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École Polytechnique Fédérale de Lausanne
INR Ecublens, 1015 Lausanne, Switzerland

matthias.zenger@epfl.ch

Abstract

We present the programming language Keris, an extension of
Java with explicit support for software evolution. Keris intro-
duces extensible modules as the basic building blocks for soft-
ware. Modules are composed hierarchically revealing explicitly
the architecture of systems. A distinct feature of the module de-
sign is that modules do not get linked manually. Instead, the
wiring of modules gets infered. The module assembly and refine-
ment mechanism of Keris is not restricted to the unanticipated
extensibility of atomic modules. It also allows to extend fully
linked systems by replacing selected submodules with compatible
versions without needing to re-link the full system. Extensibility
is type-safe and non-invasive; i.e. the extension of a module pre-
serves the original version and does not require access to source
code.

1. Introduction
This paper presents Keris, a pragmatic, backward-compatible
extension of the programming language Java [24] with
explicit support for modular, component-oriented program-
ming [51, 52]. Many modern programming languages pro-
vide mechanisms for modular program development. They al-
low to define modules that depend on functionality imported
from other modules. Furthermore there is often support for
separate compilation, allowing modules to be compiled in iso-
lation. Separate compilation and the ability to abstract over
external functionality make it possible to flexibly deploy mod-
ules in different contexts with different cooperating modules.

Opposed to this typically well supported form of reuse,
most mainstream programming languages do not address
the ability to extend modules without planning extensibility
ahead. Since modules, as architectural building blocks, are
subject to continuous change, we consider this lacking sup-
port for unanticipated extensibility to be a serious shortcom-
ing. In practice one is required to use ad-hoc techniques to in-
troduce changes in modules. In most cases this comes down
to hack the changes into the source code of the correspond-
ing modules. This obviously contradicts the idea of deploying
compiled module binaries — a process which does not require
to publish source code. But even for cases where the source
code is available, source code modifications are considered to
be error-prone. With modifications on the source code level
one risks to invalidate the use of modules in contexts they get
already successfully deployed.

The design of the programming language Keris includes
primitives for creating and linking modules as well as mech-
anisms for extending modules or even fully linked programs

statically. Programs written in Keris are closed in the sense
that they can be executed, but they are open for extensions
that statically add, refine or replace modules or whole subsys-
tems of interconnected modules. Extensibility does not have
to be planned ahead and does not require modifications of
existing source code, promoting a smooth software evolution
process.

In this paper we introduce Keris as an extension of the pro-
gramming language Java. In Section 2 we substantiate the
need for linguistic abstractions in object-oriented program-
ming languages for programming in the large. In Section 3
we present the design of the programming language Keris by
a stepwise introduction of the new constructs for assembling
and evolving modules. Our prototypical implementation of
the Keris compiler gets reviewed in Section 5. In Section 6 we
discuss related work. Section 7 concludes.

2. Motivation

2.1 Modular Programming
Like most popular object-oriented languages, Java does not
provide suitable abstractions for programming in the large.
Java’s package system is too weak to be useful as an abstrac-
tion for reusable software components in general. It is not
even well suited for modeling larger libraries. Such libraries
often require means for internal structuring. It is possible to
nest packages, but this also limits access to non-public mem-
bers. Therefore all classes that need to access library internal
data (which does not get exposed to the outside world) have
to reside in the same package.

Java’s package mechanism was designed mainly for struc-
turing the name space and for grouping classes. A package
does not even allow to fully encapsulate a set of classes since
the Java programming language does not offer a way to close
packages.12 Thus, like in most popular object-oriented lan-
guages, classes are basically the only means to structure soft-
ware systems.

Classes itself do not allow modular programming either [50,
12]. In general, classes cannot be compiled separately; mu-
tually dependent classes have to be compiled simultaneously.

