
Using Program Analysis
for Optimization

This lecture is primarily based on Konstantinos Sagonas set of slides
(Advanced Compiler Techniques, (2AD518)

at Uppsala University, January-February 2004).
Used with kind permission.

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/2

Analysis and Optimizations

♦ Program Analysis
♦ Discover properties of a program.

♦ Optimizations
♦ Use analysis results to transform the program.
♦ Goal: improve some aspect of the program

♦number of executed instructions, number of cycles
♦ cache hit rate
♦memory space (code or data)
♦power consumption

♦ Has to be safe: Keep the semantics of the program.

In
tr

od
uc

tio
n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/3

Control Flow Graph
int add(n, k) {

s = 0; a = 4; i = 0;
if (k == 0)

b = 1;
else

b = 2;
while (i < n) {

s = s + a*b;
i = i + 1;

}
return s;

}

s = 0; a = 4; i = 0;
k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

entry

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/4

Control Flow Graph

♦ Nodes represent computation.
♦ Each node is a Basic Block (BB).
♦ Basic Block is a sequence of instructions with:

♦No branches out of middle of basic block.
♦No branches into middle of basic block.
♦Basic blocks should be maximal.

♦ Execution of basic block starts with first instruction.
♦ Includes all instructions in basic block.

♦ Edges represent control flow.

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/5

Two Kinds of Variables

♦Temporaries (temps, a tmp):
♦ Introduced by the compiler.
♦Transfer values only within basic block.
♦ Introduced as part of instruction flattening.
♦ Introduced by optimizations/transformations.

♦Program variables (vars, a var):
♦Declared in original program.
♦May transfer values between basic blocks.

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/6

Basic Block Optimizations
(Local Optimizations)

♦ Common Sub-Expression
Elimination (CSE)
a=(x+y)+z; b=x+y;
t=x+y; a=t+z; b=t;

♦ Constant Propagation
x=5; b=x+y;
b=5+y;

♦ Algebraic Simplification
a=x*1;
a=x;

♦ Copy Propagation
a=x+y; b=a; c=b+z;
a=x+y; b=a; c=a+z;

♦ Dead Code Elimination
a=x+y; b=a; c=a+z;
a=x+y; c=a+z

♦ Strength Reduction
t=i*4;
t=i<<2;

Ba
si

c
Bl

oc
k

O
pt

im
iz

at
io

ns

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/7

Value Numbering
♦ Normalize BB so that all statements are of the form:

♦ var = var op var (where op is a binary operator)
♦ var = op var (where op is a unary operator)
♦ var = var

(I.E., no complex statements like x=a+b*c.)

♦ Simulate execution of basic block:
♦ Assign a virtual value to each variable.
♦ Assign a virtual value to each expression.
♦ Assign a temporary variable to hold value of each

computed expression.

BB
 O

pt
: V

al
ue

 N
um

be
ri

ng

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/8

Value Numbering for CSE

As we simulate execution of program,
generate a new version of program:
♦Each new value assigned to temporary
a=x+y; becomes
a=x+y; t1=a;

♦Temporary preserves value for use later in
program even if original variable rewritten
a=x+y; a=a+z; becomes
a=x+y; t1=a; a=a+z; t2=a;

BB
 O

pt
: V

al
ue

 N
um

be
ri

ng

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/9

CSE Example
♦ Original

a=x+y
b=a+z
b=b+y
c=a+z

♦ After CSE
a=x+y
t1=a
b=a+z
t2=b
b=b+y
t3=b
c=t2♦Issues:

♦CSE with different names:
a=x; b=x+y; c=a+y;

♦Excessive temp generation and use.

