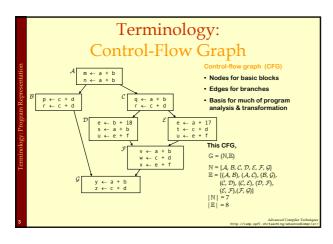
## Foundations of Dataflow Analysis

This lecture is primarily based on Konstantinos Sagonas set of slides (Advanced Compler Techniques, (2ADS18) at Uppsala University, January-February 2004). Used with kind permission.

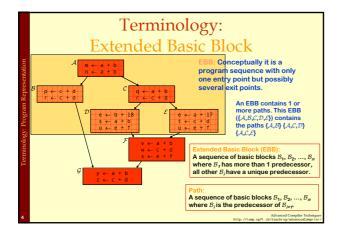
#### Terminology: Program Representation

#### Control Flow Graph (CFG):

- ♦ Nodes *N* statements of program
- Edges *E*' flow of control
   *prod(n)* = set of all immediate predecessors of *n succ(n)* = set of all immediate successors of *n*
- Start node  $\mu_0$
- ♦ Set of final nodes N<sub>final</sub>







## Terminology: Program Points

- One program point before each node.
- One program point after each node.
- Join point Program point with multiple predecessors.
- Split point Program point with multiple successors.

## Dataflow Analysis

Compile-Time Reasoning About

- Run-Time Values of Variables or Expressions at different program points:
  - Which assignment statements produced the value of the variables at this point?
  - Which variables contain values that are no longer used after this program point?
  - What is the range of possible values of a variable at this program point?

## **Dataflow Analysis**

Assumptions:

- We have a syntactically and semantically correct program (as far as compile time analysis can determine this).
- We have the "whole" program, or a clearly defined subset of the program which will only interact with the rest of the program through a predefined interface. (That is, no *self* modifying code, and if the interface is a function then the parameters can take any value of the given type.)

## **Dataflow Analysis: Basic Idea**

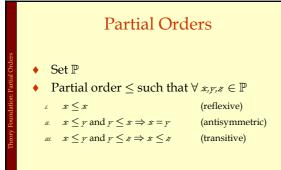
- Information about a program represented using values from an algebraic structure called *lattice*. (We will call this set of values  $\mathbb{P}$ .)
- Analysis produces a lattice value for each program point.
- Two flavors of analyses:
  - Forward dataflow analyses.
  - Backward dataflow analyses.

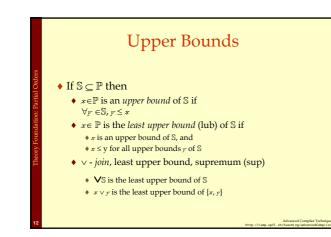
### Forward Dataflow Analysis

- Analysis propagates values forward through control flow graph with flow of control
  - Each node has a transfer function f
  - Input value at program point before node. • Output - new value at program point after node.
  - Values flow from program points after predecessor nodes to program points before successor nodes.
  - At join points, values are combined using a merge function.
- Canonical Example: Reaching Definitions.



- Analysis propagates values backward through control flow graph against flow of control:
  - Each node has a transfer function *f* Input value at program point after node.
  - •Output new value at program point before node.
  - Values flow from program points before successor nodes to program points after predecessor nodes.
  - At split points, values are combined using a merge function.
- Canonical Example: Live Variables.





## Lower Bounds

#### • If $\mathbb{S} \subseteq \mathbb{P}$ then

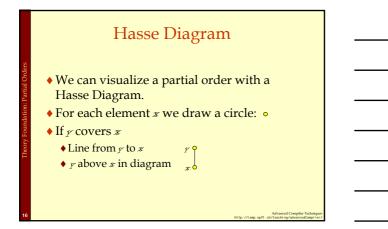
- $x \in \mathbb{P}$  is a lower bound of  $\mathbb{S}$  if  $\forall_{Y} \in \mathbb{S}, x \leq_{Y}$
- ♦  $x \in \mathbb{P}$  is the greatest lower bound (glb) of S if
  - ♦ *x* is a lower bound of S, and
  - $_{Y} \leq x$  for all lower bounds  $_{Y}$  of  $\mathbb{S}$
- - $x \wedge y$  is the greatest lower bound of  $\{x, y\}$

