Advanced Compiler Techniques 2004-03-19 08:51

Foundations of
Dataflow Analysis

This leckure is primarily based on Konskankinos Sagonas sek o{’ Slides
(Rdvanced Compiler Techniques, (ZADSI8)
ot Uppsola University, Januory-February 2004
Used with kind permission.

A
ttp://tanp-epflchy

Terminology:

¢ Nodes /- statements of program
¢ Edges # - flow of control

o}
@
&~

¢ pred(n) = set of all immediate predecessors of »

o

¢ suce/n) = set of all immediate successors of »

¢ Start node =,
¢ Set of final nodes #,

final

Advanced Compler Techniques
http://Nanp_epfl.ch/teaching/advancedConpiler/

Terminology:

A|—|+ 3
: : : + b * Nodes for basic blocks

/ + Edges for branches

C| «a+hb | * Basis for much of program
cc+d is & transformation

;ram Representation

f
This CFG,
G=(NE)
N={A B (D¢ F G
E={(A B), (A 0), (B9,
€ D), (C 8, (D7),
(& P)(F, G}

7
8

™

IN]
1E|

Advanced Compler Techniques
http://Nanp_epfl.ch/teaching/advancedConpiter/

Lecture 2: Foundations 1

Advanced Compiler Techniques

rogram Representation

Terminology

o}
@
&~

Dataflow Analysis

Terminology:

Canceptually itis a
program sequence with only
one entry point but possibly
several|exit points.

An EBB contains 1 or
more paths. This EBB
({A,B,C,D,£}) contains
the paths {4,5} {A,C,D}
{ACE}

2004-03-19 08:51

A sequence of basic blocks By, B, ..., B,

where B, has more than 1 pr "y
all other B;have a unique predecessor.

A sequence of basic blocks By, B, ..., B,
where B;is the predecessor of 5,,.

A
nttp://anp-epflchte

Terminology:

¢ One program point before each node.

¢ One program point after each node.

¢ Join point - Program point with multiple
predecessors.

¢ Split point - Program point with multiple
5UCCeSSOTS.

Advanc
ttp://Aanp-epflch/teachi

Dataflow Analysis

Compile-Time Reasoning About

¢ Run-Time Values of Variables or Expressions at
different program points:

¢ Which assignment statements produced the
value of the variables at this point?

¢ Which variables contain values that are no
longer used after this program point?

¢ What is the range of possible values of a
variable at this program point?

A
nttp://amp-epfl ch/te

Lecture 2: Foundations

Advanced Compiler Techniques 2004-03-19 08:51

Dataflow Analysis

¢ Assumptions:

¢ We have a syntactically and semantically
correct program (as far as compile time
analysis can determine this).

¢ We have the “whole” program, or a clearly
defined subset of the program which will only
interact with the rest of the program through a
predefined interface.

(That is, no self modifying code, and if the interface is a function then the
parameters can take any value of the given type.)

Adva
nttp://Aanp-epflchyteacl

Dataflow Analysis:
Basic Idea

¢ Information about a program represented
using values from an algebraic structure
called lattice. (We will call this set of values P.)
¢ Analysis produces a lattice value for each
program point.
¢ Two flavors of analyses:
¢ Forward dataflow analyses.
¢ Backward dataflow analyses.

Adva
nttp://Aanp-epflchyteacl

Forward Dataflow Analysis

¢ Analysis propagates values forward through
control flow graph with flow of control
¢ Each node has a transfer function f
¢ Input - value at program point before node.
¢ Output - new value at program point after node.
¢ Values flow from program points after
predecessor nodes to program points before
successor nodes.
¢ At join points, values are combined using a
merge function.
¢ Canonical Example: Reaching Definitions.

nttp://tan-ept

Lecture 2: Foundations 3

Advanced Compiler Techniques

<
a}

Theory Foundation: Partial Orders

g

Backward Dataflow Analysis

¢ Analysis propagates values backward through
control flow graph against flow of control:
¢ Each node has a transfer function f
¢ Input - value at program point after node.
+Output - new value at program point before node.
¢ Values flow from program points before
successor nodes to program points after
predecessor nodes.
¢ At split points, values are combined using a
merge function.
¢ Canonical Example: Live Variables.