1In Java class loaders can be used at runtime to ensure that only a
fixed set of classes is loaded from a package. The concept of sealed
packages exploits this mechanism to restrict class loading for classes
of such a package only to a particular Jar file.
2Regarding the open nature of packages it is surprising to see that
adding classes to a Java package is not type-safe. This can break pro-
grams that import all classes of a package via the star-import com-
mand.



Since classes do not define context dependencies explicitly, it
gets even difficult to find out on what other classes a class
depends. Basically, this can only be found out by inspecting
code.

Even though classes are the basic building blocks for object-
oriented programming, most classes do not mean anything in
isolation. They have a role in a specific program structure, but
there is only limited support to formulate this role or to make
this role explicit. A priori, class interactions are implicit, if not
using a special design pattern that emphasizes cooperating
classes. Since a single class often does not mean anything in
isolation, formulating design patterns, software components,
the architecture of a system, and even expressing the notion
of a library on the level of the programming language turns
out to be extremely difficult in general.

A good example for this problem is the way how indus-
trial component models represent software components in
class-based object-oriented languages. In these models, the
implementation of a software component is typically guided
by a relatively weekly specified programming protocol (e.g.
JavaBeans [30]). The composition of software components is
mostly even performed outside of the programming language,
using meta-programming technology. Thus, often neither the
process of manufacturing a component nor the component
composition mechanism are type-safe.

2.2 Extensibility
Java supports the development of extensible software only on
a very low level by means of class inheritance and subtype
polymorphism. Extensibility has to be planned ahead through
the use of design patterns typically derived from the Abstract-
Factory pattern [21]. With Java’s late binding mechanism de-
veloping open software that can be extended with plug-ins is
relatively easy. But again, this has to be planned ahead and al-
lows only to extend an application in a restricted framework.
For writing applications that are open for unanticipated ex-
tensions, often complicated programming protocols have to
be strictly observed (e.g. Context/Component [59]).

3. Extensible Modules for Java
The design of the programming language Keris was driven by
the observation that extensibility on the module level can help
to develop highly extensible applications [27]. Keris tries to
facilitate the development of extensible software by providing
an additional layer for structuring software components. This
layer introduces modules as the basic building blocks for soft-
ware. With Keris’ modules, it is possible to give concrete imple-
mentations for concepts like design patterns, libraries, appli-
cations or subsystems. All this is done in a completely exten-
sible fashion, allowing to refine existing software or to derive
new extended software from existing pieces. To keep software
extensible, Keris promotes software without hard links which
are frequently found in Java programs in form of class instanti-
ations or accesses to static methods or fields. Of course, being
a conservative extension of Java, it is possible to introduce
hard links whenever required.

3.1 Defining Modules
In Keris, modules are the basic top-level building blocks sup-
porting separate compilation as well as function and type ab-
straction in an extensible fashion. Keris’ modules specify con-
text dependencies explicitly. They can only be deployed in
contexts that meet these requirements.

To introduce Keris’ module mechanism, we now present a
small example that defines a module SORTER which provides
functions for reading a list of words, for sorting, and for print-
ing out lists.3

module SORTER requires INOUT {
String [] read() {

... INOUT.read() ...
}
void write(String[] list ) {

... INOUT.write(list[i ]) ...
}
void sort(String[] list ) { ... }

}

The header of the module declaration states that module
SORTER depends on functionality provided by another mod-
ule INOUT. Within the body of a module it is possible to ac-
cess the members of the own module as well as all the mem-
bers of modules that are declared to be required. Members of
modules are generally accessed by qualifying member names
with the corresponding module. This distinguishes require-
ments from imports of traditional module systems that typi-
cally make members of other modules accessible so that they
can be used in an unqualified form.