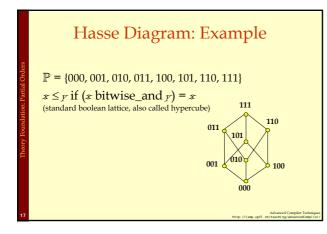
## Coverings

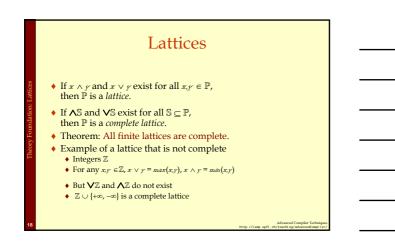
- Notation:  $x <_{Y}$  if  $x \leq_{Y}$  and  $x \neq_{Y}$
- *x* is covered by <sub>Y</sub> (<sub>Y</sub> covers *x*) if
  - $x <_{Y}$ , and
  - $\blacklozenge x \le z < y \Rightarrow x = z$
- Conceptually, *y* covers *x* if there are no elements between *x* and *y*

## Dataflow Analysis: Basic Idea

- ◆ Information about a program represented using values from an algebraic structure called *lattice*. (We will call this set of values ℙ.)
- Analysis produces a lattice value for each program point.
- Two flavors of analyses:
  - Forward dataflow analyses.
  - ♦ Backward dataflow analyses.

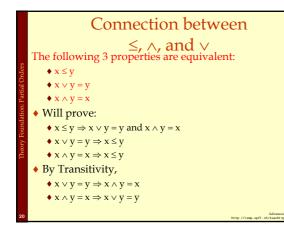


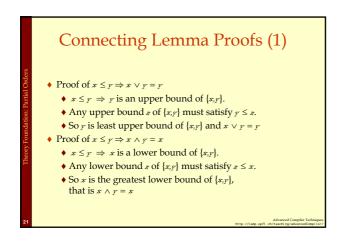


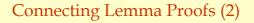


## Top and Bottom

- Greatest element of  $\mathbb{P}$  (if it exists) is *top* (T).
- Least element of  $\mathbb{P}$  (if it exists) is *bottom* ( $\perp$ ).



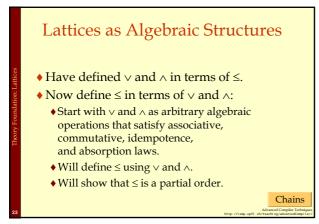


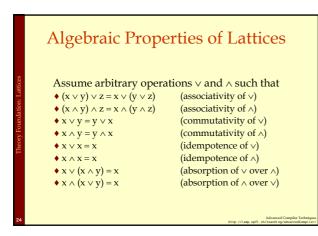


```
♦ Proof of x ∨ y = y ⇒ x ≤ y
♦ r is an upper bound of {x,y} ⇒ x ≤ y
♦ Proof of x ∧ y = x ⇒ x ≤ y
```

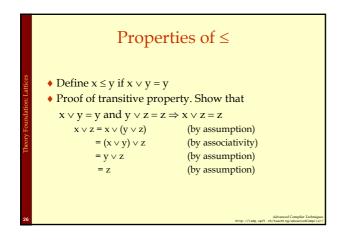
• *x* is a lower bound of  $\{x_{ij}\} \Rightarrow x \leq y$ 

