Towards a Taxonomy of Software Evolution

Tom Mens Jim Buckley
Vrije Universiteit Brussel University of Limerick
Pleinlaan 2, 1050 Brussel, Belgium Castletroy, Limerick, Ireland
tom.mens@vub.ac.be jim.buckleyC@ul.ie
Matthias Zenger Awais Rashid
Swiss Federal Institute of Technology Computing Department
1015 Lausanne, Switzerland Lancaster University, United Kingdom
matthias.zenger@epfl.ch marash@comp.lancs.ac.uk
Abstract

Previous taxonomies of software evolution have focused on the purpose of the change (i.e., the why)
rather than the underlying mechanisms. This paper proposes a taxonomy of software evolution based
on the characterizing mechanisms of change and the factors that influence these mechanisms. The
taxonomy is organized into the following logical groupings: temporal properties, objects of change,
system properties, and change support.

The ultimate goal of this taxonomy is to provide a framework that positions concrete tools, for-
malisms and methods within the domain of software evolution. Such a framework would considerably
ease comparison between these tools, formalisms and methods. It would also allow practitioners to
evaluate their potential use in particular change scenarios. As an initial step towards this taxonomy,
the paper presents a framework that can be used to characterize software change support tools and
to identify the factors that impact on the use of these tools. The framework is evaluated by applying
it to three different change support tools and by comparing these tools based on this analysis.

1 Introduction

Evolution is critical in the life cycle of all software systems particularly those serving highly volatile busi-
ness domains such as banking, e-commerce and telecommunications. An increasing number of evolution
mechanisms and tools are becoming available and many systems are being built with some change support
in place. Because of this, there is a need for a common vocabulary and conceptual framework to categorize
and compare the evolution support offered by the various tools and techniques.

More than two decades ago, Lientz and Swanson [26] proposed a mutually exclusive and exhaustive
software maintenance typology that distinguishes between perfective, adaptive and corrective maintenance
activities. This typology was further refined in [7] into an evidence-based classification of 12 different types
of software evolution and software maintenance: evaluative, consultive, training, updative, reformative,
adaptive, performance, preventive, groomative, enhancive, corrective and reductive. This work is very
important and relevant, in that it categorizes software maintenance and evolution activities on the basis
of their purpose (i.e., the why of software changes).

In this paper, we will take a complementary view of the domain, by focusing more on the technical
aspects, i.e., the when, where, what and how of software changes. These questions are used as a basis to
propose a taxonomy of the characteristics of software change mechanisms and the factors that influence
these mechanisms. By change taxonomy we mean “A system for naming and organizing things ...into
groups which share similar qualities” [2]. With change mechanisms we refer to the software tools used
to achieve software evolution and the algorithms underlying these tools (although it is intended that this
taxonomy should be extended to consider the formalisms used and the methods employed to carry out
software evolution).

The purpose of this taxonomy is manifold: (1) to position concrete software evolution tools and
techniques within this domain; (2) to provide a framework for comparing and combining individual tools

Object of change
(where)

propagation

impact
granularity
9 artifact
System Temporal
properties CHANGE O/‘ Oo OO properties
(what) KR ’5@,) '29,) (when)
£ o, %
i %, %
degree of automation Q?QQ /Og 9%
K3

degree of formality
process support

change type

Change support
(how)

Figure 1: Dimensions of software evolution

and techniques; (3) to evaluate the potential use of a software evolution tool or technique for a particular
maintenance or change context and thus; (4) to provide an overview of the research domain of software
evolution. Each of these purposes is essential, given the proliferation of tools and techniques within the
research field of software evolution.

2 Proposed Taxonomy

Given that we want to focus on the when, where, what, and how aspects of software changes, we propose
a categorization consisting of the following logical groups : temporal properties (when), object of change
(where do we make a change), system properties (what), and change support (how). Figure 1 illustrates
these groups and the dimensions that each group contains.

The groupings and their dimensions are discussed in detail in the following subsections. We would like
to stress that the proposed taxonomy should not be taken for granted. First of all, we deliberately did not
cope with all possible aspects of software change. For example, the who question identifies the stakeholders
involved in software change, which is an important influencing factor that is not covered in the current
taxonomy. The why question is also excluded since it has been treated in [26, 7]. Secondly, the proposed
taxonomy provides only one of the infinitely many ways in which software change mechanisms can be
grouped. Finally, the taxonomy is subject to continuous evolution, since the elements that it classifies
continue to evolve, due to scientific and technological advances in the field of software development and
evolution.

2.1 Temporal Properties (when)

The when question addresses temporal properties such as when a change should be made, and which
mechanisms are needed to support this.

2.1.1 Time of Change

Depending on the programming language, or the development environment being used, it is possible to
distinguish between different phases of the software life-cycle, such as compile-time, load-time, run-time,
and so on. These phases have been indirectly used as a basis for categorizing software evolution tools in
the literature [23, 24]. Using these phases, at least three categories become apparent, based on when the
change specified is incorporated into the software system. Particularly:

o Compile-time. The software change concerns the source code of the system. Consequently, the
software needs to be recompiled for the changes to become available.

e Load-time. The software change occurs while software elements are loaded into a executable system.

o Run-time. The software change occurs during execution of the software.

The traditional approach to software maintenance, where the programmer edits or extends the source
code of a software system, and re-compiles (possible incrementally) the changes into a new executable
system, is compile-time evolution. Here, typically, a running software system has to be shut down and
restarted for the change to become effective. Instead of compile-time evolution, one often uses the term
static evolution.

In contrast, run-time evolution considers the case where the changes are made at runtime. Here,
systems evolve dynamically for instance by hot-swapping existing components or by integrating newly
developed components without the need for stopping the system. Run-time evolution has to be either
planned ahead explicitly in the system or the underlying platform has to provide means to effectuate
software changes dynamically. Run-time evolution is often also called dynamic evolution.

Load-time evolution sits between these two extremes. It refers to changes that are incorporated as
software elements become loaded into a executable system. In general, load-time evolution does not require
access to the source code, but instead applies changes directly to the binaries of a system. Load-time
evolution is especially well-suited for adapting statically compiled components dynamically on demand, so
that they fit into a particular deployment context. The most prominent example for a load-time evolution
mechanism is Java’s ClassLoader architecture [23]. Tt is based on classfile modifications on the byte-code
level. Depending on whether load-time coincides with run-time (like in Java) or it coincides with a system’s
startup-time, load-time evolution is either static or dynamic.