It remains to show a specification of module INOUT. We do
this by defining a module interface that defines the signature
of this module. Such a module interface does not contain any
code, it only specifies the types of members provided by a
concrete implementation of this module.

module interface INOUT {
String read();
void write(String str );

}

We will now define a module CONSOLE that implements
this interface and thus is a possible candidate for being used
together with module SORTER.

module CONSOLE implements INOUT {
String read () { ... System.in.read() ... }
void write(String str ) { System.out.println(str); }

}

This module implements the functions read and write by for-
warding the calls to appropriate methods of the standard Java
API for text in- and output on a terminal. Here is an alter-
native implementation for INOUT based on functionality pro-
vided by a third module LOG.

module LOGIO implements INOUT requires LOG {
String read () { ... System.in.read() ... }
void write(String str ) { ... LOG.log (...) ... }

}

Note that module SORTER does not explicitly implement a
module interface. This is not strictly necessary since every
module declaration implicitly defines a module interface of
the same name. Nevertheless, the separation of module imple-
mentations from interfaces is an important mechanism that is
essential to enable separate compilation.4

3Note that we write module names in capital letters.
4Some module systems, e.g. Oberon’s module system, provide means



3.2 Linking Modules
Before discussing the module composition mechanism, we
have to stress the distinction between modules and module
instances. A module can be seen as a “template” for multiple
module instances of the same structure and type. We have
to differentiate between the two, since we want to be able to
deploy a module more than once within an application. For in-
stance, we could have two different instances of the SORTER
module that are linked together with different INOUT module
instances.

In Keris, modules are composed by aggregation. More con-
cretely, a module does not only define functions and variables.
It may also define module instances as its members. These
nested module instances, we also call them submodules,5 can
depend on other instances of the same context. The following
definition for module APP links module SORTER with mod-
ule CONSOLE by declaring both to be submodules of the en-
closing module APP.

module APP {
module SORTER;
module CONSOLE;
void main(String[] args) {

String [] list = SORTER.read();
SORTER.sort(list);
SORTER.write(list);

}
}

Submodule definitions start with the keyword module fol-
lowed by the name of the module implementation. The en-
closing module aggregates for every submodule definition an
instance of the specified module. Thus, module APP aggre-
gates two module instances SORTER and CONSOLE. A sub-
module can only be defined if its deployment context, given
by the enclosing module, satisfies all the requirements of the
submodule. The requirements of a submodule are satisfied
only if all modules required from the submodule are either
provided as other submodules, or are explicitly required from
the enclosing module.

The program above defines two submodules SORTER and
CONSOLE. Module SORTER requires a module instance
INOUT from the deployment context, CONSOLE does not
have any context dependencies. The module definition of
APP is well-formed since it defines a CONSOLE submodule
that implements INOUT, and therefore provides the module
that is required by the SORTER submodule. Note that mod-
ule CONSOLE got only introduced in module APP for that
reason. Module APP does not refer to members of CONSOLE
directly.

Modules without any context dependencies like APP can be
executed if they define a main method. For executing a mod-
ule, an instance gets created and the main method is called.
The main method of the previous code shows that submod-
ules get accessed simply via the module name.

Similarly to the previous code, we could try to link module
SORTER with module LOGIO.

to support separate compilation without separating module interface
definitions from module implementations.
5We use a terminology here which is not fully consistent with the one
on the class level. Submodules denote nested modules and have noth-
ing to do with subclassing. The motivation for naming nested modules
submodules comes from nested modules modeling subsystems.

module BUGGYAPP {
module SORTER;
module LOGIO;

}

A verification of the context dependencies reveals that this
module declaration is not well-formed. LOGIO requires a
module instance LOG which does not get declared within
BUGGYAPP. Since we want BUGGYAPP to be parametric in
the cooperating module LOG, we have to abstract over the
LOG instance by requiring it from the context. This has the
effect that inside of the module body we are able to refer to a
module instance LOG without actually giving a concrete defi-
nition. Therefore the following code is well-formed.

module LOGSORTER requires LOG {
module SORTER;
module LOGIO;

}

The previous examples show that modules get composed by
hierarchically aggregating submodules. A module that hosts a
set of submodules is only well-formed if it satisfies the context
requirements of all of its submodules. A module satisfies the
requirements of a submodule if modules required from that
submodule are either present in form of other submodules, or
are explicitly required by the host module.