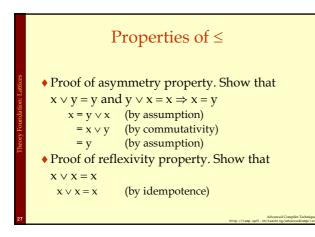
Chains





|                             | Conne                                                                                                         | ction Between                      |                      |
|-----------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------|
|                             |                                                                                                               | $\land$ and $\lor$                 |                      |
| ı: Lattices                 | Theorem: $x \lor y = y$ if and only if $x \land y = x$<br>• Proof of $x \lor y = y \Rightarrow x = x \land y$ |                                    |                      |
| Theory Foundation: Lattices |                                                                                                               | (by absorption)<br>(by assumption) |                      |
|                             | • Proof of $x \land y = x \Rightarrow y = x \lor y$                                                           |                                    |                      |
| The                         | , , , , , , , , , , , , , , , , , , , ,                                                                       | (by absorption)                    |                      |
|                             | $= y \lor (x \land y)$                                                                                        | (by commutativity)                 |                      |
|                             | $= y \lor x$                                                                                                  | (by assumption)                    |                      |
|                             | $= x \lor y$                                                                                                  | (by commutativity)                 |                      |
|                             |                                                                                                               |                                    |                      |
|                             |                                                                                                               |                                    | Advanced Compiler Te |





## Properties of $\leq$

Induced operation ≤ agrees with original definitions of ∨ and ∧, i.e.,
x ∨ y = sup {x, y}
x ∧ y = inf {x, y}

## Proof of $x \lor y = \sup \{x, y\}$

- ◆ Consider any upper bound *a* for *x* and *y*.
- Given  $x \lor a = a$  and  $y \lor a = a$ , show  $x \lor y \le a$ , i.e.,  $(x \lor y) \lor a = a$  $a = x \lor a$  (by assumption)  $= x \lor (y \lor a)$  (by assumption)  $= (x \lor y) \lor a$  (by associativity)

# Proof of $x \land y = \inf \{x, y\}$

Consider any lower bound *I* for *x* and *y*.
Given *x* ∧ *I* = *I* and *y* ∧ *I* = *I*,

show  $I \le x \land y$ , i.e.,  $(x \land y) \land I = I$ 

- $I = x \wedge I$
- $= x \wedge (y \wedge I)$  $= (x \wedge y) \wedge I$
- (by assumption) (by associativity)

(by assumption)

## Chains

- A set S is a *chain* if  $\forall x, y \in S. y \le x \text{ or } x \le y$
- P has no infinite chains if every chain in P is finite
- P satisfies the *ascending chain condition* if for all sequences  $x_1 \le x_2 \le \dots$  there exists n such that  $x_n = x_{n+1} = \dots$ That is, all increasing sequences in  $\mathbb{P}$  eventually becomes constant.

## **Dataflow Analysis** (repetition)

- Information about a program represented using values from a *lattice* (P). Analysis propagates values through control flow graph, either forwards or backwards.
- For forward analysis:
  Each node has a transfer function *f*,
  - Input value at program point before node.

  - Output new value at program point other node.
    Values flow from program points after predecessor nodes to program points before successor nodes.
    At join points, values are combined using a merge function.

## **Transfer Functions**

- ◆ Assume a lattice ℙ of abstract values.
- Transfer function  $f: \mathbb{P} \rightarrow \mathbb{P}$  for each node in control flow graph.
- *f* models the effect of the node on the program information.

## **Properties of Transfer Functions**

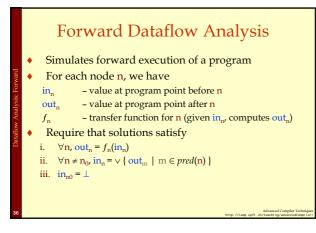
Each dataflow analysis problem has a set  $\mathbb{F}$  of transfer functions  $f:\mathbb{P} \rightarrow \mathbb{P}$ 

- Identity function  $i \in \mathbb{F}$
- $\mathbb{F}$  must be closed under composition:  $\forall f_{\mathscr{G}} \in \mathbb{F}$ , the function  $\measuredangle = \lambda x.f(\mathscr{G}(x)) \in \mathbb{F}$
- Each  $f \in \mathbb{F}$  must be monotone:  $x \leq y \Rightarrow f(x) \leq f(y)$
- Sometimes all *f*∈ 𝔅 are distributive:
   *f*(*x* ∨ 𝑘) = *f*(𝑘) ∨ *f*(𝑘)
- Distributivity  $\Rightarrow$  monotonicity

## Distributivity Implies Monotonicity

Proof:

• Assume  $f(x \lor y) = f(x) \lor f(y)$ • Show:  $x \lor y = y \Rightarrow f(x) \lor f(y) = f(y)$   $f(y) = f(x \lor y)$  (by assumption)  $= f(x) \lor f(y)$  (by distributivity)



## **Dataflow Equations**

Result is a set of dataflow equations out<sub>n</sub> := f<sub>n</sub>(in<sub>n</sub>)

 $\operatorname{in}_{n} := \lor \{ \operatorname{out}_{m} \mid m \in pred(n) \}$ 

• Conceptually separates analysis problem from program.