A
nttp://anp-epflchte

2004-03-19 08:51

Partial Orders

¢ SetP

¢ Partial order < such thatV %52 € P
i x<x (reflexive)
z x<yandy<sx=>x=jp (antisymmetric)
s zx<yandy<zs=>x<z (transitive)

Advanc
ttp://tanp-epflchy/teach

Upper Bounds

¢ If S c P then
¢ xcPis an upper bound of S if
VyeS, y<x
¢ xe Pis the least upper bound (lub) of S if
¢ xis an upper bound of S, and
¢ x <y for all upper bounds » of S
¢ v -join, least upper bound, supremum (sup)

¢ VS is the least upper bound of S
¢ xv yis the least upper bound of {x, s}

Lecture 2: Foundations

Advanced Compiler Techniques

@
)
g

Theory Foundation: Partial Orders

Lower Bounds

¢ If S c P then
¢ scPis a lower bound of S if VyeS, x <y
¢ xelPis the greatest lower bound (glb) of S if
¢ xis alower bound of S, and
¢ y<xfor all lower bounds y of S

¢ A - meet, greatest lower bound, infimum (inf)
¢ ASis the greatest lower bound of S
¢ x Ay is the greatest lower bound of {x, »}

Adva
nttp://Aanp-epflchyteacl

2004-03-19 08:51

Coverings

¢ Notation: = < 7 if ¥ <y and z#r
¢ xis covered by y (v covers =) if
¢ x <y, and
¢ x<s<y=>x=2
¢ Conceptually, covers x if there are no
elements between x and 5

Adva
nttp://Aanp-epflchyteacl

Dataflow Analysis:
Basic Idea

¢ Information about a program represented
using values from an algebraic structure
called lattice. (We will call this set of values P.)
¢ Analysis produces a lattice value for each
program point.
¢ Two flavors of analyses:
¢ Forward dataflow analyses.
¢ Backward dataflow analyses.

Lecture 2: Foundations

Advanced Compiler Techniques

Hasse Diagram

Hasse Diagram.

¢ If y covers x
¢ Line from y to x v I

Theory Foundation: Par

¢ rabove xin diagram

2004-03-19 08:51

¢ We can visualize a partial order with a

¢ For each element x we draw a circle: o

A
nttp://anp-epflchte

P = {000, 001, 010, 011, 100, 101, 110, 111}
x < yif (x bitwise_and) ==

(standard boolean lattice, also called hypercube)

Theory Foundation: Partial Orders

Hasse Diagram: Example

Lattices

¢ Ifx A pand x v pexist for all x € P,
then P is a lattice.

¢ If AS and VS exist for all S c P,
then IP is a complete lattice.
¢ Theorem: All finite lattices are complete.

¢ Example of a lattice that is not complete
+ Integers Z
¢ Forany sy €Z, 5 v y = max(xy), ¥ A y = min(5r)

Theory Foundation: Lattices

+ But VZ and AZ do not exist
¢ 7 {+o, —o} is a complete lattice

Lecture 2: Foundations

Advanced Compiler Techniques 2004-03-19 08:51

Top and Bottom

¢ Greatest element of PP (if it exists) is top (T).
¢ Least element of P (if it exists) is bottom (.L).

15}
-8
-

Adva
nttp://Aanp-epflchyteacl

Connection between

<, A and v
The following 3 properties are equivalent:
¢ X<y
*XV WEY/
* XA y=X

¢ Will prove:
¢x<y=>xvy=yandxAy=x

¢XVy=y=>x<y

Theory Foundation: Partial Orders

¢XAYy=X=>X<Yy
¢ By Transitivity,
¢XVY=Yy=>XAY=X

¢XAY=XZXVYy=y

Adva
nttp://Aanp-epflchyteacl

Connecting Lemma Proofs (1)

¢ Proofof x<p=>xvy=y
¢ x <y = pisanupper bound of {x}.

¢ Any upper bound 7 of {xr} must satisfy - < ».
¢ So yis least upper bound of {xy} and x v y = 5

¢ Proof of s<y=>xAnp=x

Theory Foundation: Partial Orders

¢ ¥ <y = xisalower bound of {r}.
¢ Any lower bound ~ of {7} must satisfy » < x.