BB
 O

pt
: C

SE

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/10

b→v5b→v6

a=x+y
b=a+z
b=b+y
c=a+z

a=x+y
t1=a
b=a+z
t2=b
b=b+y
t3=b

x→v1
y→v2
a→v3
z→v4

c→v5

Original Basic
Block

New Basic
Block

Var to Val

v1+v2→v3
v3+v4→v5

Exp to Val
v1+v2→t1
v3+v4→t2

Exp to Tmp

c=t2

v5+v2→v6 v5+v2→t3

BB
 O

pt
: C

SE

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/11

b→v5 b→v6

a=x+y
b=a+z
b=b+y
c=a+z

a=x+y
t1=a
b=a+z
t2=b
b=b+y
t3=b

x→v1
y→v2
a→v3
z→v4

c→v5

Original Basic
Block

New Basic
Block

Var to Val

v1+v2→v3
v3+v4→v5

Exp to Val
v1+v2→t1
v3+v4→t2

Exp to Tmp

c=t2

v5+v2→v6 v5+v2→t3

BB
 O

pt
: C

SE

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/12

Problems

♦ Algorithm has a temporary for each value.
a=x+y; t1=a;

♦ Introduces
♦ lots of temporaries.
♦ lots of copy statements to temporaries.

♦ In many cases, temporaries and copy statements
are unnecessary.

♦ So we eliminate them with copy propagation and
dead code elimination.

BB
 O

pt
: C

SE

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/13

Copy Propagation (CP)
♦Once again, simulate execution of program
♦If possible, use the original variable instead of a

temporary
♦a=x+y; b=x+y;
♦After CSE becomes a=x+y; t1=a; b=t1;
♦After CP becomes a=x+y; b=a;

♦Key idea: determine when original variables are
NOT overwritten between computation of
stored value and use of stored value.

BB
 O

pt
: C

op
y

Pr
op

ag
at

io
n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/14

Copy Propagation Maps

♦Maintain two maps
♦ tmp to var: tells which variable to use instead

of a given temporary variable.
♦var to set: inverse of tmp to var. Tells which

temps are mapped to a given variable by tmp
to var.

BB
 O

pt
: C

op
y

Pr
op

ag
at

io
n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/15

Copy Propagation Example
♦ Original

a=x+y
b=a+z
c=x+y
a=b

♦ After CSE
a=x+y
t1=a
b=a+z
t2=b
c=t1
a=b

♦ After CSE and Copy
Propagation
a=x+y
t1=a
b=a+z
t2=b
c=a
a=b

BB
 O

pt
: C

op
y

Pr
op

ag
at

io
n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/16

Copy Propagation Example

a=x+y
t1=a
b=a+z
t2=b
c=t1
a=b

Basic Block
After CSE

a=x+y
t1=a
b=a+z
t2=b
c=a
a=b

Basic Block After
CSE and Copy Prop

tmp to var var to set
t1→a
t2→b

a→{t1}
b→{t2}

BB
 O

pt
: C

op
y

Pr
op

ag
at

io
n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/17

Copy Propagation Example

a=x+y
t1=a
b=a+z
t2=b
c=t1
a=b

Basic Block
After CSE

a=x+y
t1=a
b=a+z
t2=b
c=a
a=b

Basic Block After
CSE and Copy Prop

tmp to var var to set
t1→t1
t2→b

a→{}
b→{t2}

BB
 O

pt
: C

op
y

Pr
op

ag
at

io
n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/18

Dead Code Elimination

♦ Copy propagation keeps all temporaries.
♦ There may be temps that are never read.
♦ Dead Code Elimination removes them.

a=x+y
t1=a
b=a+z
t2=b
c=a
a=b

a=x+y
b=a+z
c=a
a=b

Basic block after
CSE and Copy Prop.

Basic block after
CSE, CP, &

Dead Code Elimination

BB
 O

pt
: D

ea
d

C
od

e
El

im
in

at
io

n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/19

Dead Code Elimination

♦Basic idea:
♦Process code in reverse execution order.
♦Maintain a set of variables that are needed later

in computation.
♦On encountering an assignment to a temporary

that is not needed, we remove the assignment.BB
 O

pt
: D

ea
d

C
od

e
El

im
in

at
io

n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/20

a=x+y
t1=a
b=a+z
t2=b
c=a
a=b

Basic Block After
CSE and Copy Prop

and Dead Code Elimination
Needed Set

{b}
{a,b}
{a,b}
{a,b,z}
{a,z}
{a,z}

BB
 O

pt
: D

ea
d

C
od

e
El

im
in

at
io

n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/21

Interesting Properties

♦ Analysis and optimization algorithms simulate
execution of the program.
♦ CSE and Copy Propagation go forward.
♦ Dead Code Elimination goes backwards.

