°

Definitions

Using Program Analysis
for Optimization

This lechure is primarily based on Konskantinos Sagonas sek of slides (Rdvanced
Compiler Tachniques, (2RD518)
of Uppsola University, Jonuary-February 2004
Used with kind permission

Control Flow Graph

int add(n, k) { Sligy
s=0; a=4;1=0; l
if (k == 0) s =0; a=4;1=0;
b =1 k == 0
else / N
b =2; b = 1; B = 23
while (i < n) { \ /
S = s + a*b; B
IN=I LTS L
) eI
return s; s + a%b; return s

nttp://tanp. epti ch

Two Kinds of Variables

¢ Temporaries (temps, a tmp):

¢ Introduced by the compiler.

¢ Transfer values only within basic block.

¢ Introduced as part of instruction flattening.

¢ Introduced by optimizations/transformations.
¢ Program variables (vars, a var):

¢ Declared in original program.

¢ May transfer values between basic blocks.

Adva
nttp://tanp. epfi .ch/teact

Definitions

Basic Block Optimizations

3/18/2004

Analysis and Optimizations

¢ Program Analysis
¢ Discover properties of a program.
¢ Optimizations
¢ Use analysis results to transform the program.

¢ Goal: improve some aspect of the program
+ number of executed instructions, number of cycles
+ cache hit rate
¢ memory space (code or data)
4 power consumption
¢ Has to be safe: Keep the semantics of the program.

Adva
http://Vanp epft .ch/teact

Control Flow Graph

¢ Nodes represent computation.
¢ Each node is a Basic Block (BB).
¢ Basic Block is a sequence of instructions with:
+ No branches out of middle of basic block.
+ No branches into middle of basic block.
+ Basic blocks should be maximal.
+ Execution of basic block starts with first instruction.

¢ Includes all instructions in basic block.
¢ Edges represent control flow.

http://tanp epfi ch

Basic Block Optimizations
(Local Optimizations)

¢ Common Sub-Expression ¢ Copy Propagation
Elimination (CSE)
a=(x+y)+z; b=x+y;
t=x+y; a=t+z; b=t;

¢ Constant Propagation

a=x+y; b=a; c=b+z;
a=x+y; b=a; c=a+z;

¢ Dead Code Elimination

x=5; b=x+y; a=x+y; b=a; c=a+z;
b=5+y; a=x+y; c=a+z

¢ Algebraic Simplification ¢ Strength Reduction
a=x*1; t=i*4;
a=x; t=i<<2;

Advance
http://1anp .epft.ch/teachi ng/advance

&0
o}
z
)
>
@

Value Numbering

¢ Normalize BB so that all statements are of the form:
¢ var = var op var (where op is a binary operator)
¢ var = op var (where op is a unary operator)

4 var = var
(LE., no complex statements like x=a+b*c.)

¢ Simulate execution of basic block:
¢ Assign a virtual value to each variable.
¢ Assign a virtual value to each expression.

¢ Assign a temporary variable to hold value of each
computed expression.

Adva
nttp://tanp. epfi .ch/teact

BB Opt: CSE

CSE Example

¢ Original ¢ After CSE
a=x+y a=x+y
b=a+z t,;=a
b=b+y b=a+z
c=a+z t,=b
b=b+y
t,=b
¢ Issues: c=t,

¢ CSE with different names:
a=x; b=x+y; c=aty;
¢ Excessive temp generation and use.

nttp://tanp. epti ch

Problems

¢ Algorithm has a temporary for each value.
a=x+y; t,=a;
¢ Introduces
¢ lots of temporaries.
¢ lots of copy statements to temporaries.
¢ In many cases, temporaries and copy statements
are unnecessary.
¢ So we eliminate them with copy propagation and
dead code elimination.

Adva
nttp://tanp. epfi .ch/teact

3/18/2004

BB Opt: Value Numb

Value Numbering for CSE

As we simulate execution of program,
generate a new version of program:

¢ Each new value assigned to temporary
a=x+y; becomes
a=x+y; t;=a;

¢ Temporary preserves value for use later in
program even if original variable rewritten
a=x+y; a=a+z; becomes
a=x+y; t;=a; a=a+z; t,=a;

Adva
http://Vanp epft .ch/teact

BB Opt: CSE

New Basic
Original Basic Block
o
= t,=a
E:S:; b=a+z
c=a+z tz_:b
b=b+y
t,=b
Var to Val St
X—Vy
y-v, Exp to Val Exp to Tmp
i:x3 Vi+V, >V, VitV t
b—>v4 b—v VstV oVs Vstvao Tt
c—)Vi ’ VsHtVoVe VstV

Copy Propagation (CP)

¢ Once again, simulate execution of program
¢ If possible, use the original variable instead of a
temporary
¢ a=x+y; b=x+y;
¢ After CSE becomes a=x+y; t,;=a; b=t;;
¢ After CP becomes a=x+y; b=a;
¢ Key idea: determine when original variables are
NOT overwritten between computation of
stored value and use of stored value.

