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Analysis and Optimizations

¢ Program Analysis

¢ Discover properties of a program.
¢ Optimizations
¢ Use analysis results to transform the program.
¢ Goal: improve some aspect of the program
¢ number of executed instructions, number of cycles
¢ cache hit rate

¢ memory space (code or data)
¢ power consumption

¢ Has to be safe: Keep the semantics of the program.
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Control Flow Graph

int add(n, k) { AL
s =0; a=4; 1 =0; l
if (k == 0) s =0; a=4; 1 =20,
A b = 1, k —= O
;é else / N\
; b = 2; b = 1; b = 2;
while (1 < n) { \ /
S = s + a*b; :
: . 1 < n
i =1+ 1; /
} \
. a*b;
FEEIrT & . return s
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Control Flow Graph

¢ Nodes represent computation.

¢ Each node is a Basic Block (BB).

¢ Basic Block is a sequence of instructions with:
¢ No branches out of middle of basic block.
¢ No branches into middle of basic block.
¢ Basic blocks should be maximal.

¢ Execution of basic block starts with first instruction.

¢ Includes all instructions in basic block.

n
L
g
5=
ks
Gy
)
A

¢ Edges represent control flow.
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Two Kinds of Variables

¢ 'emporaries (temps, a tmp):

¢ Introduced by the compiler.

¢ Transfer values only within basic block.

¢ Introduced as part of instruction flattening.

¢ Introduced by optimizations/transformations.

¢ Program variables (vars, a var):

¢ Declared in original program.
¢ May transfer values between basic blocks.
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Basic Block Optimizations
(Local Optimizations)

¢ Common Sub-Expression ¢ Copy Propagation

é Elimination (CSE) a=x+y; b=a; c=b+z;
é a=(x+ty)+z; b=x+y; a=x+y; b=a; c=atz;
§* t=x+y; a=t+z,; b=t;
e ¢ Constant Propagation ¢ Dead Code Elimination
E X=5; b=Xx+ty; a=x+y; b=a,; c=a+tz;
b=5+y; a=xty; c=a+tz
¢ Algebraic Simplification ¢ Strength Reduction
a=x*1; t=1%*4;

a=X ; t=1<<2;
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Value Numbering

¢ Normalize BB so that all statements are of the form:
¢ var = var op var (where op is a binary operator)

¢ var = op var (where op is a unary operator)

¢ var = var
(L.LE., no complex statements like x=a+b*c.)

¢ Simulate execution of basic block:

¢ Assign a virtual value to each variable.
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¢ Assign a virtual value to each expression.

¢ Assign a temporary variable to hold value of each
computed expression.
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Value Numbering for CSE

As we simulate execution of program,
generate a new version of program:

¢ Each new value assigned to temporary
a=x+y ; becomes
a=xty; t;=a,;

¢ Temporary preserves value for use later in
program even if original variable rewritten
a=x+y; a=a+z; becomes
a=xty,; t,=a; a=atz; t,=a;
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CSE Example

¢ Original ¢ After CSE
a=x+y a=x+y
b=a+z t,=a
2 b=b+y b=a+z
§ c=a+z t,=b
3 b=b+y
t,=b
¢ Issues: c=t,

¢ CSE with different names:
a=x,; b=x+y; c=aty;
¢ Excessive temp generation and use.
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New Basic
Original Basic Block

a=X+y
t,=a
b=a+z
t,=b
b=b+y
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New Basic

Original Basic Block
Block
2=ty a=x+y
= t,=a
B;S:; b=a+z
CeET t2_=b
. b=b+y
g t;3=b
§ Var to Val &7
[an)
X—>V
y—V, Exp to Val Exp to Tmp
b—»V§ b—v V3TV, Vs V3tV L
6

VetV,—t
CV, VetV,—V, 57 V) 3
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Problems

¢ Algorithm has a temporary for each value.
a=xty; t;=a;
¢ Introduces

¢ lots of temporaries.
¢ lots of copy statements to temporaries.