#### Worklist Algorithm for Solving Forward Dataflow Equations

for each  $n \in \mathbb{N}$  do  $out_n := f_n(\bot)$ worklist :=  $\mathbb{N}$ while worklist  $\neq \emptyset$  do: remove a node n from worklist  $in_n := \lor \{ out_m \mid m \in pred(n) \}$   $out_n := f_n(in_n)$ if out\_n changed then worklist := worklist  $\cup succ(n)$ 

## **Correctness Argument**

Why result satisfies dataflow equations?

- Whenever we process a node n,
- set  $out_n := f_n(in_n)$
- Algorithm ensures that  $out_n = f_n(in_n)$
- Whenever  $out_m$  changes, put succ(m) on worklist. Consider any node  $n \in succ(m)$ .
- It will eventually come off the worklist and the algorithm will set  $in_n := \lor \{ out_m \mid m \in pred(n) \}$

to ensure that  $in_n = \lor \{ out_m \mid m \in pred(n) \}$ 

### **Termination Argument**

Why does the algorithm terminate?

- Sequence of values taken on by  $in_n$  or  $out_n$  is a chain. If values stop increasing, the worklist empties and the algorithm terminates.
- If the lattice has the ascending chain property, the algorithm terminates
  - Algorithm terminates for finite lattices.
  - For lattices without the ascending chain property, we must use a widening operator.

## Widening Operators

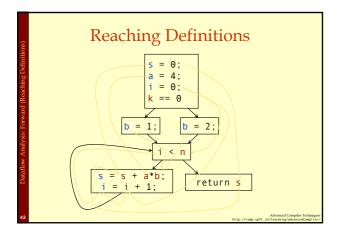
- Detect lattice values that may be part of an infinitely ascending chain.
- Artificially raise value to least upper bound of the chain.
- Example:
  - Lattice is set of all subsets of integers.
  - Widening operator might raise all sets of size n or greater to TOP (the set of all integers).

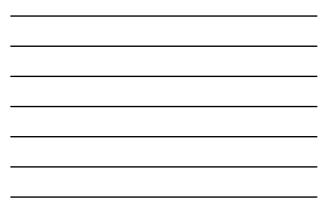
  - Could be used to collect possible values taken on by a variable during execution of the program.



• Concept of *definition* and *use* 

- $\diamond z = x+y$ 
  - ♦ is a definition of z
  - is a use of x and y
- A definition (d) reaches a use (u) if the value written by **d** may be read by **u**.





## **Reaching Definitions Framework**

 ₽ = ℘ (the powerset) of the set of definitions in the program (all subsets of the set of definitions).

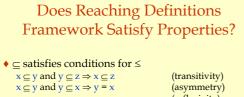
- $\lor = \bigcirc$  (order is  $\subseteq$ )
- ♦ ⊥ = Ø
- $\mathbb{F}$  = all functions *f* of the form  $f(x) = a \cup (x-b)$

• b is the set of definitions that the node kills.

• a is the set of definitions that the node generates.

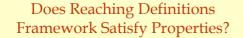
General pattern for many transfer functions

•  $f(\mathbf{x}) = \text{GEN} \cup (\mathbf{x} - \text{KILL})$ 



 $x \subseteq y \text{ and } y \subseteq x \Rightarrow y - x \qquad \text{(asymmetry)}$   $x \subseteq x \qquad \text{(reflexivity)}$   $\bullet \mathbb{F} \text{ satisfies transfer function conditions}$   $\lambda x \oslash \cup (x - \bigotimes) = \lambda x x \in \mathbb{F} \qquad \text{(identity)}$ Will show  $f(x \cup y) = f(x) \cup f(y) \qquad \text{(distributivity)}$   $f(x) \cup f(y) = (a \cup (x - b)) \cup (a \cup (y - b))$   $= a \cup (x - b) \cup (y - b)$   $= a \cup ((x \cup y) - b)$   $= f(x \cup y)$ 