♦ Optimizations are stacked.
♦ Group of basic transformations.
♦ Work together to get good result.
♦ Often, one transformation creates inefficient code that

is cleaned up by following transformations.

BB
 O

pt
: S

um
m

ar
y

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/22

Other Basic Block
Transformations

♦Constant Propagation.
♦Strength Reduction:

♦a*4; ⇒ a<<2;
♦3*a; ⇒ a+a+a;

♦Algebraic Simplification:
♦a*1; ⇒ a;
♦b+0; ⇒ b;

♦Unified transformation framework.

BB
 O

pt
: S

um
m

ar
y

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/23

Dataflow Analysis
(Global Analysis)

♦Used to determine properties of programs
that involve multiple basic blocks.

♦Typically used to enable transformations.
♦common sub-expression elimination.
♦constant and copy propagation.
♦dead code elimination.

♦Analysis and transformation often come in
pairs.

G
lo

ba
l O

pt
: I

nt
ro

du
ct

io
n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/24

♦Concept of definition and use
♦a=x+y

♦is a definition of a.
♦is a use of x and y.

♦A definition reaches a use if value written
by definition may be read by use.

Reaching Definitions
G

lo
ba

l O
pt

: R
ea

ch
in

g
D

ef
in

iti
on

s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/25

Reaching Definitions
s=0;
a=4;
i=0;
k==0

b=1; b=2;

i<n

s=s+a*b;
i=i+1; return s

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/26

Reaching Definitions and
Constant Propagation

♦Is a use of a variable a constant?
♦Check all reaching definitions.
♦ If all assign variable to same constant.
♦Then use is in fact a constant.

♦Can replace variable with constant.

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

&
 C

on
st

an
t P

ro
p

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/27

Is a constant in s=s+a*b?

s=0;
a=4;
i=0;
k==0

b=1; b=2;

i<n

s=s+a*b;
i=i+1; return s

Yes!
On all reaching

definitions
a=4

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

&
 C

on
st

an
t P

ro
p

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/28

Constant Propagation Transform

s=0;
a=4;
i=0;
k==0

b=1; b=2;

i<n

s=s+4*b;
i=i+1; return s

Yes!
a=4
in

s=s+a*b
Replace use of a

with 4.

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

&
 C

on
st

an
t P

ro
p

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/29

Is b constant in s=s+4*b?

s=0;
a=4;
i=0;
k==0

b=1; b=2;

i<n

s=s+4*b;
i=i+1; return s

No!
One reaching
definition with

b=1
One reaching
definition with

b=2

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

&
 C

on
st

an
t P

ro
p

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/30

Computing Reaching Definitions

♦Compute with sets of definitions:
♦Represent sets using bit vectors.
♦Each definition has a position in bit vector.

♦At each basic block, compute:
♦Definitions that reach start of block.
♦Definitions that reach end of block.

♦Do computation by simulating execution of
program until the fixed point is reached.

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/31

s1=0;
a2=4;
i3=0;
k==0

b4=1; b5=2;

i<n

s6=s+a*b;
i7=i+1; return s

0000000

1110000 1110000

1111111
1111111

1111111

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/32

Formalizing Analysis

♦ Each basic block has
♦ IN - set of definitions that reach beginning of block
♦ OUT - set of definitions that reach end of block
♦ GEN - set of definitions generated in block
♦ KILL - set of definitions killed in the block

♦ GEN[s6=s+a*b;i7=i+1;] = 0000011
♦ KILL[s6=s+a*b;i7=i+1;] = 1010000
♦ Compiler scans each basic block to derive GEN and

KILL sets.