¢ So x is the greatest lower bound of {x},
thatisx A y=x

Lecture 2: Foundations 7

Advanced Compiler Techniques 2004-03-19 08:51

Connecting Lemma Proofs (2)

¢Proofof xvy=p=x<yp
¢ yis an upper bound of {5} = x < 5

¢Proofof s Ay =x=>x<p

¢ xisalower bound of {xy} = x<»

Lattices as Algebraic Structures

¢ Have defined v and A in terms of <.
¢ Now define < in terms of v and A:

¢ Start with v and A as arbitrary algebraic
operations that satisfy associative,
commutative, idempotence,
and absorption laws.

¢ Will define < using v and A.
¢ Will show that < is a partial order.

Algebraic Properties of Lattices

Assume arbitrary operations v and A such that

¢ (xvy)vz=xv(yVvz) (associativity of v)

¢ (XAY)AZ=XA(YAZ) (associativity of A)
¢XVYy=YyVX (commutativity of v)
¢XAY=YAX (commutativity of A)
¢XVX=X (idempotence of v)

¢ XAX=X (idempotence of A)
XV (XAY)=X (absorption of v over A)
XA (XVY)=X (absorption of A over V)

Advanced €
Nttp://Aanp-epflch/teaching/ac

Lecture 2: Foundations 8

Advanced Compiler Techniques

Connection Between
A and v

Theorem: x v y =y if and only if x A y =x
¢ Proof of xvy=y =>x=XxAYy
X=XA(XVY) (by absorption)
=XAY (by assumption)
¢ Proof of x Ay=x=>y=xvVvy
y=yVv(yAX) (by absorption)

=yVv(xAy) (by commutativity)
=yvx (by assumption)
=XVy (by commutativity)

2004-03-19 08:51

Properties of <

¢ Definex<yifxvy=y
¢ Proof of transitive property. Show that
xvy=yandyvz=z=xvz=z

XVvz=xV(yVvz) (by assumption)
=(xvy)vz (by associativity)
=yvz (by assumption)

=z (by assumption)

Properties of <

¢ Proof of asymmetry property. Show that
xvy=yandyvx=x=Xx=y
x=yvx (byassumption)
=xvy (by commutativity)
=y (by assumption)
¢ Proof of reflexivity property. Show that
XV X=X
XV X=X (by idempotence)

Lecture 2: Foundations

Advanced Compiler Techniques

Properties of <

¢ Induced operation < agrees with original
definitions of v and A, i.e.,
¢x vy =sup {x, y}
ex Ay =inf {x, y}

15}
-8
—

2004-03-19 08:51

Proof of x v y = sup {x, y}

¢ Consider any upper bound « for x and s-
¢Givenxve=zandyvea =gz,

show x v <4,

i.e., (XV}’) Vu~=u

Theory Foundation: Lattices

z=xVau (by assumption)
=xVv(Vva) (by assumption)
=(xVvy) Ve (by associativity)

Proof of x A y =inf {x, y}

* Consider any lower bound 7for x and s
e Givenx Az=zandyrAn7=

show 7<x Ay,

ie,(xzAp)Az=21

Theory Foundation: Lattices

I=x N7 (by assumption)
=xA(rA) (by assumption)
=(xAp) AL (by associativity)

Lecture 2: Foundations

10

Advanced Compiler Techniques

o
(]

Dataflow Analysis

Chains

¢ AsetSisachainif VxpeS.y<xorx<y
¢ P has no infinite chains if every chain in P is finite
¢ P satisfies the ascending chain condition if

for all sequences x; < x, < ... there exists n

such thatx, =x_,, = ...
That is, all increasing sequences in P eventually

becomes constant.

Adva
nttp://Aanp-epflchyteacl

2004-03-19 08:51

Dataflow Analysis
(repetition)

¢ Information about a program represented using values
from a lattice (P). Analysis propagates values through
control flow graph, either forwards or backwards.
¢ For forward analysis:
+ Each node has a transfer function f,
¢ Input - value at program point before node.
¢ Output - new value at program point after node.
+ Values flow from program points after predecessor nodes to
program points before successor nodes.
¢ Atjoin points, values are combined using a merge function.

Adva
nttp://Aanp-epflchyteacl

«
<
o)

Transfer Functions

¢ Assume a lattice P of abstract values.
¢ Transfer function f: P—P for each node in
control flow graph.