## Lecture 2: Foundations



#### What about composition?

• Given  $f_1(x) = a_1 \cup (x-b_1)$  and  $f_2(x) = a_2 \cup (x-b_2)$ • Show  $f_1(f_2(\mathbf{x}))$  can be expressed as  $\mathbf{a} \cup (\mathbf{x} - \mathbf{b})$  $f_1(f_2(\mathbf{x})) = \mathbf{a}_1 \cup ((\mathbf{a}_2 \cup (\mathbf{x} - \mathbf{b}_2)) - \mathbf{b}_1)$  $= a_1 \cup ((a_2 - b_1) \cup ((x - b_2) - b_1))$  $= (a_1 \cup (a_2 - b_1)) \cup ((x - b_2) - b_1))$  $= (a_1 \cup (a_2 - b_1)) \cup (x - (b_2 \cup b_1))$ Let  $a = (a_1 \cup (a_2 - b_1))$  and  $b = b_2 \cup b_1$ Then  $f_1(f_2(\mathbf{x})) = \mathbf{a} \cup (\mathbf{x} - \mathbf{b})$ 

## **General Result**

All GEN/KILL transfer function frameworks satisfy the properties:

- ♦ Identity
- ♦ Distributivity
- Compositionality

## Available Expressions Framework

•  $\mathbb{P} = \wp$  (the powerset) of the set of all expressions in the program (all subsets of set of expressions).

- $\lor$  =  $\cap$  (order is  $\supseteq$ )
- $\perp = \wp$  (but  $in_{n0} = \emptyset$ )
- $\mathbb{F}$  = all functions *f* of the form  $f(\mathbf{x}) = \mathbf{a} \cup (\mathbf{x} - \mathbf{b}).$
- b is set of expressions that node kills. • a is set of expressions that node generates.
- Another GEN/KILL analysis

### Concept of Conservatism

- $\blacklozenge$  Reaching definitions use  $\cup$  as join Optimizations must take into account all definitions that reach along ANY path
- Available expressions use ∩ as join
- Optimization requires expression to reach along ALL paths Optimizations must conservatively take all possible
- executions into account. Structure of analysis varies according to the way the results of the analysis are to be used.

### Backward Dataflow Analysis

- · Simulates execution of program backward against the flow of control.
- For each node **n**, we have in<sub>n</sub> – value at program point before n. out<sub>n</sub> – value at program point after n.
- $f_n$  transfer function for n (given out<sub>n</sub>, computes in<sub>n</sub>).
- Require that solutions satisfy:

  - i.  $\forall n. in_n = f_n(out_n)$ ii.  $\forall n \notin \mathbb{N}_{\text{final}} \cdot out_n = \lor \{ in_m \mid m \in succ(n) \}$ iii.  $\forall n \in \mathbb{N}_{\text{final}}$ .  $\text{out}_n = \bot$

## Worklist Algorithm for Solving **Backward Dataflow Equations**

for each  $n \in \mathbb{N}$  do  $in_n := f_n(\bot)$ worklist :=  $\mathbb{N}$ while worklist  $\neq \emptyset$  do remove a node n from worklist  $out_n := \lor \{ in_m \mid m \in succ(n) \}$  $in_n := f_n(out_n)$ if in<sub>n</sub> changed then worklist := worklist  $\cup$  pred(n)

## Live Variables Analysis Framework

- P = powerset of the set of all variables in the program (all subsets of the set of variables).
- $\lor$  =  $\cup$  (order is  $\subseteq$ )
- ♦ ⊥ = Ø
- $\mathbb{F}$  = all functions *f* of the form  $f(x) = a \cup (x-b)$ 
  - b is set of variables that the node kills.
  - a is set of variables that the node reads.