Obviously, the time of change heavily influences the kind of change mechanism needed. For example,
systems that allow dynamic evolution must ensure, at runtime, that the system’s integrity is preserved
and that there is an appropriate level of control over the change [35]. Otherwise, when the changes are
implemented, the running system will crash or behave erroneously.

2.1.2 Change History

The change history of a software system refers to the history of all (sequential or parallel) changes that
have been made to the software. Tools that make this change history explicitly available are called version
control tools, and are used for a wide variety of purposes.

One can distinguish between mechanisms that support versioning and those that do not provide means
to distinguish new from old versions. In completely unversioned systems, changes are applied destructively
so that new versions of a component override old ones. In this scenario, old versions get lost in the evolution
process. In systems that support versioning statically, new and old versions can physically coexist at
compile- or load-time, but they are identified at run-time and therefore cannot be used simultaneously in
the same context. In contrast to this, fully versioned systems do not only distinguish versions statically,
they also distinguish versions at runtime, allowing two different versions of one component being deployed
simultaneously side by side. This is particularly relevant for the dynamic evolution of systems. Here,
safe updates of existing components often require that new clients of the component use the new version
whereas existing clients of the old component continue to use the old one. In such a context, two versions
of a component coexist until the old version reaches a quiescent state [24] which allows the safe removal
of the old version.

change 1
ﬂ change 1 change Zﬁ ﬂ change 1 change Zﬁ
ﬁ change 2

sequential change parallel synchronous change parallel asynchronous change

Figure 2: Sequential versus parallel evolution

S

convergent changes divergent changes

Figure 3: Convergent versus divergent parallel changes

Such versioning mechanisms have been extensively used for schema evolution in object-oriented data-
bases in order to support forward and backward compatibility of applications with schemas and existing
objects [31, 36, 39].

The previous discussion refers to the ability to create and to deploy different versions of a component.
We will now classify the different kinds of versioning, and the mechanisms needed to support them.

Software changes may be carried out sequentially or in parallel (see Fig. 2). With sequential software
evolution, multiple persons cannot make changes to the same data at the same time. To enforce this
constraint, we need some form of concurrency control (e.g., a locking or transaction mechanism) to avoid
simultaneous access to the same data. With parallel evolution, multiple persons can make changes to the
same data at the same time. Parallel evolution is needed when different software developers simultaneously
make changes to the same software component.

Within parallel evolution, one can further distinguish between synchronous changes and asynchronous
changes (see Fig. 2). In the synchronous case, the same data is shared by all persons. This is often the
case in computer-supported collaborative work. It requires mechanisms such as a shared work surface, a
permanent network connection to the server where the data resides, etc.

In the asynchronous case, all persons that change the data in parallel work on a different copy. Be-
cause the data is not shared anymore, we can have convergent changes or divergent changes (see Fig. 3).
With convergent changes, parallel versions can be merged or integrated together into a new combined
version [29]. For divergent changes, different versions of the system co-exist indefinitely as part of the
maintenance process. This is, for example, the case in framework-based software development, where
different invasive customizations of an application framework, i.e. destructive changes directly applied to
the framework itself by different customers, may evolve independently of one another.

Please note that an asynchronous convergent change process subsumes a completely synchronous pro-
cess, if one only looks at the final product and not at the creation history, where in the asynchronous case
different versions of some data may exist temporarily.

2.1.3 Change Frequency

Another important temporal property that influences the change support mechanisms is the frequency
of change. Changes to a system may be performed continuously, periodically, or at arbitrary intervals.
For example, in traditional management-information systems, users frequently request changes but these
changes may only be incorporated into the system periodically, during scheduled downtimes. Other
systems (for example interpreted systems), allied with less-formal change processes, may allow developers
to incorporate changes continuously, as they are required.

The frequency of change is important, because it influences the change mechanisms used. For example,
if a system is being changed continuously, the need for fine-grained version control over the system is
increased. Otherwise, it would become very difficult to roll-back the system to specific earlier versions,
when required.

2.2 Object of Change (where)

The second group in our taxonomy addresses the where question. Where in the software can we make
changes, and which supporting mechanisms do we need for this?

2.2.1 Artifact

Many kinds of software artifacts can be subject to static changes. These can range from requirements
through architecture and design, to source code, documentation and test suites. It can also be a combi-
nation of several or all of the above. Obviously, these different kinds of software artifacts influence the
kind of change support mechanisms that will be required. Dynamic evolution mechanisms, as defined in
Section 2.1.1, evolve runtime artifacts like modules, objects, functions, etc.

2.2.2 Granularity

Another influencing factor on the mechanisms of software change is the granularity of the change. Gran-
ularity refers to the scale of the artifacts to be changed and can range from very coarse, through medium,
to a very fine degree of granularity. For example, in object-oriented systems, coarse granularity might
refer to changes at a system, subsystem or package level, medium granularity might refer to changes at
class or object level and fine granularity might refer to changes at variable, method, or statement level.
Traditionally, researchers have distinguished only between coarse grained and fine grained artifacts with
the boundary specified as being at file level. Anything smaller than a file was considered a fine-grained
artifact.

2.2.3 Impact

Related to the granularity is the impact of a change. The impact of a change can range from very local
to system-wide changes. For instance, renaming a parameter of a procedure would only be a local change
(restricted to the procedure definition), while renaming a global variable would have, in the worst case,
an impact on the whole source code. Sometimes, even seemingly local changes in the software may have
a global impact because the change is propagated through the rest of the code.

The impact of a change can span different layers of abstraction, if we are dealing with artifacts of
different kinds (see subsection 2.2.1). For example, a source code change may require changes to the
documentation, the design, the software architecture, and the requirements specification.

2.2.4 Change Propagation

To address all the above problems, we need to resort to mechanisms or tools that help with change impact
analysis, change propagation, traceability analysis and effort estimation.