Advance
http://1anp .epft.ch/teachi ng/advance

&

BB Opt: Copy Propagation

BB Opt: Dead Code Elimination

Copy Propagation Maps

¢ Maintain two maps

¢ tmp to var: tells which variable to use instead
of a given temporary variable.

¢ var to set: inverse of tmp to var. Tells which
temps are mapped to a given variable by tmp

to var.

A
nttp://Vanp. epfl ch/t:

Copy Propagation Example
Basic Block Basic Block After
After CSE CSE and Copy Prop

a=x+y a=x+y

t,=a t,;=a

b=a+z b=a+z

t,=b t,=b

c=t, c=a

a=b a=b
tmp to var var to set

t,—a a—>{t,}

t,>b b—>{t,}

3/18/2004

Copy Propagation Example

¢ Original
a=x+y
b=a+z ¢ After CSE and Copy
c=x+y Propagation
a=b a=x+y
¢ After CSE t;=a
a=x+y b=a+z
t,=a ty=b
b=a+z c=a
t,=b a=b
c=t,
a=b

Advanced Compil
ttp://Vanp epfl.ch/teachi ng/advan

5

ique

cedConpiter,

Copy Propagation Example

Basic Block Basic Block After
After CSE CSE and Copy Prop
a=x+y a=x+y
A=) t,=a
b=a+z b=a+z
t,=b t,=b
c=t, c=a
a=b a=b
tmp to var var to set
t,>t, a—>{}
t,—>b b—>{t,}

Advance
htep://lanp. cpfi.ch/teaching

ed Compiler

Dead Code Elimination

¢ Copy propagation keeps all temporaries.
¢ There may be temps that are never read.
¢ Dead Code Elimination removes them.

Basic block after
CSE and Copy Prop.

a=xty

tl=a

b=a+z

t2=b

c=a

a=b

Basic block after
CSE, CP, &
Dead Code Elimination

a=xty
b=a+z
c=a
a=b

Dead Code Elimination

¢ Basic idea:
¢ Process code in reverse execution order.
¢ Maintain a set of variables that are needed later
in computation.
¢ On encountering an assignment to a temporary
that is not needed, we remove the assignment.

Adv
http://tanp epfi .ch/tea

=
)
o3

BB Opt: Summary

Basic Block After
CSE and Copy Prop Needed Set
a=x+y {a,z}
tl=a { a,z }
b=atz {a,b,z}
t2=b {a,b}
c=a {a,b}
— a=b {b}

Other Basic Block

Transformations

¢ Constant Propagation.
¢ Strength Reduction:
¢a*4; = a<<2;
¢3*a; = atata;
¢ Algebraic Simplification:
¢a*l; = a;
ebt+0; = b;
¢ Unified transformation framework.

nttp://tanp. epti ch

Global Opt: Reaching Definitions

Reaching Definitions

¢ Concept of definition and use
¢ a=x+y
¢is a definition of a.
¢isauseof xand y.

¢ A definition reaches a use if value written
by definition may be read by use.

nttp://tanp. epfi .ch

3/18/2004

5
B
o

Interesting Properties

¢ Analysis and optimization algorithms simulate
execution of the program.
¢ CSE and Copy Propagation go forward.
¢ Dead Code Elimination goes backwards.
¢ Optimizations are stacked.
¢ Group of basic transformations.
¢ Work together to get good result.

+ Often, one transformation creates inefficient code that
is cleaned up by following transformations.

Global Opt: Introduction

Dataflow Analysis
(Global Analysis)

¢ Used to determine properties of programs
that involve multiple basic blocks.
¢ Typically used to enable transformations.
¢ common sub-expression elimination.
+ constant and copy propagation.
¢ dead code elimination.
¢ Analysis and transformation often come in
pairs.

http://tanp epfi ch

Global Opt: Reaching Definitions

Reaching Definitions

X = wn
o nu
o~

;;;ra*b;
j=i+1: return S:I
77- 2

Adv
http://tanp epfl ch/teact

&
3
@
)
en
151
~

Reaching Definitions and
Constant Propagation

¢ Is a use of a variable a constant?
¢ Check all reaching definitions.
¢ If all assign variable to same constant.
¢ Then use is in fact a constant.