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/33

s1=0;
a2=4;
i3=0;
k==0

b4=1; b5=2;

i<n

s6=s+a*b;
i7=i+1; return s

GEN[0] = 1110000
KILL[0] = 0000011

GEN[2] = 0000100
KILL[2] = 0001000

GEN[1] = 0001000
KILL[1] = 0000100

GEN[3] = 0000000
KILL[3] = 0000000

GEN[4] = 0000011
KILL[4] = 1010000

GEN[5] = 0000000
KILL[5] = 0000000

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/34

Dataflow Equations

♦IN[bi] = OUT[b1] ∪ ... ∪ OUT[bn]
where b1, ..., bn are predecessors of bi

♦OUT[bi] = (IN[bi] - KILL[bi]) ∪ GEN[bi]
♦IN[entry] = 0000000
♦Result: system of equations.G

lo
ba

l O
pt

: R
ea

ch
in

g
D

ef
in

iti
on

s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/35

s1=0;
a2=4;
i3=0;
k==0

b4=1; b5=2;

i<n

s6=s+a*b;
i7=i+1; return s

IN[0] = 0000000
GEN[0] = 1110000
KILL[0] = 0000011

OUT[0]=(IN[0] -KILL[0])∪GEN[0]=
0000000-0000011∪ 1110000=1110000

IN[1]=OUT[0]
GEN[1] = 0001000
KILL[1] = 0000100

OUT[1]=(IN[1]-0000100)∪0001000

IN[2]=OUT[0]
GEN[2] = 0000100
KILL[2] = 0001000

OUT[2]=(IN[2]-0001000)∪0000100

IN[3]=OUT[1] ∪ OUT[2]
GEN[3] = 0000000
KILL[3] = 0000000

OUT[3]=IN[3]

IN[4]=OUT[3]
GEN[4] = 0000011
KILL[4] = 1010000

OUT[4]=(IN[4]-1010000)∪0000011

IN[5]=OUT[3]
GEN[5] = 0000000
KILL[5] = 0000000

OUT[5]=IN[5]

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/36

Solving Equations
♦Use fix point algorithm.
♦Initialize with solution of

OUT[bi] = 0000000
♦Repeatedly apply equations:

♦ IN[bi] = OUT[b1] ∪ ... ∪ OUT[bn]
♦OUT[bi] = (IN[bi] - KILL[bi]) ∪ GEN[bi]

♦Until reach fixed point, i.e., until equation
application has no further effect.

♦Use a worklist to track which equation
applications may have further effect.

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/37

Reaching Definitions Algorithm
for all nodes n∈N

OUT[n] = ∅; // Or OUT[n] = GEN[n];
Changed = N; // N = all nodes in graph
while (Changed != ∅) // Until fixed point reached.

choose n∈Changed; // Node from worklist
Changed=Changed-{n}; // Remove from worklist
OldOut = OUT[n] // Remember old result
IN[n] = ∅; // Calculate IN as join
for all nodes p∈predecessors(n) // of predecessors.

IN[n]=IN[n]∪OUT[p];
OUT[n]=(IN[n]-KILL[n])∪GEN[n]; // Recalculate OUT
if (OUT[n] != OldOut) // If OUT[n] changed
for all nodes s∈successors(n)

Changed=Changed∪{s}; //Add succs to worklist

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/38

Questions

♦ Does the algorithm halt?
♦ yes, because transfer function is monotonic.
♦ if increase IN, increase OUT.
♦ in limit, all bits are 1.

♦ If bit is 1, is there always an execution in which
corresponding definition reaches basic block?

♦ If bit is 0, does the corresponding definition ever
reach basic block?

♦ Concept of conservative analysis.

G
lo

ba
l O

pt
: R

ea
ch

in
g

D
ef

in
iti

on
s,

su
m

m
ar

y

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/39

Available Expressions

♦ An expression x+y is available at a point p if
♦ every path from the initial node to p evaluates x+y

before reaching p,
♦ and there are no assignments to x or y after the

evaluation but before p.
♦ Available Expression information can be used to

do global (across basic blocks) CSE.
♦ If an expression is available at use, there is no

need to re-evaluate it.