Change propagation refers to the phenomenon where a change to one part of the software creates a
need for changes in other parts of the software system. For example, a change to the implementation
may have an overall effect in the source code, but may also impact the design, the documentation and the

requirements specification. In this way, a single change to one system part may lead to a propagation of
changes to be made throughout the entire software system [37].

Change impact analysis [5] aims to assess or measure the extent of such change propagation. Trace-
ability analysis can help with change impact analysis, since it establishes explicit relationships between
two or more products of the software development process. Like impact, the traceability relationship can
remain within the same level of abstraction (vertical traceability) or across different levels of abstraction
(horizontal traceability).

In many cases, changes with a high impact also require a significant effort to make the changes. This
effort can be estimated using effort estimation techniques [38]. In some situations the effort can be reduced
by automated tools. For example, renaming entities on the source code level is typically a global change
with a high change impact, but the corresponding change effort is low because renaming can proceed in
an automated way.

2.3 System Properties (what)

A logical grouping of factors that influence the kinds of changes allowed as well as the mechanisms needed
to support these changes has to do with the properties of the software system that is being changed, as
well as the underlying platform, and the middleware in use.

2.3.1 Availability

Most software systems evolve continuously during their lifetime.! Awailability indicates whether the soft-
ware system has to be permanently available or not. For most software systems, it is acceptable that
the system is stopped occasionally to make changes (e.g., the enhance the functionality) by modifying or
extending the source code. Alternatively, some software systems, for instance telephone switches, have to
be permanently available. Therefore they cannot be stopped to incorporate changes. Such systems require
more dynamic evolution mechanisms such as dynamic loading of component updates and extensions into
the running system (run-time evolution).

2.3.2 Activeness

The software system can be reactive (changes are driven externally) or proactive (the system autonomously
drives changes to itself). Typically, for a system to be proactive, it must contain some monitors that record
external and internal state. It must also contain some logic that allows self-change based on the information
received from those monitors [34]. A system is reactive if changes must be driven by an external agent,
typically using some sort of user interface. In this way, the system can respond to external events initiated
by the user.

For a system to be proactive, the time of change must be runtime (and hence it must be dynamic
software evolution). If this is not the case, then the system would not be able to detect its own monitors
and trigger the specified change on itself.

The X-Adapt prototype system developed by the ACI group at the University of Limerick [28] allows
for both proactive and reactive changes. It provides a GUI for system analysts to drive dynamic system
reconfigurations. Additionally, it contains a number of simple monitors that assess characteristics of the
systems’ operating environment. Using the data from these monitors, the X-Adapt system can reconfigure
itself.

2.3.3 Openness

Software systems are open if they are specifically built to allow for extensions. Open systems usually
come with a framework that is supposed to facilitate the inclusion of extensions. While they support
unanticipated future extensions (statically or dynamically), it is difficult to come up with a framework
that allows for flexible extensions without being too restrictive concerning all possible evolution scenarios.
In general, a system cannot be open to every possible change.

1Lehman [25] refers to these systems as E-type systems.

Closed systems on the other hand do not provide a framework for possible extensions. Such systems
are self contained, having their complete functionality fixed at build time. This does not imply that closed
systems are not extensible, simply that they were not specifically designed for it. So it is possible to evolve
closed systems, but usually with more effort.

Operating systems are probably the most prominent open systems. For these systems, the ability
to create and run user programs that extend the functionality of the underlying operating system is
essential. A second example of open systems are extensible programming languages. Extensibility in
languages is either supported with explicit reflective capabilities (e.g., Smalltalk, Lisp) or with static
meta-programming (e.g., OpenJava [47]).

Similarly, some database systems e.g., KIDS [18], Navajo [4] and SADES [40] support incorporation of
new functionality or customization of existing functionality by using component-based and aspect-oriented
techniques.

An example of a partially open system is a system that allows for plug-ins at runtime. While the plug-
in modules may be unknown in advance, the ability to add them to the system at runtime is explicitly
provided. A plug-in based system is not fully open since it exposes limited capacity for “extensions”. An
open system would allow you to do subtractions and modifications too in a clearly defined framework.

2.3.4 Safety

In the context of continuous evolution, safety becomes an essential system property. We distinguish
between static and dynamic safety. The system features static safety if we are able to ensure, at compile-
time, that the evolved system will not behave erroneously at runtime. The system provides dynamic safety
if there are built-in provisions for preventing or restricting undesired behavior at runtime.

Note that there are many different notions of safety. One of them is security, for example to protect
the software from viruses (in the case of dynamic evolution), or to prevent unauthorized access to certain
parts of the software or to certain resources. A good example for such a mechanism is Java’s concept of
security managers, mainly exploited in web browsers for restricting access of dynamically loaded applets
to the local machine.

Another is behavioral safety, in the sense that no crashes, unpredictable or meaningless behavior will
arise at runtime due to undetected errors. Yet another notion is backward compatibility which guarantees
that former versions of a software component can safely be replaced by newer versions without the need
for global coherence checks during or after load-time. Directly related to this is the well-known fragile base
class problem in class-based object-oriented programming, where independently developed subclasses of
a given base class can be broken whenever the base class evolves.

e The structural variant of this problem is dealt with in IBM’s SOM approach [1], by allowing (in
some cases) a base class interface to be modified without needing to recompile clients and derived
classes dependent on that class. This is clearly a static form of safety.

e The semantic variant of the problem is more complex and requires a dynamic approach, because
the implementation of the base class can be changed as well. This gives rise to the question how
a superclass can be safely replaced by a new version while remaining behaviorally compatible with
all of its subclasses. This research question has been addressed in a number of research papers,
including [46].

Obviously, the kind and degree of safety that is required has a direct influence on the change support
mechanisms that need to be provided. For example, a certain degree of static safety can be achieved by
a programming language’s type system at compile-time, while dynamic type tests can be used for those
cases that are not covered by the static type system. Moreover, systems that support dynamic loading
need additional coherence checks at load-time to ensure that new components “fit” the rest of the system.
Such checks are even necessary for systems that guarantee certain aspects of safety statically because of
components’ separate compilation. As a final example, systems where two versions of a single component
can coexist together during a transition phase [11] not only need dynamic checks to ensure consistency:
They also need some form of monitoring which is capable of mediating between the two versions actively.
Object database systems, for example, provide mechanisms for adapting instances across historical schema
changes e.g. [45, 31, 41, 14].