¢ f models the effect of the node on the
program information.

Adva
nttp://tanp-epfl chy/teacl

Lecture 2: Foundations

11

Advanced Compiler Techniques

Properties of Transfer Functions

A Each dataflow analysis problem has a set IF of
transfer functions f:P—P
¢ Identity function 7
¢ F must be closed under composition:
V f,7€F, the function 2 = Ax.f(s(x)) eF
¢ Each feF must be monotone:x <y = f(x) < f(»)
¢ Sometimes all feF are distributive:
fevn)=fE) v 1)

¢ Distributivity = monotonicity

Dataflow Analys

Advanced €
1ttp://Nanp-epflch/teaching/ac

2004-03-19 08:51

Distributivity Implies
Monotonicity

Proof:
¢ Assume f(xVvy) = f(x) v f(r)
¢Show: xvr=r= f(=) v f(r) = f(7)
@) =fvy) (by assumption)
=f(® Vv () (by distributivity)

Dataflow £

Forward Dataflow Analysis

¢ Simulates forward execution of a program
8l ¢ For each node n, we have
in, - value at program point before n

out, - value at program point after n

fa - transfer function for n (given in,, computes out,)
¢ Require that solutions satisfy

i. Vn,out, = f,(in,)

ii. Vn#ny in,=v{out, | m € pred(n)}

i, ingy=1

Lecture 2: Foundations

Advanced Compiler Techniques 2004-03-19 08:51

Dataflow Equations

¢ Result is a set of dataflow equations
out, := f,(in,)
in, :=v {out, | m € pred(n) }
¢ Conceptually separates analysis problem
from program.

Worklist Algorithm for Solving
Forward Dataflow Equations

for each neN do out, := f, (L)
=N
while #J do:
remove a node n from
in, = v {out, | m € pred(n) }
out, = f,(in,)
if out, changed then
= U suce(n)

Dataflow

Correctness Argument

Why result satisfies dataflow equations?

H ¢ Whenever we process a node n,
set out, := f,(in,)
Algorithm ensures that out, = f,(in,)
¢ Whenever out,, changes, put succ(m) on

Consider any node n e succ(m).
It will eventually come off the and the

algorithm will set
in, := v {out, | m € pred(n) }
to ensure that in, = v { out,, | m € pred(n) }

Advanced €
Nttp://Aanp-epflch/teaching/ac

Lecture 2: Foundations

Advanced Compiler Techniques

ching Definitions)

<
o]

@
<
[a}

Termination Argument

Why does the algorithm terminate?
¢ Sequence of values taken on by in, or out, is a
chain. If values stop increasing, the worklist
empties and the algorithm terminates.
¢ If the lattice has the ascending chain property, the
algorithm terminates
¢ Algorithm terminates for finite lattices.

¢ For lattices without the ascending chain property, we
must use a widening operator.

A
nttp://anp-epflchte

2004-03-19 08:51

Dataflow Analysis: Forward

Widening Operators

¢ Detect lattice values that may be part of an
infinitely ascending chain.

¢ Artificially raise value to least upper bound of the
chain.

¢ Example:
¢ Lattice is set of all subsets of integers.

¢ Widening operator might raise all sets of size n or
greater to TOP (the set of all integers).

¢ Could be used to collect possible values taken on by a
variable during execution of the program.

Advanc
ttp://tanp-epflchy/teach

Reaching Definitions

¢ Concept of definition and use
¢z = Xty
¢ is a definition of z
¢ isauseof xandy

¢ A definition (d) reaches a use (u) if the
value written by d may be read by u.

Lecture 2: Foundations

14

Advanced Compiler Techniques 2004-03-19 08:51

Reaching Definitions

)
8
[

&0
[

Dataflow Analysis

Reaching Definitions Framework

¢ P= p (the powerset) of the set of definitions in
the program (all subsets of the set of definitions).

¢ v=U (orderis ©)
¢ 1L=0
¢ [= all functions f of the form f(x) = a U (x-b)

¢ b is the set of definitions that the node kills.

¢ a is the set of definitions that the node generates.
General pattern for many transfer functions

f(x) = GEN U (x-KILL)

Forward (Reaching Definitions)

Dataflow Analysis

Adva
nttp://Aanp-epflchyteacl

Does Reaching Definitions
Framework Satisfy Properties?