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/40

Computing Available
Expressions

♦ Represent sets of expressions using bit vectors.
♦ Each expression corresponds to a bit.
♦ Run dataflow algorithm similar to reaching

definitions.
♦ Big difference:

♦ Definition reaches a basic block if it comes from ANY
predecessor in CFG.

♦ Expression is available at a basic block only if it is
available from ALL predecessors in CFG.

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/41

Expressions
1: x+y
2: i<n
3: i+c
4: x==0

0000

1001

1000

1000

1100 1100

a=x+y;
x==0

x=z;
b=x+y;

i<n

c=x+y;
i=i+c;

d=x+y

i=x+y;

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/42

Expressions
1: x+y
2: i<n
3: i+c
4: x==0

0000

1001

1000

1000

1100 1100

a=x+y;
t1=a;
x==0

x=z;
b=x+y;
t1=b;

i<n

c=t1;
i=i+c;

d=t1

i=t1;

Global CSE Transform

Must use same temp
for CSE in all blocks

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s &

 C
SE

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/43

Formalizing Analysis

♦ Each basic block has
IN - set of expressions that reach beginning of block.
OUT - set of expressions that reach end of block.
GEN - set of expressions generated in block.
KILL - set of expressions killed in the block.

♦ GEN[x=z; b=x+y] = 1000
♦ KILL[x=z; b=x+y] = 1001
♦ Compiler scans each basic block to derive GEN and

KILL sets.

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/44

Dataflow Equations

♦IN[bi] = OUT[b1]∩ ... ∩ OUT[bn]
♦where b1, ..., bn are predecessors of bi

♦OUT[bi] = (IN[bi] - KILL[bi]) ∪ GEN[bi]
♦IN[entry] = 0000
♦Result: system of equations.

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/45

Solving Equations

♦Use fix point algorithm.
♦IN[entry]=0000
♦Initialize with solution of

OUT[bi] = 1111
♦Repeatedly apply equations:

♦ IN[bi] = OUT[b1] ∩ ... ∩ OUT[bn]
♦OUT[bi] = (IN[bi] - KILL[bi]) ∪ GEN[bi]

♦Use a worklist to track which equation
applications may have further effect.

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/46

Available Expressions Algorithm
for all nodes n∈N // E is set of all expressions.

OUT[n] = E; // OUT[n] =E -KILL[n];
Changed = N; // N = all nodes in graph
while (Changed != ∅)

choose n∈Changed;
Changed=Changed-{n};
IN[n] = E ;
OldOut = OUT[n]
for all nodes p∈predecessors(n)

IN[n]=IN[n]∩OUT[p];
OUT[n]=(IN[n]-KILL[n])∪GEN[n];
if (OUT[n] != OldOut)
for all nodes s∈successors(n) Changed=Changed∪{s};

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/47

Questions

♦ Does algorithm always halt?
♦ If expression is available in some execution, is it

always marked as available in analysis?
♦ If expression is not available in some execution,

can it be marked as available in analysis?
♦ In what sense is the algorithm conservative?

G
lo

ba
l O

pt
: A

va
ila

bl
e

Ex
pr

es
si

on
s,

su
m

m
ar

y

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/48

Duality In Two Algorithms

♦ Reaching definitions
♦ Confluence operation is set union.
♦ OUT[b] initialized to empty set.

♦ Available expressions
♦ Confluence operation is set intersection.
♦ OUT[b] initialized to set of available expressions.

♦ General framework for dataflow algorithms.
♦ Build parameterized dataflow analyzer once, use

for all dataflow problems.

G
lo

ba
l O

pt
: D

ua
lit

y

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/49

Liveness Analysis

♦ A variable v is live at point p if
♦ v is used along some path starting at p, and
♦ no definition of v along the path before the use.

♦ When is a variable v dead at point p?
♦ No use of v on any path from p to exit node, or
♦ If all paths from p, redefine v before using v.G

lo
ba

l O
pt

: L
iv

en
es

s
A

na
ly

si
s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/50

What Use is Liveness
Information?

♦ Register allocation.
♦ If a variable is dead, we can reassign its register.

