several instance variables.

def f(y:Int):(Int => Int) = x=>x+y;
f(42)(17)

class F {
int y;
public F(int y) { this.y = y; }
public int apply(int x) {

return x+y; 
}

}

public F f(int y) = new F(y);
f(42).apply(17);
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Higher Order Functions

♦ This is more or less the way Scala implements 
functions.

♦ To make it more general we can make all closures 
implement the Function interface:

public interface Function1 {
public abstract java.lang.Object apply(java.lang.Object a0);

}

♦ We also need to take care of local (mutable) 
variables that are captured by the function. This can 
be done by turning them into references.
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Higher Order Functions

def f(y:Int):(Int => Int) = {
var z = y*2;
val f = x=>x+z;
z = z +1;
f;

}

class F {
IntRef y;
public F(IntRef y) { 
this.y = y; }

public int apply(int x) {
return x+y.v; 

}
}

class IntRef {
int v;
public IntRef(int i) {v=i;}
public set(int i) {v=i;}

}

public F f(int y) =  {
IntRef z = new IntRef(y*2); 
F f = new F(z);
z.set(z.v + 1);
return f;

} 
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Pure Functional Languages

♦ In a pure functional language there are no side 
effects.

♦ This includes no updates of variables. That is, 
variables are immutable.
♦ Variables are, like variables in mathematics, just names 

for values.
♦ If we say x = 42; then we give the value 42 a new 

name: x, from now on x and 42 are interchangeable.
♦ With a pure functional language it is possible to 

do equational reasoning.
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Lazy Evaluation

♦With lazy evaluation, an expression is not 
evaluated unless its value is demanded by 
some other part of the computation.

♦In contrast, strict languages (Java, ML, C, 
Erlang) evaluate each expression as the 
control flow reaches it.
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Call-by-Name Evaluation

♦Most languages pass function arguments 
using call-by-value:
♦ i.e. all arguments are evaluated before a 

function is called. 
♦e.g. in the expression f(g(x+y)), first (x+y) is 

evaluated then the function g is called before 
the function f is called.

♦ If the function f doesn’t use its argument then 
the evaluation of g and of x+y is done in vane.
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Call-by-Name Evaluation

♦ Call-by-name evaluation avoids this problem by 
not evaluating the arguments, instead a thunk is 
created for each argument.

♦ A thunk is a function that can be called to 
compute the value on demand.
f(g(x+y)) is translated to
f(()=>g(()=>x+y))

♦ Any use of the argument in f is replaced by an application 
of the function:
f(x) = x; is translated to
f(x) = x();
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Call-by-Name Evaluation

♦Scala provides call-by-name with explicit 
def parameters.

♦A problem with call-by-name is that a 
thunk may be executed many times.
f(x) = x+x; is translated to
f(x) = x()+x();
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Call-by-Need

♦With call-by-need each thunk is only 
evaluated once.

♦This is implemented by giving each thunk a 
memo slot that stores the evaluated value; 
each evaluation of the thunk first checks 
the memo slot: if it is empty the expression 
is evaluated and stored in the slot, 
otherwise the value in the slot is returned.
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Call-by-Need

Conceptually a thunk for x+y can be implemented as:
class Thunk {

res = null;
apply() = {

if res == null then res = x+y
else res

}
}
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Call-by-need

♦A thunk can also be implemented just as 
two words <thunk_function, memo_slot>

♦When the thunk is evaluated both fields are 
updated: the memo slot with the value and 
the function with a new function that 
returns the value.
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Optimization of FP

♦ Functional programs tend to use many small 
functions. Modern hardware is optimized for 
imperative programs with few large functions, 
i.e., function calls are relatively expensive.

♦ Hence it can be profitable to reduce the number of 
function calls and increase the size of functions.

♦ This can be done by inline expansion.
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Inline Expansion

♦ Inline expansion or iniling is an optimization 
where a function call is replaced by the body of 
the function.

♦ If this is done in a stage in the compiler where all 
independent names are replaced by unique 
symbols then the process is quite straightforward. 
Otherwise the formal parameters need to be 
renamed (α-converted). 
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Inline Expansion

♦ If inline expansion is applied 
indiscriminately, the size of the program 
explodes. 

♦ To limit the code growth we can:
1. Expand only frequent call sites.
2. Expand only small functions.
3. Expand functions called only once, and 

perform dead function elimination. 
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Inline Expansion

♦If we inline a recursive function just as any 
other function we would probably end up 
with a call to the original function. Either 
directly after the first iteration or after a 
while. Im
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Inline Expansion

def loop(int x, int max, int y) =
if (x > max) y else loop(x+1, y*y);

def f(int z) = loop(1,10,z);   
---
def f(int z) = {

val x=1; val max=10; val y=z;
if (x>max) y 
else loop(x+1,max,y*y);

}
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Inline Expansion

♦To remedy this we can bring the definition 
of the recursion with us in the inlining by 
splitting the function into a prelude and a 
loop header.
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Inline Expansion

def loop(int x, int max, int y) =
if (x > max) y else loop(x+1, y*y);

def f(int z) = loop(1,10,z);   

---
def f(int z) = {

val x=1; val max=10; val y=z;
val loop= (int xX, int maxX, int yX) => 

if (xX > maxX) yX else loop(xX+1,maxX, yX*yX); 
if (x>max) y else loop(x+1,max,y*y);

}
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Loop-Invariant Hoisting

♦We can avoid passing around values that 
are the same in each recursive call by using 
loop-invariant hoisting.