¢ c satisfies conditions for <

Forward (Reaching Definitions)

xcyandycz=xcz (transitivity)

xcyandycx=y=x (asymmetry)

XC X (reflexivity)
¢ [satisfies transfer function conditions

MDD U (x- D) = Ax.xeF (identity)

Will show f(x Uy) = f(x) U f(y) (distributivity)
feIVf(y)=@v(x-b)v(av(y-b)
=au(x-b)u(y-b)
=au((xuvy)-b)
=fxvy)

<
o]

Lecture 2: Foundations 15

Advanced Compiler Techniques 2004-03-19 08:51

Does Reaching Definitions
Framework Satisfy Properties?

What about composition?

¢ Given f,(x) = a; U (x-b;) and f,(x) = a, U (x-b,)

¢ Show f,(f,(x)) can be expressed as a U (x - b)

filfa()) =a; U (22 (x-by)) - by)
=a; Y ((a;-by) W ((x-by) - by))
(@Y (a;- b)) L (b)) - by))
(@Y (a;- b)) U (x-(b, U by))
=(a; U (ay-by))andb=b, Ub,

Then f,(f,(x)) =a v (x - b)

Forwar

Dataflow Analysis

General Result

All GEN/KILL transfer function frameworks
satisfy the properties:
¢ Identity
¢ Distributivity
¢ Compositionality

Available Expressions
Framework

¢ P =g (the powerset) of the set of all expressions
in the program (all subsets of set of expressions).
¢ v =n (orderis D)
¢ L= p (butin, =)
¢ [= all functions f of the form
f(x)=au (x-b).
¢ b is set of expressions that node kills.
4 a is set of expressions that node generates.

¢ Another GEN/KILL analysis

Forward (Availabl

Lecture 2: Foundations 16

Advanced Compiler Techniques

Dataflow Analysis: Backward Dataflow Analysis: Forward (Available Expressions)

Dataflow Analysis: Backward

Concept of Conservatism

¢ Reaching definitions use U as join

¢ Optimizations must take into account all definitions that reach
along ANY path

¢ Available expressions use N as join
+ Optimization requires expression to reach along ALL paths

¢ Optimizations must conservatively take all possible
executions into account.

¢ Structure of analysis varies according to the way the
results of the analysis are to be used.

Adva
nttp://Aanp-epflchyteacl

2004-03-19 08:51

Backward Dataflow Analysis

* Simulates execution of program backward
against the flow of control.

For each node n, we have

in, - value at program point before n.

out, - value at program point after n.

f - transfer function for n (given out,, computes in,).
Require that solutions satisfy:

i. Vn.in, = f (out,)

ii. Vn ¢ Nj ;. out,=v {in
iii. Vn € Ny, . out, =1

| m € succ(n) }

m

Adva
nttp://Aanp-epflchyteacl

Worklist Algorithm for Solving
Backward Dataflow Equations

for eachn € Ndoin, := f,(1)
worklist := N
while worklist # & do
remove a node n from worklist
out,:=v {in, | m € succ(n) }
in, = f,(out,)
if in, changed then
worklist := worklist U pred(n)

Lecture 2: Foundations

17

Advanced Compiler Techniques

Dataflow Analys

Live Variables Analysis
Framework

¢ P =powerset of the set of all variables in the
program (all subsets of the set of variables).
¢ v=U (orderis c)
¢ 1L=0
¢ [= all functions f of the form f(x) = a U (x-b)
¢ bis set of variables that the node kills.
4 a is set of variables that the node reads.

Advanced €
1ttp://Nanp-epflch/teaching/ac

2004-03-19 08:51

Meaning of Dataflow Results

¢ Connection between executions of program and
dataflow analysis results.
¢ Each execution generates a trajectory of states:
50;51;...;5,Where each s,€S
¢ Map current state s, to
¢ Program point n where execution located.
¢ Value x in dataflow lattice.

¢ Require x <in

Abstraction Function for
Forward Dataflow Analysis

¢ Meaning of analysis results is given by an
abstraction function AF:S—P

¢ Require that for all states s
AF(s) <in,
where n is the program point where the
execution is located at in state s, and in,, is
the abstract value before that point.