♦ Dead code elimination.
♦ Eliminate assignments to variables not read later.
♦ But must not eliminate last assignment to variable (such as

instance variable) visible outside CFG.
♦ Can eliminate other dead assignments.
♦ Handle by making all externally visible variables live on

exit from CFG.

G
lo

ba
l O

pt
: L

iv
en

es
s

A
na

ly
si

s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/51

Conceptual Idea of Analysis

♦Simulate execution.
♦But start from exit and go backwards in

CFG.
♦Compute liveness information from end to

beginning of basic blocks.G
lo

ba
l O

pt
: L

iv
en

es
s

A
na

ly
si

s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/52

Liveness Example

a=x+y;
t=a;
c=a+x;
x==0

b=t+z;

c=y+1;

1100100

1110000

♦Assume a,b,c
visible outside
function. They are
live on exit.

♦Assume x,y,z,t
are not visible.

♦Represent liveness
using a bit vector:
order is abcxyzt.

1100111

G
lo

ba
l O

pt
: L

iv
en

es
s

A
na

ly
si

s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/53

Using Liveness Information for
Dead Code Elimination

a=x+y;
t=a;
c=a+x;
x==0

b=t+z;

c=y+1;

1100100

1110000

♦Assume a,b,c
visible outside
function. They are
live on exit.

♦Assume x,y,z,t
are not visible.

♦Represent liveness
using a bit vector:
order is abcxyzt.

1100111

G
lo

ba
l O

pt
: L

iv
en

es
s

A
na

ly
si

s &
 D

ea
d

C
od

e
El

im
in

at
io

n

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/54

Formalizing Analysis
♦ Each basic block has

IN - set of variables live at start of block.
OUT - set of variables live at end of block.
USE - set of variables with upwards exposed uses in block.

(GEN)
DEF - set of variables defined in block. (KILL)

♦ USE[x=z;x=x+1;y=1;] = {z} (x not in USE)
♦ DEF[x=z;x=x+1;y=1;] = {x, y}
♦ Compiler scans each basic block to derive USE and

DEF sets.

G
lo

ba
l O

pt
: L

iv
en

es
s

A
na

ly
si

s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/55

Algorithm
OUT[Exit] = ∅;
IN[Exit] = USE[n];
for all nodes n∈N-{Exit}

IN[n] = ∅;
Changed = N-{Exit};
while (Changed != ∅)

choose n ∈ Changed;
Changed = Changed-{n};
OldIn=IN[n]
OUT[n] = ∅;
for all nodes s ∈ successors(n) OUT[n] = OUT[n] ∪ IN[p];
IN[n] = USE[n] ∪ (OUT[n] - DEF[n]);
if (IN[n] != OldIn)

for all nodes p ∈ predecessors(n) Changed=Changed∪{p};

G
lo

ba
l O

pt
: L

iv
en

es
s

A
na

ly
si

s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/56

Similar to Other Dataflow
Algorithms

♦Backwards analysis, not forwards.
♦Still have transfer functions.
♦Still have confluence operators.
♦Can generalize framework to work for both

forwards and backwards analyses.G
lo

ba
l O

pt
: L

iv
en

es
s

A
na

ly
si

s

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/57

Analysis Information Inside
Basic Blocks

♦One detail:
♦ Given dataflow information at IN and OUT of node.
♦ Also need to compute information at each statement of

basic block.
♦ Simple propagation algorithm usually works fine.
♦ Can be viewed as restricted case of dataflow analysis.

G
lo

ba
l O

pt
 &

 B
Bs

Advanced Compiler Techniques
http://lamp.epfl.ch/teaching/advancedCompiler/58

Summary

♦ Basic blocks and basic block optimizations.
♦ Copy and constant propagation.
♦ Common sub-expression elimination.
♦ Dead code elimination.

♦ Dataflow Analysis
♦ Control flow graph.
♦ IN[b], OUT[b], transfer functions, join points.

♦ Pairs of analyses and transformations:
♦ Reaching definitions/constant propagation.
♦ Available expressions/common sub-expression elimination.
♦ Liveness analysis/Dead code elimination.

Su
m

m
ar

y