2.4 Change Support (how)

During a software change, various support mechanisms can be provided. These mechanisms help us to
analyze, manage, control, implement or measure software changes. The proposed mechanisms can be very
diverse: automated solutions, informal techniques, formal representations, process support, and many
more. This section describes some orthogonal dimensions that influence these mechanisms or that can be
used to classify these mechanisms.

2.4.1 Degree of automation

We propose to distinguish between automated, partially automated, and manual change support. In the
domain of software re-engineering, numerous attempts have been made to automate, or partially automate,
software maintenance tasks [43, 9, 19, 48, 33]. Typically, these are semantics-preserving transformations
of the software system. In reality, however, these automated evolutions incorporate some form of manual
verification and thus, can only be considered partially automated.

Within the specific domain of refactoring (i.e., restructuring of object-oriented source code), tool
support also ranges from entirely manual to fully automated. Tools such as the Refactoring Browser
support a partially automatic approach [42] while other researchers have demonstrated the feasibility of
fully automated tools [6].

2.4.2 Degree of formality

A change support mechanism can either be implemented in an ad-hoc way, or based on some underlying
mathematical formalism. For example, the formalism of graph rewriting has been used to deal with
change propagation [37] and refactoring [30]. In the context of re-engineering, [48] is an example of a fully
automated restructuring approach that is based on graph theory.

It is clear that the degree of formality is orthogonal to the degree of automation.

2.4.3 Process support

Process support is the extent to which activities in the change process are supported by automated
tools. Obviously, these tools can be considered as change support mechanisms (see Table 1), but also as
influencing factors because the use of these tools will significantly affect the way changes are carried out.

As an example of process support, one can consider a refactoring tool as a way to automate the activity
of refactoring, which is a crucial part of the extreme programming process [3]. By resorting to such a tool,
as opposed to performing the refactorings manually, potential errors can be reduced significantly.

The process support dimension is orthogonal to both previous dimensions. First, the degree of au-
tomation of a change process can range from fully manual to automatic. Second, we can have a formal
change process that relies on an underlying mathematical formalism by resorting to formal methods [27].
Their mathematical basis makes it possible to define and prove notions like consistency, completeness and
correctness.

2.4.4 Change type

The characteristics of the change itself can influence the manner in which that change is performed.
Because an extensive typology of software changes was already presented in [7], we will restrict ourselves
here to the distinction between structural and semantic changes only. This distinction is an important
influencing factor on the change support mechanisms that can be defined and used.

Structural changes are changes that alter the structure of the software. In many cases, these changes
will alter the software behavior as well. A distinction can be made between addition (adding new elements
to the software), subtraction (removing elements from the software), and modification (modifying an
existing element in the software, e.g., renaming). Intuitively, it seems likely that addition is better suited
to late, runtime preparation than subtraction and alteration. Subtraction and alteration suggest that
changes will occur within the existing system, whereas addition suggests that extra functionality can be
hooked onto the existing system.

Group Dimension Section Characterizing | Influencing
Factor Factor
temporal properties | time of change 2.1.1 . .
(when) change history 2.1.2 .
change frequency 2.1.3 .
object of change artifact 2.2.1 .
(where) granularity 2.2.2 .
impact 2.2.3 .
change propagation 2.2.4 °
system properties availability 2.3.1 .
(what) activeness 2.3.2 .
openness 2.3.3 °
safety 2.3.4 .
change support degree of automation 2.4.1 .
(how) degree of formality 2.4.2 .
process support 2.4.3 (] .
change type 2.4.4 . °

Table 1: Dimensions that characterize or influence the mechanism of change

Next to structural changes, a distinction should be made between semantics-modifying and semantics-
preserving changes. In object-oriented systems, for example, relevant semantic aspects are the type
hierarchy, scoping, visibility, accessibility, and overriding relationships, to name a few. In this context,
semantics-preserving changes correspond to the well-known concept of software refactoring [42, 16]. In
the wider context of re-engineering, semantics-preserving changes are accommodated by restructuring
activities [8], such as the replacement of a for loop by a while loop, or the removal of goto statements
in spaghetti code [48].

Note that a change may only be semantics-preserving with respect to a particular aspect of the software
semantics, while it is semantics-modifying when taking other aspects of the semantics into account. For
example, a typical refactoring operation will preserve the overall input-output semantics of the software,
but may modify the efficiency or memory usage, which is another aspect of the software semantics that
may be equally important.

The type of change is clearly orthogonal to the previous dimensions. First, some semantics-preserving
changes can be fully automated [48, 32], while semantics-modifying changes typically require a lot of
manual intervention. Second, semantics-preserving changes can be supported by a formal foundation [30]
or not. Third, semantics-preserving changes can be a crucial part in the change process, as in the case of
extreme programming [3].

3 Dimensions as Characterizing and Influencing Factors

An alternative view of the taxonomy is presented in Table 1. This table defines, for each dimension of the

taxonomy, whether it characterizes the mechanism of change or it influences the mechanism of change or
both.

3.1 Dimensions as Characterizing Factors

In determining the dimensions that characterize the change mechanism, we adhered to two simple heuris-
tics. The first was to review the literature to determine if the dimension had been frequently used to
position software evolution tools. So, for example, in the literature, software tools have often been intro-
duced as run-time or load-time [23, 24, 35] (with compile-time being implicitly accepted otherwise).

The second heuristic, was to put the dimension in a simple sentence of the form: “The change mecha-
nism is <dimension>". If such a sentence makes sense, then the dimension must reflect the essence of the
change mechanism and is thus classified as a characterizing mechanism. For example, because we can say
that “The change mechanism is compile-time/load time/run-time”, the time dimension is a characterizing
factor. In a similar way the dimensions of ‘change history’, ‘activeness’, ‘degree of automation’, ‘process
support’ and ‘type of change’ are classified as characterizing factors.

Perhaps the most surprising of these is the ’activeness’ dimension, as it refers to the system under

change. However, it should be noted that, when a system is active in changing itself, it is also part of the
change mechanism. Thus, a sentence of the form: ”The change mechanism is proactive” can be sensibly
formed.