♦Just let the constant value become a free 
variable. 

♦In our example lift max from an argument 
to a free variable.
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Loop-Invariant Hoisting

def loop(int x, int max, int y) =
if (x > max) y else loop(x+1, y*y);

def f(int z) = loop(1,10,z);   

---
def f(int z) = {

val x=1; val max=10; val y=z;
val loop= (int xX, int yX) => 

if (xX > max) yX else loop(xX+1, yX*yX); 
if (x>max) y else loop(x+1,y*y);

}
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Inline Expansion

♦ Inline expansion in itself can be useful since the 
overhead for a function call and return is 
removed, but the real benefit comes from 
applying standard optimizations on the inline 
expanded program.

♦ Constant propagation and folding, dead code and 
unreachable code elimination all work better 
when the scope of a function is increased.

Im
pl

em
en

ta
tio

n 
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/59

Inline Expansion
after constant prop

def loop(int x, int max, int y) =
if (x > max) y else loop(x+1, y*y);

def f(int z) = loop(1,10,z);   

---
def f(int z) = {

val x=1; val max=10; val y=z;
val loop= (int xX, int yX) => 

if (xX > 10) yX else loop(xX+1, yX*yX); 
if (1>10) z else loop(1+1,z*z);

}
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Inline Expansion
after constant folding

def loop(int x, int max, int y) =
if (x > max) y else loop(x+1, y*y);

def f(int z) = loop(1,10,z);   

---
def f(int z) = {
val loop= (int xX, int yX) => 
if (xX > 10) yX else loop(xX+1, yX*yX); 

loop(2,z*z);
}
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Efficient Tail Calls

♦A function call f(x) within a body of a 
function g is in a tail position if calling f is 
the last thing g will do before returning.

♦We can save stack space and execution time 
by turning the call to f into a jump to f.

♦For some languages, like Erlang and 
Scheme, proper tail calls is not an 
optimization but a requirement.
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Tail Calls

♦ A tail call can be transformed from a call to a 
jump as follows:

1. Move actual parameters into argument registers (and 
stack positions).

2. Restore callee-save registers.
3. Pop the stack frame of the calling function.
4. Jump to the callee.

♦ If both the caller and the callee have few arguments so 
that they all fit in argument registers then step 1 might 
be eliminated by a coalescing register allocator, and step 
2 and 3 might also be unnecessary: the tail call becomes 
just a jump.  
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Equational Reasoning 

♦In a pure language we can perform β-
substitution.
♦That is, replacing a call to a function with a 

version of the body of the function where each 
occurrence of the formal parameter is replaced 
by the argument.

♦ ((x) => x + x)(42)   β→ 42 + 42
♦Basically: we can perform function calls at 

compile time.  

Im
pl

em
en

ta
tio

n 
of

 F
PL

Advanced Compiler Techniques 5/14/2004
http://lamp.epfl.ch/teaching/advancedCompiler/64

Optimization of Lazy FP

♦A lazy language allows us to do some 
optimizations that would not be safe in a 
strict language:
♦ Invariant hoisting.
♦Dead code removal (of function calls).
♦Strictness Analysis.
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Optimization of Lazy FP

♦ Invariant hoisting:

def f(i) = {
def g(j) = h(i) * j; 
g

}
---
def f(i) = {

val h = h(i);
def g(j) = h * j; 
g

}
♦ If h(n) loops infinitely but the result of f(n) is never called 

a strict language would loop in the call to f(n).
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Optimization of Lazy FP

♦ Dead code removal:
def f(i:int): int = {

var d = g(x); 
i + 2;

}

♦ In an imperative language g(x) can not be 
removed, there might be side effects.

♦ In a strict pure language removing g(x) might 
turn a non-terminating computation into a 
terminating one.
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Optimization of Lazy FP

♦ The overhead of thunk creation and evaluation is quite 
high, so they should only be used when needed.

♦ If a function f(x) is certain to evaluate its argument x, 
there is no need to create a thunk for x.

♦ We can use a strictness analysis to find out which 
arguments should be evaluated at the call site and which 
should be passed as thunks.

♦ In general exact strictness analysis is not computable – a 
conservative approximation must be used, i.e., assume 
that arguments who can not be proved strict are non-
strict.
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