¢ In many cases, temporaries and copy statements
are unnecessary.

¢ So we eliminate them with copy propagation and
dead code elimination.
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Copy Propagation (CP)

¢ Once again, simulate execution of program
¢ If possible, use the original variable instead of a
temporary
¢ a=Xty; b=X+ty;
¢ After CSE becomes a=x+y; t,;=a; b=t,;
¢ After CP becomes a=x+y; b=a;

S
e
-+

)

olo)

(9}

oF

@)

=~
ol

>
oF

o
)
4

oF
@)
/M
e

¢ Key idea: determine when original variables are
NOT overwritten between computation of
stored value and use of stored value.
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Copy Propagation Maps

¢ Maintain two maps

¢ tmp to var: tells which variable to use instead
of a given temporary variable.

¢ var to set: inverse of tmp to var. Tells which
temps are mapped to a given variable by tmp
to var.
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Copy Propagation Example

¢ Original
a=Xx+y
5 P ¢ After CSE and Copy
%‘j C=x+y Propagation
% a=b a=X+ty
i ¢ After CSE =
§ a=x+y b=a+z
) t,=a 5=
b=a+z c=a
t,=b =0
c=t,
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Copy Propagation Example

Basic Block Basic Block After
E After CSE CSE and Copy Prop
% a=x+y a=x+y
£ t,= t,=a
? b=a+z b=a+z
U —
poo cC=t 1 C=d
- a=b a=b

tmp to var var to set

t,—a a—>{t,}

t,—>b b—>{t,}
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Copy Propagation Example

Basic Block Basic Block After
E After CSE CSE and Copy Prop
% a=X+y a=X+y
£ t,= t,=a
? b=a+z b=a+z
U —
poo cC=t 1 C=d
- a=b a=b
tmp to var var to set
t,—>t, a—>{}

t,—>b b—>{t,}
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Dead Code Elimination

¢ Copy propagation keeps all temporaries.
¢ There may be temps that are never read.
¢ Dead Code Elimination removes them.
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Basic block after Basic block after
CSE and Copy Prop. CSE, CP, &
a=xty Dead Code Elimination
tl=a 3
b=a+z a=X+y
©2=b b=a+z
c=a c=a
a=b

a=b
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Dead Code Elimination

¢ Basic idea:
¢ Process code in reverse execution order.

¢ Maintain a set of variables that are needed later
in computation.

¢ On encountering an assignment to a temporary
that is not needed, we remove the assignment.
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Basic Block After
CSE and Copy Prop Needed Set

g

£ a=xty {a,z}
ma —_

%; t1=a {a,z)
% b=a+z {a,b,Z}
g t2=b {a,b}
g c=a {a,b}
% —~ a=b {b}
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Interesting Properties

¢ Analysis and optimization algorithms simulate
execution of the program.
¢ CSE and Copy Propagation go forward.
¢ Dead Code Elimination goes backwards.
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¢ Optimizations are stacked.
¢ Group of basic transformations.
¢+ Work together to get good result.

¢ Often, one transformation creates inefficient code that
is cleaned up by following transformations.
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Other Basic Block
Transformations

¢ Constant Propagation.
¢ Strength Reduction:
¢ %4, = a<<’;
¢ 3*a; = atata;
¢ Algebraic Simplification:
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¢a*l; = a;
e b+0: = Db;

¢ Unified transformation framework.
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Datatlow Analysis
(Global Analysis)

¢ Used to determine properties of programs
that involve multiple basic blocks.
¢ Typically used to enable transformations.
¢ common sub-expression elimination.
¢ constant and copy propagation.
¢ dead code elimination.

¢ Analysis and transformation often come in
pairs.
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Reaching Definitions

¢ Concept of definition and use

¢ A=X+y
¢is a definition of a.
¢isause of x and y.

¢ A definition reaches a use if value written
by definition may be read by use.
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Reaching Definitions
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s=s+a*b;
. . return s
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Reaching Detinitions and
Constant Propagation

¢ Is a use of a variable a constant?
¢ Check all reaching definitions.
¢ If all assign variable to same constant.
¢ Then use is in fact a constant.