¢ Can replace variable with constant.

Global Opt: Reaching Definitions & Constant Prop

Global Opt: Reaching Definitions

Constant Propagation Transform

s=0; Yes!
e a=4
k==0 n
A s=s+a*b
[o=2: | Replace use of a
with 4.

return s

Advanced Compiler Techniques
http://tanp. epfi .ch/teaching/advancedConpiler/

Computing Reaching Definitions

¢ Compute with sets of definitions:
¢ Represent sets using bit vectors.
¢ Each definition has a position in bit vector.
¢ At each basic block, compute:
¢ Definitions that reach start of block.
¢ Definitions that reach end of block.
¢ Do computation by simulating execution of
program until the fixed point is reached.

Advanced Cor
nttp://tanp. epfi .ch/teaching/ach

wancedConpi ler

3/18/2004

Is a constant in s=s+a*b?

Yes!

On all reaching
0 definitions
a=4

Is b constant in s=s+4*b?
$=0; No!
?:g; One reaching
i=0; . !
k==0 definition with
\ b=1
b=2; | One reaching
definition with
b=2
0000000
Sl:@;
. a’=4;
i3=0;
£ k==0
3 1110000 1110000
o] [
- 1111111
1111111
1111111
sé=s+a*b;

3/18/2004

3
50
<

Formalizing Analysis

¢ Each basic block has
¢ IN - set of definitions that reach beginning of block
* OUT - set of definitions that reach end of block
¢ GEN - set of definitions generated in block
+ KILL - set of definitions killed in the block
¢ GEN[s®=s+a*b;i7=i+1;] = 0000011
¢ KILL[s®=s+a*b;i7=i+1;]=1010000
¢ Compiler scans each basic block to derive GEN and
KILL sets.

A
nttp://Vanp. epfl ch/t:

] GENJ[0] = 1110000
s1=0: | KILL[0] = 0000011
a’=4;
i3=0;
k==0
P N
GEN[1] = 0001000 Moo] [oezs] GEN[2] = 0000100

KILL[2] = 0001000

GEN[3] = 0000000
KILL[3] = 0000000

return s

GENI5] = 0000000
KILL[5] = 0000000

KILL[1] = 0000100

sé=s+a*b;
i7=i+1;

GENI4] = 0000011
KILL[4] = 1010000

5

Advanced Compiler Techniques
http://Vanp . epfl.ch/teaching/advancedConpiler,

Global Opt: Reaching Definitions

Global Opt: Reaching Definitions

Dataflow Equations

¢ IN[b;] = OUT[b,] U ... u OUT[b,]
where b;, ..., b, are predecessors of b;
¢ OUT[b;] = (IN[b;] - KILL[b;]) w GEN[b,]
¢ IN[entry] = 0000000
¢ Result: system of equations.

inced Compiler Techniques

Adva
http://tanp. epfi .ch/teaching/advancedConpi ler:

/

IN[0] = 0000000

GEN[0] = 1110000

KILL[0] = 0000011
s1=@; | OUTIO]=(N[0]-KILLO)UGEN[O]=
a2=4: | 0000000-00000110 1110000=1110000
i3=0:
13=0; IN[2]=0UTI[0]
k::@ ‘GENI[2] = 0000100

KILL[2] = 0001000
N\, OUTI2]=(IN[2]-0001000)0000100
IN[1]=0UT[0]
GEN[1] = 0001000 | b4:1- | | b5:2 . |
5 5

KILL{1] = 0000100
OUT[1]=(IN[1]-0000100)_0001000

IN[3]=OUT[1] U OUT[2]
GEN[3] = 0000000
KILL[3] = 0000000
OUT[3]=IN[3]

IN[5]=OUT[3]

IN[4]=0UT[3] GEN([5] = 0000000
GENI4] = 0000011 KILL[5] = 0000000
KILL[4] = 1010000 OUT[5]=INJ[5]

OUT([4]=(IN[4]-1010000)0000011

Advanced Compiler
htep://lanp. cpfi.ch/teaching

Solving Equations

¢ Use fix point algorithm.
¢ Initialize with solution of
OUT[b;] = 0000000
¢ Repeatedly apply equations:
+ IN[b] = OUT[b,] U ... U OUT[b,]
+ OUT[b,] = (IN[b,] - KILL[b,]) U GEN[b;]
¢ Until reach fixed point, i.e., until equation
application has no further effect.

¢ Use a worklist to track which equation
applications may have further effect.