Advanced €
Nttp://Aanp-epflch/teaching/ac

Lecture 2: Foundations

18

Advanced Compiler Techniques

Sign Analysis Example

¢ Base Lattice: flat lattice on {-,zero,+}

@
<
&b
&
P
g
s}
<
a}

¢ Example element: [a—+, b—>zero, c—-]

2004-03-19 08:51

Sign analysis - compute sign of each variable v

¢ Actual lattice records a value for each variable

Adva
nttp://Aanp-epflchyteacl

If value of v in lattice is:
¢ L: no information about the sign of v.
¢ -: variable v is negative.
¢ zero: variable vis 0 .
¢ +: variable v is positive.

Dataflow Analysis: Example (Sign Analysis)

¢ T: v may be positive or negative or 0.

Interpretation of Lattice Values

Adva
nttp://Aanp-epflchyteacl

Operation ® on Lattice

- Zero b T
L L - Zero + T
- - + zZero - T

Zero | zero | zero | zZero | zZero | zZero

+ + - Zero + T

Dataflow Analysis: Example (Sign Analysis)

T T T Zero T T

Lecture 2: Foundations

19

Advanced Compiler Techniques

Transfer Functions

Defined by structural induction on the shape
of nodes:

¢If n of the formv=c
¢ fa(x) = x[v—> +] if c is positive
¢ fo(x) =x[v—ozero] if cis 0
¢ fa(x) = x[v—> -] if c is negative

¢ If n of the form v, = v,*v,
o £45) = X[v,ox[v] © x[v;]]

2004-03-19 08:51

Abstraction Function

¢ AF(s)[v] =sign of v
¢ AF([a—5, b—0, c—>-2]) = [a>+, b—zero, c—-]
¢ Establishes meaning of the analysis results
¢ If analysis says a variable v has a given sign
+ then v always has that sign in actual execution.
¢ Two sources of imprecision
Abstraction Imprecision - concrete values (integers) abstracted as

lattice values (-,zero, and +);
¢ Control Flow Imprecision - one lattice value for all different flow

of control possibilities.

Ad
nttp://anp-epfl chyte

Imprecision Example

Abstraction Imprecision: [a=>L, b—>L]: c=al]
a =

[a—1] abstracted as [a—>+]
[a—>+ b1, C_l]/\m +,bo>l, c]

b=-1 b=1

[a>+, b—>-, c—>1] [a—+, b>+, c—>1]

[a>+, b>T, c—>1] l
c = a*b

Control Flow Imprecision: [a>+, b>T, c>T]

[b—T] summarizes results of all executions.
In any execution state s, AF(s)[b]#T

Lecture 2: Foundations

Advanced Compiler Techniques 2004-03-19 08:51

General Sources of Imprecision

¢ Abstraction Imprecision
¢ Lattice values less precise than execution values.

Z
]
o

¢ Abstraction function throws away information.

¢ Control Flow Imprecision

¢ Analysis result has a single lattice value to summarize results
of multiple concrete executions.

Dataflow Analysi

¢ Join operation v moves up in lattice to combine values from
different execution paths.

¢ Typically if x <y, then x is more precise than y.

A
nttp://anp-epflchte

Why Have Imprecision?

ANSWER: To make analysis tractable
¢ Conceptually infinite sets of values in execution.
¢ Typically abstracted by finite set of lattice values.

s: Imprecision

¢ Execution may visit infinite set of states.
¢ Abstracted by computing joins of different paths.

Dataflow Analysi

Advanc
ttp://tanp-epflchy/teach

Augmented Execution States

¢ Abstraction functions for some analyses
require augmented execution states.

¢ Reaching definitions: states are augmented
with the definition that created each value.

¢ Available expressions: states are augmented
with expression for each value.

Dataflow Analysis: Augmented States

Lecture 2: Foundations 21

Advanced Compiler Techniques

Dataflow Analysis: Meet over all paths

Dataflow Analysis: Soundness

Meet Over All Paths Solution

¢ What solution would be ideal for a forward
dataflow analysis problem?