¢ Can replace variable with constant.
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Is a constant in s=s+a*b?

Yes!

On all reaching
definitions
a=4
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return s
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Constant Propagation Transform

Yes!

S=0;

a=4; _
i=0; a=4
k::@ ln

s=s+a*Db
Replace use of a

N\

b=

( with 4.
N

return s
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Is b constant in s=s+4*b?

No!

One reaching
definition with
b=1
b=2; One reaching
T definition with
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return s
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Computing Reaching Definitions

¢ Compute with sets of definitions:

¢ Represent sets using bit vectors.

¢ Each definition has a position in bit vector.
¢ At each basic block, compute:

¢ Definitions that reach start of block.

¢ Definitions that reach end of block.

¢ Do computation by simulating execution of
program until the fixed point is reached.
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0000000

sl=0:
al=4;
13=0;
1110000 k==0 1110000
L
h4=1: h5=2

1111111
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1111111
/ 1111111
sb=s+a*b;
iT=d+17 : return s
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Formalizing Analysis

¢ Each basic block has
¢ IN - set of definitions that reach beginning of block
¢ OUT - set of definitions that reach end of block
¢ GEN - set of definitions generated in block
¢ KILL - set of definitions killed in the block
¢ GEN[s®=s+a*b;i’=i+1;]= 0000011
¢ KILL[s®=s+a*b;i’=i+1;]=1010000
¢ Compiler scans each basic block to derive GEN and
KILL sets.
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——1 GEN][0] = 1110000
S =0 | KILL[0] = 0000011

) a’=4;
I i3=0;
& k==0
5 /
=l GEN[1] = 0001000 ay e, | GENI2] = 0000100
Bl KILL[1] = 0000100 N \A ~<» | KILL[2] = 0001000
& - <n_| GENI[3] =0000000
£ KILL[3] = 0000000
5 L \\§ J

sb=s+a*b;

return s
B GEN[5] = 0000000
GEN][4] = 0000011 KILL[5] = 0000000

KILL[4] = 1010000
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Datatlow Equations

¢ IN[b,] = OUT]|b;] U ... w OUT]b,]
where b, ..., b, are predecessors of b,
¢ OUT|[Db,] = (IN[b,] - KILL[b,]) w GEN|[b,]
¢ INJentry] = 0000000
¢ Result: system of equations.
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IN[0] = 0000000
GEN][0] = 1110000
KILL[0] = 0000011

sl=0: OUTJ[0]=(IN[0] -KILL[0])wGEN][0]=
al=4: 0000000-0000011w 1110000=1110000

. 3 — .

1°=0; IN[2]=0OUT[0]

k==0 GENI[2] = 0000100

KILL[2] = 0001000

/ N\, OUT[2I=(IN[2]-0001000),0000100

IN[1]=OUT[0]
GEN[1] = 0001000 4=1 - 5= -
KILL[1] = 0000100 b*=1; b>=2;

OUT[1]=(IN]1]-0000100)0001000 x IN[3]=OUT[1] U OUT[2]

5 e GEN[3] = 0000000

KILL[3] = 0000000

/ \OUT[3]=IN[3]

return s

IN[5]=OUT]I3]

IN[4]=OUT[3] GEN[5] = 0000000
GEN[4] = 0000011 KILL[5] = 0000000
KILL[4] = 1010000 OUT[5]=IN[5]

OUT[4]=(IN[4]-1010000)u0000011
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Solving Equations

¢ Use fix point algorithm.

¢ Initialize with solution of
OUT|[b,] = 0000000
¢ Repeatedly apply equations:
¢ IN[b.] = OUT[b;] U ... U OUT[b. ]
+ OUT[b,] = (IN[b,] - KILL[b,]) U GEN[b)]
¢ Until reach fixed point, i.e., until equation
application has no further effect.