3.2 Dimensions as Influencing Factors

In determining if the dimension was an influencing factor we followed a third heuristic. For each dimension,
the group tried to find an example of a way in which it could influence the change mechanism.

For example, system ’availability’ could typically affect the change mechanism. If a system is required
to be highly available, then this would suggest a run-time change mechanism. Low availability would
allow run-time or compile-time changes. It is no coincidence that Table 1 classifies all dimensions of group
‘object of change’ as influencing factors, as these dimensions are in general independent of concrete change
mechanisms and rather describe particular properties that can be supported or unsupported by a concrete
change mechanism.

Note that being a characterizing factor and being an influencing factor are not mutually exclusive.
For example, ‘time of change’, apart from being a characterizing mechanism, also influences the change
mechanism by prompting additional change activities like state management.

4 Applying the Taxonomy

In this section, we apply the taxonomy to position some concrete tools within the software evolution
domain. The taxonomy can also be used to compare formalisms or processes for software evolution in a
similar manner, but this is outside the scope of the current paper.

The taxonomy will be applied to the following three tools: the Refactoring Browser [42], CVS [10, 15]
and eLiza self-managing servers [20]. These tools have been selected because of their very different nature.
As such, this should also be reflected in their comparison based on the taxonomy (see Table 2). Next, this
comparison will be used to identify to which extent the tools complement each other.

Another typical use of the taxonomy is to compare tools that share the same or a similar purpose.
This allows us to identify the differences, strengths and weaknesses of each tool. Such a comparison has
been carried out on four different refactorings tools in [44], using an earlier version of our taxonomy.

4.1 Refactoring Browser

The Refactoring Browser is an advanced browser for the Smalltalk IDEs Visual Works, VisualWorks/ENVY,
and IBM Smalltalk. 1t includes all the features of the standard browsers plus several enhancements. One
notable enhancement is its ability to perform several behavior-preserving, refactoring transformations.

4.1.1 Temporal Properties

Time of change. The refactoring transformations and any other changes that the programmer wishes to
make are prepared in the source code. It is then compiled into a executable system. As such the tool
provides compile-time change support.

Change history. Although the Refactoring Browser has a basic undo mechanism, it does not provide fa-
cilities for managing different versions. It can be used in an unversioned environment (e.g., VisualWorks)

or a versioned environment (e.g., VisualWorks/ENVY).

Change frequency. Refactorings can be applied at arbitrary moments in time. Typically, small refactorings
(e.g. renaming of a local variable or method inlining) are applied more frequently than big refactorings.

4.1.2 Object of Change

Artifact. The Refactoring Browser applies changes directly (and only) to source code entities.

10

Granularity. The granularity of the changes that can be done with the Refactoring Browser depend on
which refactoring is being applied. Typically, refactorings involve a limited number of classes and meth-
ods. Some of the supported refactorings have a finer level of granularity. For example, the Inline Method
refactoring occurs at method level.

Impact. A refactoring typically has a low change impact, in the sense that the number of global changes
to the source code is limited.

Change propagation. The Refactoring Browser will make all the necessary changes in the entire source
code. However, the tool provides no support for propagating changes to other layers, such as design models
or requirements.

4.1.3 System Properties

Awailability. During refactoring, the software system being refactored is only partially available for exe-
cution, since it is incrementally recompiled.

Activeness. The Refactoring Browser is used in a reactive way to refactor an existing software system.
Changes to the system are triggered by the user of the Refactoring Browser who has the responsibility of
deciding which refactoring to apply, where and when.

Openness. The Refactoring Browser can help to build open systems since it provides support for refac-
torings. Refactorings restructure object-oriented code to make it more evolvable, to accomodate future
changes, to introduce design patterns or to turn an application into an application framework. Each of
these help to increase or maintain the openness of a software system.

Safety. Refactorings guarantee a certain degree of behavioral safety, since the change is behavior-preserving
with respect to the original behavior (although there is no formal proof of this).

4.1.4 Change Support

Degree of automation. The Refactoring Browser can be considered a semi-automated tool. Indeed, the
refactorings themselves can be applied automatically, but it is the responsibility of the user to decide
where and when a certain refactoring should be applied.

Degree of formality. Although formalisms for refactorings exist [30], the Refactoring Browser is not based
on such an underlying mathematical model.

Process support. The Refactoring Browser provides partial support for the extreme software development
process [3], in which refactoring as advocated as an important change activity.

Change Type. The changes performed by a refactoring are by definition semantics-preserving, since they
are behavior-preserving, and hence only make changes to the structure of the source code. The changes
are not additive or subtractive, but fall under the category of modifications to existing code.

4.1.5 Discussion

Using the taxonomy, the Refactoring Browser can be positioned as a compile-time, semi-automatic change
mechanism that supports semantics-preserving changes.

By applying the taxonomy to the Refactoring Browser, we were able to identify some of its weaknesses?.
To overcome these current limitations, the tool could be complemented with a variety of other tools:

e To overcome its reactiveness and semi-automated nature, the Refactoring Browser could be comple-
mented with a tool that detects where and when refactorings should be applied [21].

2Tts strengths are well-known so we will not discuss those here.

11

e To improve its change propagation support, the Refactoring Browser could be complemented with
a tool that ensures that source code refactorings are propagated to the design documents so that
these can be kept consistent.

e To cope with the lack of formality of the Refactoring Browser, and to improve the safety of the
software systems it acts upon, one might complement the tool with formal approaches that check
whether a certain refactoring preserves certain aspects of the software behavior [30].

e To raise the level of granularity of the refactorings provided by the tool, there is a need for incorpo-
rating composite refactorings.

e To enable roll-backs to previous versions of the software, the refactoring tool should be complemented
by a version control tool.

4.2 Concurrent Versions System

CVS [10] is the Concurrent Versions System, the dominant open-source network-transparent version con-
trol system. CVS is useful for everyone from individual developers to large, distributed teams.

4.2.1 Temporal Properties

Time of change. CVS only supports compile-time evolution. It typically (but not exclusively) stores
source code files, which have to be compiled before they can be executed.

Change history. The main objective of CVS is to maintain a history of all source-level changes. CVS
supports sequential as well as parallel changes. The changes can be divergent as well as convergent, since
parallel changes can be merged. Commits are always performed in sequence.