A
http://tanp. epfl.ch/:

Reaching Definitions Algorithm

for all nodes neN
OUTI[n] = 0;
Changed = N; N
while (Changed = 0)
choose neChanged;
Changed=Changed-{n};
OldOut = OUTI[n]
IN[n] = 0; IN
for all nodes pepredecessors(n)

IN[n]=IN[n]JuOUT[p];
OUT|[n]=(IN[n]-KILL[n])uUGEN|n]; ouT
if (OUT[n] != OldOut) OUTn

for all nodes scsuccessors(n)
Changed=Changedufs};

OUT|n| = GEN|n

Adv
http://tanp epfi .ch/tea

2
¥
%
&

Global Opt: Available Expressions

Global Opt: Available Expressions & CSE

Questions

¢ Does the algorithm halt?
¢ yes, because transfer function is monotonic.
¢ if increase IN, increase OUT.
¢ in limit, all bits are 1.
¢ If bit is 1, is there always an execution in which
corresponding definition reaches basic block?
¢ If bit is 0, does the corresponding definition ever
reach basic block?

¢ Concept of conservative analysis.

Adva
nttp://tanp. epfi .ch/teact

Computing Available
Expressions

¢ Represent sets of expressions using bit vectors.

¢ Each expression corresponds to a bit.

¢ Run dataflow algorithm similar to reaching
definitions.

¢ Big difference:

¢ Definition reaches a basic block if it comes from ANY
predecessor in CFG.

¢ Expression is available at a basic block only if it is
available from ALL predecessors in CFG.

nttp://tanp. epti ch

Global CSE Transform _ 0900
a=x+y

Expressions o

1: xty 1001 x==0

2: di<n X=z;

3: di+c b=x+y;

4: x==0 ty=b;

Must use same temp

for CSE in all blocks 1600

3/18/2004

z
g
g
&
=)
<

Global Opt: Available Expressions

Global Opt: Available Expressions

Available Expressions

¢ An expression x+y is available at a point p if
¢ every path from the initial node to p evaluates x+y
before reaching p,
¢ and there are no assignments to x or y after the
evaluation but before p.
¢ Available Expression information can be used to
do global (across basic blocks) CSE.

¢ If an expression is available at use, there is no
need to re-evaluate it.

Adva
http://Vanp epft .ch/teact

0000
a=xty;
Expressions X==0
10 xty 1001 —
2: i<n X=7:
3. i+c
4: x==0

http://tanp epfi ch

Formalizing Analysis

¢ Each basic block has
IN - set of expressions that reach beginning of block.
OUT - set of expressions that reach end of block.
GEN - set of expressions generated in block.
KILL - set of expressions killed in the block.
¢ GEN[x=z; b=x+y]=1000
¢ KILL[x=z; b=x+y]=1001
¢ Compiler scans each basic block to derive GEN and
KILL sets.

Advance
http://1anp .epft.ch/teachi ng/advance

Global Opt: Available Expressions

Dataflow Equations

¢ IN[b;] = OUT[b;] n ... n OUT[b,]
¢ where by, ..., b, are predecessors of b;
¢ OUT[b;] = (IN[b;] - KILL[b;]) w GEN[b|]
¢ IN[entry] = 0000
¢ Result: system of equations.

Global Opt: Available Expressions

Global Opt: Duality

Available Expressions Algorithm

for all nodes neN E

OUT[n] = E; OUT|n] =E -KILL[n
Changed = N; N
while (Changed != ()

choose neChanged;

Changed=Changed-{n};

IN[n]=E;

OldOut = OUT[n]

for all nodes pepredecessors(n)

IN[n]=IN[n]nOUT[p];
OUT[n]=(IN[n]-KILL[n])UGENI[n];
if (OUT[n] != OldOut)
for all nodes sesuccessors(n) Changed=Changedu{s

nttp://tanp. epti ch

-

Duality In Two Algorithms

¢ Reaching definitions
¢ Confluence operation is set union.
¢ OUTIb] initialized to empty set.
¢ Available expressions
¢ Confluence operation is set intersection.
¢ OUT][b] initialized to set of available expressions.
¢ General framework for dataflow algorithms.
¢ Build parameterized dataflow analyzer once, use
for all dataflow problems.

3/18/2004

@
1
a
3
i)
=2
<

Solving Equations

¢ Use fix point algorithm.
¢ IN[entry]=0000
¢ Initialize with solution of
OUT[b;] =1111
¢ Repeatedly apply equations:
+ IN[b,] = OUT[b,] ... A OUT[b,]
+ OUT[b;] = (IN[b;] - KILL[b,]) U GEN[b,]
¢ Use a worklist to track which equation
applications may have further effect.