This hierarchical composition mechanism has the advan-
tage that the static architecture of a system gets explicit. Fur-
thermore, module composition does not require to link mod-
ules explicitly by specifying how context dependencies are sat-
isfied at deployment time. Instead, the module interconnec-
tion gets infered. With this approach we avoid linking mod-
ules by hand which can be a tedious task that raises scalability
issues [57]. On the other hand, our inference technique only
succeeds if we avoid ambiguities; i.e. our type system has to
ensure that references to module instances are unique in ev-
ery context. One implication of this is that a module can never
define two nested module instances (submodules) that imple-
ment the same module. Furthermore, the set of required and
nested modules has to be disjunct. This seems to be a rather
big restriction, but Section 3.4 will show how to use module
specializations to overcome some of the limitations. Details
about the type system are out of this paper’s scope and are
therefore left out.

3.3 Refining Modules
We now come to the problem of extending a module. Since
we do not want to break code that makes use of existing mod-
ules, we are not allowed to touch existing modules. Extensi-
bility has to be additive instead of being invasive.

Keris has support for non-invasive extensions through a
module refinement mechanism. It allows to refine an exist-
ing module by providing new functionality or by overriding
existing functionality. The refined module is compatible to
the original module in the sense that it can be substituted for
it. Thus, Keris lifts the notion of compatibility between classes
expressed by a subtyping relation to the more coarse-grained
level of modules.

Here is a refinement of module SORTER that adds a new
function filterDuplicates to the already existing set of functions
for filtering out duplicate entries in lists. Furthermore it over-
rides the sort function by providing a version that is, for in-
stance, more efficient than the previous one.



module XSORTER refines SORTER {
String [] filterDuplicates (String [] list ) { ... }
void sort(String[] list ) { ... }

}

Module XSORTER is a refinement of module SORTER. It in-
herits the interface and the implementation from SORTER
and therefore implements the module interface of SORTER
as well. Note that it also inherits the context dependencies;
i.e. XSORTER requires a INOUT module.

Similar to this refinement of module implementations and
their implicit interfaces, we are also able to refine plain mod-
ule interfaces like INOUT.

module interface XINOUT refines INOUT {
void write(int i );
void write(float f );

}

Based on the already existing module CONSOLE we can now
derive a module that implements this interface.

module XCONSOLE refines CONSOLE
implements XINOUT requires CONVERT {

void write(int i ) { ... }
void write(float f ) { ... }

}

So far, we only saw how to refine the functionality of atomic
modules. But as desired, these refinements do not affect ex-
isting code. So how do we integrate a new module into a
system that makes use of the old SORTER module? Since sys-
tems are represented by modules, it is probably not surpris-
ing to do this again with a refinement. We explained before
that Keris promotes programming without hard links. Follow-
ing this idea, we allow to override submodule declarations
in module refinements. The following code refines our mod-
ule APP representing an executable application by covariantly
overriding the SORTER submodule.

module XAPP refines APP {
module XSORTER;

}

The refined module XAPP replaces the nested module imple-
mentation SORTER with one for module XSORTER. Con-
sequently, the inherited main method now refers to the
XSORTER submodule. In fact, we can now access the
XSORTER submodule via both module names, SORTER and
XSORTER. The only difference is that when accessed via
XSORTER, we can refer to the new functions. The ability
to refine a module interface stepwise to allow different access
levels is called incremental revelation [14].

This small example demonstrates that our module assembly
and refinement mechanism not only supports the extension of
atomic modules. It also allows us to extend fully linked pro-
grams (represented by modules with aggregated submodules)
by simply replacing selected submodules with compatible ver-
sion. There is no need to establish module interconnections
again; we reuse the fully linked program structure and only
specify the submodules and functions to replace or add.

This extensibility mechanism features plug-and-play pro-
gramming. It does not touch existing code. After having
refined our application with module XAPP we can still run

the old application APP. We could even assemble a system
that makes use of both modules without having to fear unpre-
dictable interferences.