Change frequency. The frequency of changes is arbitrary, since it is triggered by the user.

4.2.2 Object of Change

Artifact. CVS is file-based, so the artifacts that are versioned are basically files. However, the contents
of these files can be virtually anything, so CVS is applicable to any kind of software artifact that can be
stored in a file.

Granularity. Changes are carried out on the level of files. If a change requires simultaneous modifications
of several files, it is difficult to express this explicitly via CVS. Similarly, several changes in one file have
to be split up in several stages to express multiple independent changes.

Impact. Since CVS can be used to version any software artifact, the impact of changes can be arbitrary.
For instance, changes in libraries that are under the control of CVS can have an impact on clients even

outside of the local computer system.

Change propagation. Since CVS cannot reason about the contents of the files that are stored, it has no
support for change propagation.

4.2.3 System Properties

Awailability. The CVS is not very suited to evolve software systems that need to be continuously available.

Activeness. CVS is a tool applied to other systems. In general, it is used in a reactive way, i.e., triggered
by the software developer rather than by the evolving system itself.

Openness. CVS does not provide any support to make a software system more open to future changes.

12

Safety. CVS provides support for network security and access control. As such, it contributes to a more
robust and reliable software development and versioning process. On the other hand, tools as general as
CVS have no knowledge about the semantics of the administered system, therefore they cannot provide
any means to make the software evolution process more safe.

4.2.4 Change Support

Degree of automation. CVS is not automatic in that the user has to be aware of the presence of the
versioning system. Whenever a change is being made, this change has to be committed explicitly to the
version repository.

Degree of formality. CVS has no underlying mathematical foundation.

Process support. CVS provides support for the change process, if version control is considered to be an
activity in the change process.

Change type. CVS puts no constraints on the types of change that can be made to the software system.
It can be a semantics-preserving or semantics-changing change. It can be an addition, subtraction, or
alteration.

4.2.5 Discussion

Using the taxonomy, the CVS system can be positioned as a compile-time, manual change mechanism
that supports semantics-preserving and semantic changing evolutions.

The file-based approach is one of the main strengths of CVS, but at the same time it is also the most
important weakness. From the positive side, the file-based approach makes CVS general purpose, since
it can be used in a platform-independent way, and any kind of software artifact can be versioned as long
as it is stored in file format. From the negative side, the granularity of changes is always restricted to
files, which makes it very difficult to deal with relationships at a higher or lower level of granularity.
As a result, CVS has poor support for change propagation or behavioral safety, because this requires
information about the software that is not directly accessible in the CVS file format.

4.3 eLiza Self-Managing Servers

The eLiza project was set up by IBM to provide systems that would adapt to changes in their operational
environment. eLiza technology has been incorporated into the MVS Mainframe Operating System since
1994 and works there to reallocate resources and to control the CPU configuration dynamically. In
a distributed context, eLiza has been incorporated into IBM’s Heterogeneous Workload Management
software.

4.3.1 Temporal Properties

Time of change. In servers with eLiza technology, monitors take snapshots of the systems performance at
runtime. Using this information the system may decide to adapt. Thus the tool provides run-time change
support.

Change history. Versioning of the changes is sequential. That is, only one configuration of the system can
be active at any given time. However, over time, the eliza based servers can return to previously used

configurations based on further changes in their operational environment.

Change frequency. eliza technology allows systems to change whenever the monitors provide data that
suggests a better CPU configuration or a better strategy for allocation of resources.

13

4.3.2 Object of change

Artifact. The artifact changed by eLiza technology is the executable code of the system.

Granularity. The changes are made to the system configuration. Hence they can be considered coarse
grained.

Impact. The adaptations range from local, to slightly more global. Moreover, the changes only affect the
running system.

Change propagation. There is no support for propagating changes in the running system to other artifacts
such as the source code, documentation, design, and so on.

4.3.3 System Properties

Awailability. eliza technology is incorporated into highly available operating systems, allowing them to
adapt without down-time.

Activeness. This system is proactive in that it relies on its own monitors to assess the health of the
processes running on its servers. Based on this information, it actively re-configures itself without help
from external agents.

Openness. The systems that are being changed by eLiza technology are open, because they can be modi-
fied at runtime to incorporate changes. However, this is a limited kind of openness because the adaptation
logic and monitors are incorporated into the system at build time.

Safety. As the adaptations are built into the system at design time, it is anticipated that their safety level
is high. Indeed, eLiza technology has been incorporated into several servers and these servers have been
in operation for many years. This provides empirical evidence for the safety level of the adaptations.

4.3.4 Change Support

Degree of automation. The system changes are fully automated. They are specified at build time by the
system developers and performed by the system as it executes.

Degree of formality. eLiza technology uses learning algorithms with a mathematical basis. These learning
algorithms determine when the pattern of input from the monitors suggests that a change in the system
configuration is beneficial.

Process support. If the change activity is solely to alter the configuration in response to changing condi-
tions, then the technology provides full process support.

Change type. The changes supported by eLiza are semantics-modifying in that the behavior of the system
is changed by evolution. From a structural point of view, the systems are changed by adding new elements
to the system, replacing elements with others, or by removing existing system elements.

4.3.5 Discussion

Again, the proposed taxonomy can be used to evaluate and position this technology. In terms of positioning
the mechanism, the taxonomy states it is an automatic, run-time, change mechanism that affects the
semantics of the changed system by means of addition, replacement and subtraction.

In terms of evaluating the system, the taxonomy focuses attention on its degree of formality, its
openness and its change propagation dimensions. While the technology relies on the underlying formalism
of learning algorithms, these algorithms have traditionally been associated with a lack of accountability.
That is, it is difficult to determine why neural networks (for example) provide a specific output for a given

14

[Dimension [| RefactoringBrowser [CVS eLiza

time of change compile-time compile-time run-time
change history no any sequential
frequency arbitrary arbitrary continuously
artifact source code file executable code
granularity several classes and methods | file system configuration
impact mostly local changes global changes mostly local changes

to source code to any artifact to executable code
activeness reactive reactive proactive
openness by refactoring no limited (built-in)
availability incremental compilation no no down-time
safety behavior-preserving network security, high safety

access control (empirical evidence)

automation semi-automatic manual fully automated
formality no no yes
process support refactoring version control configuration
change type semantics-preserving any semantic-changing

Table 2: Comparison of software evolution tools based on proposed taxonomy

input. This lack of accountability, means that an underlying rationale for the configuration changes is
missing.