¢ Use a worklist to track which equation
applications may have further effect.
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Reaching Definitions Algorithm

for all nodes neN
OUT[n] = 0; OUT|n] = GEN|n

Changed = N; N
while (Changed != 0)
choose neChanged;
Changed=Changed-{n};
OldOut = OUT][n]
IN[n] = 0; IN
for all nodes pepredecessors(n)
IN[n]=IN[n]oOUT]p];
OUT[n]=(IN[n]-KILL[n])0GEN|[n]; OUT
if (OUT[n] != OldOut) OUT|n

for all nodes s&successors(n)
Changed=Changedu{s};
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Questions

¢ Does the algorithm halt?
¢ yes, because transfer function is monotonic.
¢ if increase IN, increase OUT.
¢ in limit, all bits are 1.

¢ If bit is 1, is there always an execution in which
corresponding definition reaches basic block?

¢ If bit is 0, does the corresponding definition ever
reach basic block?

¢ Concept of conservative analysis.
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Available Expressions

¢ An expression x+y is available at a point p if

¢ every path from the initial node to p evaluates x+y
before reaching p,

¢ and there are no assignments to x or y after the
evaluation but before p.

¢ Available Expression information can be used to
do global (across basic blocks) CSE.

¢ If an expression is available at use, there is no
need to re-evaluate it.
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Computing Available
Expressions

¢ Represent sets of expressions using bit vectors.
¢ Each expression corresponds to a bit.

¢ Run dataflow algorithm similar to reaching
definitions.

¢ Big difference:

¢ Definition reaches a basic block if it comes from ANY
predecessor in CFG.
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¢ Expression is available at a basic block only if it is
available from ALL predecessors in CFG.
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0000

a=x+y ;
Expressions ==0
L xby 1001 —
2: 1<n X=7"
3: 1+cC b=x+y;
4: x==0
v 1000
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1100

d=x+y
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Global CSE Transform _ 9906

a=xX+y ;
t,=a;
8 LExpressions 1001 i=@
5 1: X+Yy —
B 2: i<n
@ 3: i+c
A 4: x==0
< 1000
S
;E Must use same temp
3 for CSE in all blocks
E 1100
©
d=t,
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Formalizing Analysis

¢ Each basic block has

IN - set of expressions that reach beginning of block.
OUT - set of expressions that reach end of block.
GEN - set of expressions generated in block.

KILL - set of expressions killed in the block.

¢ GEN[x=z; b=x+y]=1000
¢ KILL[x=z; b=x+y]=1001

¢ Compiler scans each basic block to derive GEN and
KILL sets.
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Datatlow Equations

¢ IN|[b,] = OUT|b;] n ... n OUT|b,]
¢ where b, ..., b are predecessors of b,
¢ OUT|b,] = (IN]b,] - KILL[b,]) w GEN]b]
¢ INJentry] = 0000
¢ Result: system of equations.
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Solving Equations

¢ Use fix point algorithm.
¢ IN[entry]=0000

¢ Initialize with solution of
OUT][b,] = 1111
¢ Repeatedly apply equations:
¢ IN[b,] = OUT[b,] A ... ~ OUT[b. ]
¢ OUT[b,] = (IN[b,] - KILL[b.]) U GEN[b,]
¢ Use a worklist to track which equation
applications may have further effect.
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Available Expressions Algorithm

for all nodes neN E
OUT|[n] = E; OUT|n| =E -KILL|n
Changed = N; N

while (Changed != ()
choose ncChanged;
Changed=Changed-{n};
IN[n] =E;
OldOut = OUT|n]

for all nodes pepredecessors(n)
IN[n]=IN[n]~OUT|[p];
OUT[n]=(IN[n]-KILL[n])"GEN][n];
if (OUT[n] != OldOut)
for all nodes sesuccessors(n) Changed=Changedugsy,

http://1amp.epfl.ch/teaching/advancedCompiler/
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Questions

¢ Does algorithm always halt?

¢ If expression is available in some execution, is it
always marked as available in analysis?

¢ If expression is not available in some execution,
can it be marked as available in analysis?