3.4 Specializing Modules
Refining a module is the process of extending a module by
adding new functionality or by modifying existing function-
ality through overriding. A module refinement yields a new
module that subsumes the old one. As a consequence, it is
always possible to replace a module with one of its refine-
ments. In the following code, module BUGGYMOD aggre-
gates a submodule that subsumes another submodule. This is
illegal, since references to the subsumed submodule SORTER
are ambiguous within module BUGGYMOD.

module BUGGYMOD requires INOUT {
module SORTER;
module XSORTER;

}

Section 4 will motivate a case where we need a different
form of reuse: We would like to define a new module on top
of an old one but we do not want the new module to subsume
the old one. We call this process of creating a new distinct
module based on an existing module specialization. Here is a
specialization of the SORTER module:

module BACKSORTER specializes SORTER { ... }

Module BACKSORTER inherits members from SORTER (in-
cluding its requirements), but as a specialization it is not
considered to subsume it. In particular, it does not in-
herit SORTER’s implemented module interfaces. Otherwise,
SORTER and BACKSORTER would not denote different mod-
ules. Consequently, it is perfectly legal to define a module
with both a BACKSORTER and a SORTER submodule.

module SORTING requires INOUT {
module SORTER;
module BACKSORTER;

}

Often, mutual referential modules have to be specialized at
the same time consistently. The ability to refer to a specialized
version of a module requires that we are able to specialize con-
text dependencies as well. This “rewiring” is expressed in the
following code using the as operator. The FASTSORTER mod-
ule specializes module SORTER and instead of requiring the
original INOUT module, it now refers to a specialized FASTIO
module.

module FASTSORTER specializes SORTER
requires FASTIO as INOUT { ...

}

A more complete example for module refinements and
rewiring of context dependencies can be found in Section 4.

While module refinements promote the substitutability of
modules, module specializations support the notion of con-
ceptual abstraction on the module level [44]. Conceptual
abstraction refers to the ability to factor out code and struc-
ture shared by several modules into a common “supermodule”
which gets specialized independently into different directions.
The specializations represent distinct modules that cannot be
substituted for the common “supermodule”.



3.5 Virtual Classes
Until now we only considered functional modules. With these
modules, static class members would be superfluous. Such
members could be implemented as module members with the
benefit of extensibility and improved reusability.

Even though functions on the module level can be quite use-
ful to model global behavior, it is probably more common in
object-oriented languages to have modules that contain class
definitions. Classes defined in a module can freely refer to
other members of the module as well as to modules required
from the enclosing module. The following module defines a
class for representing points.

module GEO {
class Point {

Point(int x, int y ) { ... }
int getX () { ... }
int getY () { ... }

}
}

Module systems for Java-like programming languages that
allow to abstract over classes are extremely difficult to imple-
ment in practice if one wants to stick to Java’s compilation
model [4]. In such module systems, classes can, for instance,
extend classes of required modules (for which only the inter-
face might be given). Consequently, at compile time, a com-
piler has to translate the class without knowing its concrete
superclass. Since Keris is designed to support Java’s compila-
tion model while being implementable on the standard Java
platform, we decided not to offer a facility for abstracting over
regular classes. Thus, classes on the module level are handled
like inner classes [24, 28].

To support reuse and extensibility of types, Keris introduces
the notion of virtual class fields as an alternative type abstrac-
tion mechanism. A class field defines a new class by specifying
its interface and by possibly giving a concrete implementation,
which is typically a reference to a regular class. Here is an ex-
ample defining an interface, a class, and a virtual class field
within one module:

module POINT {
interface IPoint {

IPoint(int x, int y);
int getX () { ... }
int getY () { ... }

}
class CPoint implements IPoint {

CPoint(int x, int y ) { ... }
int getX () { ... }
int getY () { ... }

}
class Point implements IPoint = CPoint;
Point root () { return new Point(0, 0); }
void print(Point p ) { ... p.getX () ... p.getY () ... }