¢ Consider a path p =ny, n,, ..., n, n to anode n
(note that for all i, n; € pred(n,,,))

¢ The solution must take this path into account:
o) = P oy oofog (D) <)) Sy

¢ So the solution must have the property that
vifo(L) | pisapathton}<in,

and ideally

Vifp(L) | pisapathton}=in,

Adva
nttp://Aanp-epflchyteacl

2004-03-19 08:51

Soundness Proof of Analysis
Algorithm

Property to prove:
For all paths p ton, f,(1) <in,
¢ Proof is by induction on the length of p.
¢ Uses monotonicity of transfer functions.
¢ Uses following lemma.
Lemma:
The worklist algorithm produces a solution such that
if n € pred(m) then out, <in,,

(That is, what you get out of a predecessor is more precise than what will go
in to the node, because precision may be lost by the join function.)

Adva
nttp://Aanp-epflchyteacl

Proof

¢ Base case: p is of length 0
¢Thenp =njand f,(1)=L= i,

¢ Induction step:
¢ Assume theorem for all paths of length k.
¢ Show for an arbitrary path p of length k+1.

Lecture 2: Foundations

22

Advanced Compiler Techniques

Dataflow Analysis: Distributivity (Example)

Dataflow Analysis: Soundness

Induction Step Proof

¢ Givenapathp =n, ..., ny, nshow (f,, (fo (- fo, (fny(D) -..)) <in,
By induction assumption:
(fop o Fa(Fro(L)) --)) < iy

Apply f,, to both sides:

T (o FugUagD) o) 2 fi (i)
By monotonicity:

UnFos e S D)) € oy 1)
By definition of Fo fo(iny,) = outy,

oy FonFg1))) < outty
By lemma: out, <in,
By transitivity:

Ul e FuglFngd))) <im,

Adva
nttp://Aanp-epflchyteacl

2004-03-19 08:51

Dataflow Analysis: Distributivity

Distributivity

¢ Distributivity preserves precision.

¢ If framework is distributive, then the
worklist algorithm produces the meet over
paths solution:
For all n:

vif, (1) | pisapathton}=in,

Adva
nttp://Aanp-epflchyteacl

Lack of Distributivity Example

Integer Constant Propagation (ICP)
¢ Flat lattice on integers

¢ Actual lattice records a value for each variable
¢ Example element: [a—3, b—2, c—5]

Lecture 2: Foundations

23

Advanced Compiler Techniques 2004-03-19 08:51

Transfer Functions

¢ If n of the form v =c¢
¢ f(x) = x[v—>c]
¢ If n of the form v, = v,+v,

¢ fo(x) = xX[vi—=>x[v,] + x[v3]]

g
)
a
<
o]

Lack of Distributivity Anomaly

Dataflow Analysis: Distributivity (Example)

Lack of distributivity of ICP

¢ Consider transfer function f forc=a+b
(f(9) = x[c—>x[a] + x[b]])

¢ f([a—>3, b>2]) v f([a>2, b—3]) =
[a—>3, b>2] [c—> [a—>3, b>2][a] + [a—3, b—>2][b]] v
[a—>2, b>3] [c—> [a—>2, b>3][a] + [a—2, b>3][b]] =
[a>3, b>2] [c> 3 +2] v [a>2, b>3] [c>2+3] =
[a—>3, b>2] [c>5] v [a—>2, b—>3] [c—>5] =
[a>T, b>T, c—>5]

¢ f([a—>3, b>2]v[a—>2, b—3]) =
f([a>T, b>T]) =
[a>T, b>T] [c—> [a>T, b>T][a] + [a—>T, b>T][b]] =
[a>T, b>T, c—>T]

Dataflow Analysis: Distributivity (Example)

Lecture 2: Foundations 24

Advanced Compiler Techniques

Lack of Distributivity Anomaly

a 2 a 3
b 3 b 2

[a—>2, b—3] /aﬁ'}, b—2]
[a>T, b>T L

- Lack of Distributivity Imprecision:
C = athb -
[a>T, b—>T, c—>5] more precise.

Dataflow Analy

[a>T, b>T, c>T]

Summary

¢ Formal dataflow analysis framework
¢ Lattices, partial orders.
¢ Transfer functions, joins and splits.
¢ Dataflow equations and fixed point solutions.
¢ Connection with program
¢ Abstraction function AF: S —
¢ For any state s and program point n, AF(s) < in,
¢ Meet over paths solutions, distributivity.

Lecture 2: Foundations

2004-03-19 08:51

25