¢ In what sense is the algorithm conservative?
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Duality In Two Algorithms

¢ Reaching definitions

¢ Confluence operation is set union.
¢ OUT][Db] initialized to empty set.

¢ Available expressions
¢ Confluence operation is set intersection.
¢ OUT]Db] initialized to set of available expressions.

¢ General framework for dataflow algorithms.

¢ Build parameterized dataflow analyzer once, use
for all dataflow problems.
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Liveness Analysis

¢ A variable v is live at point p if
¢ v is used along some path starting at p, and
¢ no definition of v along the path before the use.

¢ When is a variable v dead at point p?
¢ No use of v on any path from p to exit node, or
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¢ If all paths from p, redefine v before using v.
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What Use is Liveness
Information?

¢ Register allocation.

¢ If a variable is dead, we can reassign its register.

¢ Dead code elimination.

¢ Eliminate assignments to variables not read later.

¢ But must not eliminate last assignment to variable (such as
instance variable) visible outside CFG.

¢ Can eliminate other dead assignments.

¢ Handle by making all externally visible variables live on
exit from CFG.
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Conceptual Idea of Analysis

¢ Simulate execution.

¢ But start from exit and go backwards in
CFG.

¢ Compute liveness information from end to
beginning of basic blocks.
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¢ Assume a,b, C
visible outside
function. They are
live on exit.

¢ Assume X,y ,z,t
are not visible.
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¢ Represent liveness
using a bit vector:

order is abcxyzt.

Liveness Example

a=X+y;
t=a,

C=a+X;
::@

1100111

b=t+z;

———__| 1100100

c=y+1;
1110000
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Using Liveness Information for

L

E Dead Code Elimination

=

% O As§ume a, b , C N

o visible outside t=a:

e function. They are J\;a*;(
 live on exit. -

E 1100111
4 ¢ Assume x,y,z,t

# are not visible. b=t+2;

- : 1100100
A ¢ Represent liveness = 1

= . . c=y+1;

Bl using a bit vector: !

) 1110000

order is abcxyzt.
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Formalizing Analysis
¢ Each basic block has

IN - set of variables live at start of block.
OUT - set of variables live at end of block.

USE - set of variables with upwards exposed uses in block.
(GEN)

DEF - set of variables defined in block. (KILL)
¢ USE[x=z;x=x+1;y=1;]={z} (x not in USE)
¢ DEF[x=z;x=x+1;y=1;]={x,y}

¢ Compiler scans each basic block to derive USE and
DEF sets.
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Algorithm
OUT[Exit] =
IN[Exit] = USE[n];
for all nodes neN-{Exit}
IN[n] = 0;
Changed = N-{Exit};
while (Changed != ()
choose n € Changed;
Changed = Changed-{n};
OldIn=IN|[n]
OUT[n] = 0;
for all nodes s € successors(n) OUT|[n] = OUT|n] u IN[p];
IN[n] = USE[n] U (OUT[n] - DEF|n]);
if (IN[n] != OldIn)
for all nodes p € predecessors(n) Changed=ChangedU{p};
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Similar to Other Dataflow
Algorithms

¢ Backwards analysis, not forwards.
¢ Still have transfer functions.
¢ Still have confluence operators.

¢ Can generalize framework to work for both
forwards and backwards analyses.
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Analysis Information Inside
Basic Blocks

¢ One detail:

¢ Given dataflow information at IN and OUT of node.
¢ Also need to compute information at each statement of

basic block.
¢ Simple propagation algorithm usually works fine.
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¢ Can be viewed as restricted case of dataflow analysis.
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Summary

¢ Copy and constant propagation.

¢ Common sub-expression elimination.

¢ Dead code elimination.
¢ Dataflow Analysis

¢ Control flow graph.

¢ IN[b], OUT]b], transfer functions, join points.
¢ Pairs of analyses and transformations:

¢ Reaching definitions/constant propagation.
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¢ Liveness analysis/Dead code elimination.

¢ Basic blocks and basic block optimizations.

¢ Available expressions/common sub-expression elimination.
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