In terms of openness, all modifications to the system are built into the system at design time. So,
while it does allow for run-time adaptation, eLiza technology makes little allowance for non-anticipated
changes. For example, new monitors cannot be added at run-time. However, it must be acknowledged
that the learning algorithm can determine new adaptation ‘logic’ in response to the existing monitored
information. No change propagation is supported by the technology, as it only works at the code level.

4.4 Tool comparison

Table 2 illustrates how the taxonomy can be used to distinguish between different change mechanisms.
That is, the 3 tools presented differ markedly in their characterizing factors. eLiza technology acts at run-
time whereas the other two act at compile-time. The three range from semantics-preserving to semantics
changing. And finally, the mechanism range from automatic, through semi-automatic, to fully manual.

From the table, we can also conclude that the Refactoring Browser and CVS are more similar to each
other than to the eLiza technology. Both of these are reactive compile-time mechanisms which could be
complementary, since they both work at the same level (source code) but emphasize different aspects
(refactoring and version control). Unfortunately, it is not straightforward to integrate both tools, because
the Smalltalk development environment does not make use of a file system to store its software artifacts.
Instead, the entire software application is stored together with the environment itself as a single Smalltalk
image. A similar refactoring tool for Java would be much easier to integrate with CVS, because of the
fact that each Java class is stored as a separate file.?

5 Conclusion

In this paper we proposed a taxonomy of software evolution based on a large number of dimensions
characterizing the mechanisms of change and the factors that influence these mechanisms. Our approach
subdivides such criteria into four different groups: temporal properties (when), object of change (where),
system properties (what) and change support (how).

We demonstrated the use of the taxonomy by applying it to three different software evolution tools: the
Refactoring Browser, the Concurrent Version System, and eLiza self-managing servers. This allowed us
to: (1) position each of the analyzed tools within the taxonomy; (2) identify the strengths and weaknesses
of each tool; (3) suggest how each of the tools could be improved by or complemented with other tools;
(4) compare the properties of the three analyzed tools.

3The Eclipse development environment for Java proves this point, since it features a refactoring tool similar to the
Refactoring Browser, as well as built-in support for CVS.

15

In the future we intend to use and extend the taxonomy to be able to compare change support
formalisms and processes as well.

Acknowledgments

Tom Mens is a Postdoctoral Fellow of the Fund for Scientific Research - Flanders. This work was carried
out as part of the FWO research network on Foundations of Software Evolution [17], the ESF RELEASE
network [13], the EPSRC project AspOFEv [12] and the QAD/EI funded ACI project.

The taxonomy is an elaboration and extension of the results of a working group (consisting of the
authors of this paper, Salah Sadou, and Stefan Van Baelen) that discussed this topic during the ECOOP
2002 Workshop on Unanticipated Software Evolution [22].

We thank Giinter Kniesel, Kim Mens, Mehdi Jazayeri, Finbar McGurren for their discussions about
this topic. We also thank the anonymous referees of the USE 2003 workshop for their “use”-ful reviews.

References

[1] The System Object Model (SOM) and the Component Object Model (COM): A comparison of
technologies from a developers perspective. White paper, IBM Corporation, 1994.

[2] Cambridge dictionaries online. http://dictionary.cambridge.org, January 2003.
[3] K. Beck. Extreme Programming Ezxplained: Embrace Change. Addison Wesley, 2000.

[4] H. Bobzin. The architecture of a database system for mobile and embedded devices. In Component
Database Systems, pages 237-251, 2000.

[5] S. A. Bohner and R. S. Arnold. Software Change Impact Analysis. IEEE Computer Society Press,
1996.

[6] E. Casais. Automatic reorganization of object-oriented hierarchies: a case study. Object Oriented
Systems, 1:95-115, 1994.

[7] N. Chapin, J. Hale, K. Khan, J. Ramil, and W.-G. Than. Types of software evolution and software
maintenance. Journal of software maintenance and evolution, pages 3—30, 2001.

[8] E. J. Chikofsky and J. H. Cross. Reverse engineering and design recovery: A taxonomy. IEEFE
Software, 7(1):13-17, Jan. 1990.

[9] A. Cimitile and G. Visaggio. Software salvaging and the call dominance tree. Journal of Systems
Software, 28:117-127, 1995.

[10] CVS. Concurrent versions systems. http://www.cvshome.org/, January 2003.

[11] D. Duggan and Z. Wu. Adaptable objects for dynamic updating of software libraries. In USE 2002
Workshop, 2002.

[12] EPSRC. AspOEv: An aspect-oriented evolution framework for object-oriented databases (EPSRC
GR/R08612). Webpage http://www.comp.lancs.ac.uk/computing/aod/, 2002. [13 September 2002].

[13] European Science Foundation. Scientific research network “REsearch Links to Explore and Advance
Software Evolution (RELEASE)”. Webpage http://labmol.di.fc.ul.pt/projects/release, 2002. [19 July
2002].

[14] F. Ferrandina, T. Meyer, R. Zicari, and G. Ferran. Schema and database evolution in the O2 object
database system. In 21st Conference on Very Large Databases, pages 170-181, 1995.

[15] K. Fogel and M. Bar. Open Source Development With CVS. Paraglyph Publishing, 2nd edition, 2002.

[16] M. Fowler. Refactoring: Improving the Design of Existing Programs. Addison-Wesley, 1999.

16

[17]

[18]

[19]

[22]

23]

Fund for Scientific Research — Flanders (Belgium). Scientific research network “foundations of software
evolution”. Webpage http://progwww.vub.ac.be/FFSE /network.html, 2002. [19 July 2002].

A. Geppert and K. Dittrich. Strategies and techniques: Reusable artifacts for the construction of
database management systems. In Proceedings of the 7th International Conference on Advanced
Information Systems Engineering, pages 297-310.