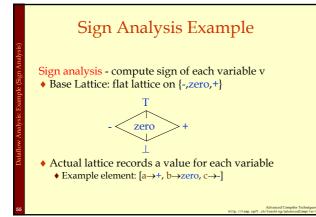
## Meaning of Dataflow Results

- Connection between executions of program and dataflow analysis results.
- Each execution generates a trajectory of states:
  - $s_0; s_1; ...; s_k$ , where each  $s_i \in \mathbb{S}$
- $\blacklozenge$  Map current state  ${\color{black}{s_k}}$  to
  - Program point n where execution located.
  - Value x in dataflow lattice.
- Require  $x \le in_n$

## Abstraction Function for Forward Dataflow Analysis

Meaning of analysis results is given by an abstraction function *AF*:S→P

 ♦ Require that for all states s AF(s) ≤ in<sub>n</sub> where n is the program point where the execution is located at in state s, and in<sub>n</sub> is the abstract value before that point.



## Interpretation of Lattice Values

If value of **v** in lattice is:

- $\bullet \perp$ : no information about the sign of v.
- ◆ -: variable v is negative.
- $\diamond$  zero: variable v is 0.
- ♦ +: variable v is positive.
- T: v may be positive or negative or 0.



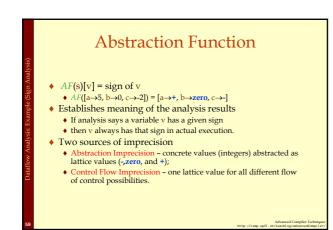


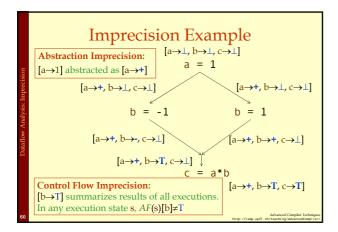
## **Transfer Functions**

Defined by structural induction on the shape of nodes:

• If **n** of the form v = c

- $f_n(x) = x[v \rightarrow +]$  if c is positive
- $f_n(\mathbf{x}) = \mathbf{x}[\mathbf{v} \rightarrow \mathbf{zero}]$  if c is 0
- $f_n(x) = x[v \rightarrow -]$  if c is negative
- If n of the form  $\mathbf{v}_1 = \mathbf{v}_2^* \mathbf{v}_3$
- $\bullet f_{n}(\mathbf{x}) = \mathbf{x}[\mathbf{v}_{1} \rightarrow \mathbf{x}[\mathbf{v}_{2}] \otimes \mathbf{x}[\mathbf{v}_{3}]]$







## General Sources of Imprecision

#### Abstraction Imprecision

- Lattice values less precise than execution values.
- Abstraction function throws away information.

#### Control Flow Imprecision

- Analysis result has a single lattice value to summarize results of multiple concrete executions.
- ◆ Join operation ∨ moves up in lattice to combine values from different execution paths.
- Typically if  $x \le y$ , then x is more precise than y.

## Why Have Imprecision?

ANSWER: To make analysis tractable

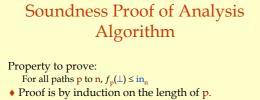
- Conceptually infinite sets of values in execution.
   Typically abstracted by finite set of lattice values.
- Execution may visit infinite set of states.
  - Abstracted by computing joins of different paths.

## Augmented Execution States

- Abstraction functions for some analyses require augmented execution states.
  - Reaching definitions: states are augmented with the definition that created each value.
  - Available expressions: states are augmented with expression for each value.

### Meet Over All Paths Solution

- What solution would be ideal for a forward dataflow analysis problem?
- Consider a path  $p = n_0, n_1, ..., n_{k'}$  n to a node n (note that for all i,  $n_i \in pred(n_{i+1})$ )
- The solution must take this path into account:
- $\begin{array}{l}f_{p}(\bot) = (f_{n_{k}}(f_{n_{k-1}}(\ldots f_{n_{l}}(f_{n_{0}}(\bot))\ldots)) \leq \mathrm{in}_{n}\\ \bullet \text{ So the solution must have the property that}\\ \vee \{f_{p}(\bot) \mid p \text{ is a path to } n\} \leq \mathrm{in}_{n}\\ \text{ and ideally}\end{array}$ 
  - $\vee \{f_p(\perp) \mid p \text{ is a path to } n\} = in_n$



- Uses monotonicity of transfer functions.
- Uses following lemma.