Global Opt: Available Expressions, summary

o
<
2
4
g
g
=
=
o
5

Questions

¢ Does algorithm always halt?

¢ If expression is available in some execution, is it
always marked as available in analysis?

¢ If expression is not available in some execution,
can it be marked as available in analysis?

¢ In what sense is the algorithm conservative?

Liveness Analysis

¢ A variable v is live at point p if
¢ v is used along some path starting at p, and
¢ no definition of v along the path before the use.
¢ When is a variable v dead at point p?
¢ No use of v on any path from p to exit node, or
¢ If all paths from p, redefine v before using v.

Advanced Compiler Techniques
http://Nanp .epft.ch/teaching/advancedConpiter/

£
7

<
2
2
g

Global Opt: Liveness Analysis

What Use is Liveness
Information?

¢ Register allocation.

¢ If a variable is dead, we can reassign its register.
¢ Dead code elimination.

¢+ Eliminate assignments to variables not read later.

¢ But must not eliminate last assignment to variable (such as
instance variable) visible outside CFG.

¢ Can eliminate other dead assignments.

¢ Handle by making all externally visible variables live on
exit from CFG.

A
nttp://Vanp. epfl ch/t:

Liveness Example

¢ Assume a,b, C

.. . a=x+y;
visible outside t=a;
function. They are c=a+x;

. . x==0
live on exit.
1100111

¢ Assume x,y,z,t
are not visible.

) 1100100
¢ Represent liveness

using a bit vector:

order is abcxyzt. 1110000

Advanc
http://lanp. epfi .ch/teachi

Global Opt: Liveness Analysis

Formalizing Analysis
¢ Each basic block has

IN - set of variables live at start of block.
OUT - set of variables live at end of block.
USE - set of variables with upwards exposed uses in block.
(GEN)
DEF - set of variables defined in block. (KILL)
¢ USE[x=z;x=x+1;y=1;] = {z} (x not in USE)
¢ DEF[x=z;x=x+1;y=1;]={x, y}
¢ Compiler scans each basic block to derive USE and
DEF sets.

ysis & Dead Code

3/18/2004

Conceptual Idea of Analysis

¢ Simulate execution.

¢ But start from exit and go backwards in
CFG.

¢ Compute liveness information from end to
beginning of basic blocks.

5

Advanced Compiler Techniques
http://Vanp . epfl.ch/teaching/advancedConpiler,

Using Liveness Information for
Dead Code Elimination
OA.sgumea,.b,c S
visible outside t=a;
function. They are
live on exit.

X==

1100111
¢ Assume X,y ,z,t

are not visible.

1100100

¢ Represent liveness
using a bit vector:

1110000

order is abcxyzt.

Advanced
htep://lanp. cpfi.ch/teaching

Algorithm
OUTIExit] = 0;
IN[Exit] = USE[n];
for all nodes neN-{Exit}
IN[n] = 0;
Changed = N-{Exit};
while (Changed !=)
choose n € Changed;
Changed = Changed-{n};
OldIn=IN[n]
OUT[n] = 0;
for all nodes s € successors(n) OUT[n] = OUT[n] U IN[p];
IN[n] = USE[n] U (OUT[n] - DEF[n]);
if (IN[n] != OldIn)
for all nodes p € predecessors(n) Changed=Changedu{p};

Adv
http://tanp epfi .ch/tea

Similar to Other Dataflow
Algorithms

¢ Backwards analysis, not forwards.
¢ Still have transfer functions.
¢ Still have confluence operators.

¢ Can generalize framework to work for both
forwards and backwards analyses.

3/18/2004

nttp://tanp. epfl

Analysis Information Inside
Basic Blocks

¢ One detail:

+ Given dataflow information at IN and OUT of node.

¢ Also need to compute information at each statement of
basic block.

¢ Simple propagation algorithm usually works fine.
¢ Can be viewed as restricted case of dataflow analysis.

http://Vanp epfi ch

Summary

¢ Basic blocks and basic block optimizations.
+ Copy and constant propagation.
+ Common sub-expression elimination.
¢ Dead code elimination.
¢ Dataflow Analysis
+ Control flow graph.
¢ IN[b], OUT[b], transfer functions, join points.
¢ Pairs of analyses and transformations:
¢ Reaching definitions/constant propagation.
¢ Available expressions/common sub-expression elimination.
¢ Liveness analysis/Dead code elimination.

Advanc
http://lanp. epfi .ch/teachi

10