J. Girard and R. Koschke. Finding components in a hierarchy of modules: A step towards architectural
understanding. In Proc. Int. Conf. Software Maintenance, pages 58-65. IEEE Computer Society Press,
1997.

IBM. Project eliza. Webpage http://www-1.ibm.com/servers/eserver/introducing/eliza/, 2002. [27
August 2002].

Y. Kataoka, M. D. Ernst, W. G. Griswold, and D. Notkin. Automated support for program refactoring
using invariants. In Proc. Int’l Conf. Software Maintenance, pages 736-743. IEEE Computer Society
Press, 2001.

G. Kniesel. Unanticipated software evolution. Webpage http://joint.org/use/, 2002. [27 August
2002].

G. Kniesel, P. Costanza, and M. Austermann. Jmangler — a framework for load-time transformation
of java class files. In IEEE Workshop on Source Code Analysis and Manipulation (SCAM), November
2001.

J. Kramer and J. Magee. The evolving philosophers problem: Dynamic change management. IEEE
Transactions on Software Engineering, 16(11):1293-1306, November 1990.

M. M. Lehman, D. E. Perry, J. F. Ramil, W. M. Turski, and P. Wernick. Metrics and laws of software
evolution — the nineties view. In Proceedings of the 4th International Symposium on Software Metrics,
Albuquerque, New Mexico, November 1997.

B. P. Lientz and E. B. Swanson. Software maintenance management: a study of the maintenance of
computer application software in 487 data processing organizations. Addison-Wesley, 1980.

Luqi and J. A. Goguen. Formal methods: Promises and problems. IEEE Software, pages 73-85,
January 1997.

F. McGurren and D. Conroy. X-adapt: An architecture for dynamic systems. In Unanticipated
Software Evolution Workshop, 2002.

T. Mens. A state-of-the-art survey on software merging. Transactions on Software Engineering,
28(5):449-462, May 2002.

T. Mens, S. Demeyer, and D. Janssens. Formalising behaviour preserving program transformations. In
Graph Transformation, volume 2505 of Lecture Notes in Computer Science, pages 286-301. Springer-
Verlag, 2002. Proc. 1st Int’l Conf. Graph Transformation 2002, Barcelona, Spain.

S. Monk and I. Sommerville. Schema evolution in OODBs using class versioning. ACM SIGMOD
Record, 22(3):16-22, 1993.

I. Moore. Automatic inheritance hierarchy restructuring and method refactoring. In Proceedings Int’l
Conf. OOPSLA ’96, ACM SIGPLAN Notices, pages 235-250. ACM Press, 1996.

W. R. Murray. Automatic Program Debugging for Intelligent Tutoring Systems. PhD thesis, University
of Texas, 1986.

P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici, D. Rosen-
blum, and A. Wolf. An architecture-based approach to self-adaptive software. IEEFE Intelligent
Systems, pages 54-62, May/June 1999.

17

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

P. Oreizy and R. Taylor. On the role of software architectures in runtime system reconfiguration. In
Proc. Int’l Conf. Configurable Distributed Systems, 1998.

Y.-G. Ra and E. A. Rundensteiner. A transparent schema-evolution system based on object-oriented
view technology. IEEE Transactions on Knowledge and Data Engineering, 9(4):600-624, 1997.

V. Rajlich. A model for change propagation based on graph rewriting. In Proc. Int’l Conf. Software
Maintenance, pages 84-91. IEEE Computer Society Press, 1997.

J. F. Ramil and M. M. Lehman. Metrics of software evolution as effort predictors - a case study. In
Proc. Int. Conf. Software Maintenance, pages 163-172, October 2000.

A. Rashid. A database evolution approach for object-oriented databases. In IEEE International
Conference on Software Maintenance, pages 561-564, 2001.

A. Rashid and P. Sawyer. Aspect-orientation and database systems: An effective customisation
approach. IEE Proceedings Software, 148(5):156-164, 2001.

A. Rashid, P. Sawyer, and E. Pulvermueller. A flexible approach for instance adaptation during class
versioning. In FCOOP 2000 Symposium on Objects and Databases, pages 101-113, 2000.

D. Roberts, J. Brant, and R. Johnson. A refactoring tool for Smalltalk. Theory and Practice of Object
Systems, 3(4):253-263, 1997.

R. W. Schwanke. An intelligent tool for re-engineering software modularity. In Proceedings Int’l Conf.
Software Engineering, pages 83-92. IEEE Computer Society Press, 1991.

J. Simmonds and T. Mens. A comparison of software refactoring tools. Technical Report vub-prog-
tr-02-15, Programming Technology Lab, November 2002.

A. H. Skarra and S. B. Zdonik. The management of changing types in an object-oriented database.
In 1st OOPSLA Conference, pages 483-495, 1986.

P. Steyaert, C. Lucas, K. Mens, and T. DHondt. Reuse contracts: Managing the evolution of reusable
assets. In Proceedings of OOPSLA 96, pages 268-286, 1996.

M. Tatsubori, S. Chiba, M.-O. Killijian, and K. Itano. OpenJava: A class-based macro system for
Java. In W. Cazzola, R. J. Stroud, and F. Tisato, editors, Refiection and Software Engineering, LNCS
1826, pages 119-135. Springer-Verlag, July 2000.

G. Urshler. Automatic structuring of programs. IBM Journal of Research and Development, 19(2),
March 1975.

18

	Introduction
	Proposed Taxonomy
	Temporal Properties (when)
	Time of Change
	Change History
	Change Frequency

	Object of Change (where)
	Artifact
	Granularity
	Impact
	Change Propagation

	System Properties (what)
	Availability
	Activeness
	Openness
	Safety

	Change Support (how)
	Degree of automation
	Degree of formality
	Process support
	Change type

	Dimensions as Characterizing and Influencing Factors
	Dimensions as Characterizing Factors
	Dimensions as Influencing Factors

	Applying the Taxonomy
	Refactoring Browser
	Temporal Properties
	Object of Change
	System Properties
	Change Support
	Discussion

	Concurrent Versions System
	Temporal Properties
	Object of Change
	System Properties
	Change Support
	Discussion

	eLiza Self-Managing Servers
	Temporal Properties
	Object of change
	System Properties
	Change Support
	Discussion

	Tool comparison

	Conclusion