#### Lemma:

- The worklist algorithm produces a solution such that if  $n \in pred(m)$  then  $out_n \le in_m$
- (That is, what you get out of a predecessor is more precise than what will go in to the node, because precision may be lost by the join function.)

## Proof

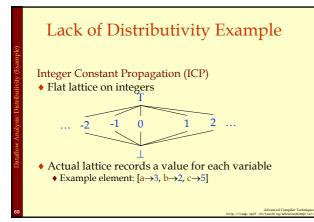
- Base case: p is of length 0
  - Then  $p = n_0$  and  $f_p(\perp) = \perp = in_{n_0}$
- Induction step:
  - Assume theorem for all paths of length k.
  - Show for an arbitrary path p of length k+1.

## Induction Step Proof

• Given a path  $p = n_0 \dots, n_k, n$  show  $(f_{n_k}(f_{n_{k-1}}(\dots f_{n_1}(f_{n_0}(\bot))\dots)) \le in_n$ By induction assumption:  $(f_{n_{k-1}}(\dots f_{n_1}(f_{n_0}(\bot))\dots)) \le in_{n_k}$ Apply  $f_{n_k}$  to both sides:  $f_{n_k}(f_{n_k-1}(\dots f_{n_1}(f_{n_0}(\bot))\dots) ? f_{n_k}(in_{n_k})$ By monotonicity:  $(f_{n_k}(f_{n_{k-1}}(\dots f_{n_1}(f_{n_0}(\bot))\dots)) \le f_{n_k}(in_{n_k})$ By definition of  $f_{n_k}: f_{n_k}(in_{n_k}) = out_{n_k}$   $(f_{n_k}(f_{n_{k-1}}(\dots f_{n_1}(f_{n_0}(\bot))\dots)) \le out_{n_k}$ By lemma:  $out_{n_k} \le in_n$ By transitivity:  $(f_{n_k}(f_{n_{k-1}}(\dots f_{n_1}(f_{n_0}(\bot))\dots)) \le in_n$ 

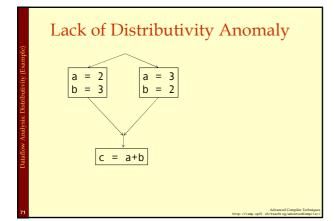
## Distributivity

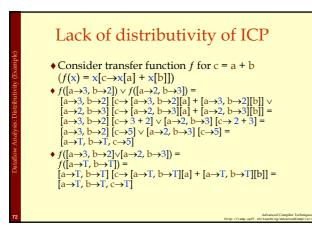
- Distributivity preserves precision.
- If framework is distributive, then the worklist algorithm produces the meet over paths solution: For all n:
  - $\vee \{f_p(\bot) \mid p \text{ is a path to } n\} = in_n$

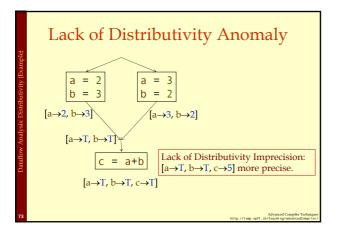


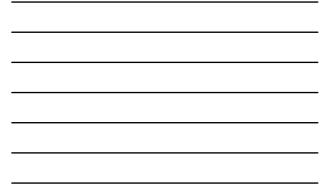
## **Transfer Functions**

If n of the form v = c *f*<sub>n</sub>(x) = x[v→c]
If n of the form v<sub>1</sub> = v<sub>2</sub>+v<sub>3</sub> *f*<sub>n</sub>(x) = x[v<sub>1</sub>→x[v<sub>2</sub>] + x[v<sub>3</sub>]]









## Summary

- Formal dataflow analysis framework
  - ♦ Lattices, partial orders.
  - ◆ Transfer functions, joins and splits.
  - Dataflow equations and fixed point solutions.
- Connection with program
  - Abstraction function  $AF: \mathbb{S} \to \mathbb{P}$
  - For any state s and program point n,  $AF(s) \le in_n$
  - Meet over paths solutions, distributivity.

Advanced Compiler Techniques