}

Module POINT defines an interface IPoint6 as well as a class
CPoint for representing points. Furthermore, it introduces a
class field Point by separately specifying its interface and im-
plementation. Methods print and root show that class fields

6Interfaces in Keris can also specify the signature of constructors al-
lowing class fields to be instantiated like regular classes.

behave like classes: They can be instantiated and members
of corresponding objects can be dereferenced.7 The main dif-
ference is that class fields are virtual and therefore can be
covariantly overridden in refined modules.

module COLORPOINT refines POINT requires COLOR {
interface IColor {

COLOR.Color getColor();
}
class CColPoint extends CPoint implements IColor {

...
}
class Point implements IPoint, IColor = CColPoint;
void print(Point p ) { ... p.getColor () ... super .print(p); }

}

Refinement COLORPOINT specifies that class field Point now
also supports the IColor interface and is implemented by the
CColPoint class. Furthermore, print is overridden to include
the color in the output. At this point, one might wonder what
happens to method root of the original module POINT which
instantiates class field Point. In fact, for the refined module
it now returns a colored point since we were overriding class
field Point.

The ability to covariantly refine types (or class fields in
our case) is essential for extending object-oriented software.
Most object-oriented languages support interface and imple-
mentation inheritance. But inheritance alone does not sup-
port software refinement well. Existing code refers to the for-
mer type and cannot be overridden covariantly in a type-safe
way to make use of the extended features. For special cases
like binary methods, some languages support the notion of
self types [11, 10, 41]. But these are not suitable for mu-
tually referential classes that have to be refined together to
ensure consistency [17]. Here, only virtual types are expres-
sive enough [29, 54, 16, 36]. Unfortunately, virtual types rely
in general on dynamic type-checking. Therefore recent work
concentrated on restricting the mechanism to achieve static
type-safety [55, 9].

Keris’ class fields are statically type-safe. This is mainly due
to the nature of refinements: A refined module subsumes the
former module and cannot coexist with the former module
within the same context. It rather replaces the former module
consistently in explicitly specified contexts. Module specializa-
tions do not endanger type-safety either, since they conceptu-
ally create completely new modules with class fields that do
not have a (subtype) relationship with the original class fields.

A distinct feature of the class field mechanism, in compari-
son with virtual types, is the possibility to declare dependen-
cies between virtual class fields. These dependencies define a
subtype relationship among virtual class fields and therefore
promote the consistent refinement or specialization of class
field hierarchies.

4. Design Patterns as Module Aggregates
In this section we briefly describe the usage of modules to de-
velop generic implementations of design patterns in a mod-
ular fashion. We pick the Subject/Observer pattern as an
example [21]. Figure 1 introduces three modules as the
building blocks of this pattern. The observer type is defined

7Class fields cannot be extended via subclassing, but it is possible to
define a subtype relationship between class fields as we will briefly
explain later.



module OBSERVER requires SUBJECT, EVENT {
interface IObserver {

IObserver();
void notify(SUBJECT.Subject subj, EVENT.Event evt);

}
class CObserver implements IObserver {

void notify(SUBJECT.Subject subj, EVENT.Event evt) {
...

}
}
class Observer implements IObserver = CObserver;

}
module interface EVENT {

class Event;
}

module SUBJECT requires OBSERVER, EVENT {
interface ISubject {

ISubject();
void add(OBSERVER.Observer obs);
void notify(EVENT.Event evt);

}
class Subject implements ISubject = {

OBSERVER.Observer[] obs;
void add(OBSERVER.Observer obs) { ... }
void notify(EVENT.Event evt) {

for ( int i = 0; i < obs.length; i++)
observers[i].notify(this , evt);

}
}

}

Figure 1: A modular Subject/Observer implementation

in module OBSERVER by the class field Observer. Module
OBSERVER has to require the corresponding SUBJECT mod-
ule since the observer type refers to the subject. Similarly,
module SUBJECT requires module OBSERVER for defining
a class field Subject.8 We have no concrete implementation
for events, so the EVENT module gets described by a module
interface.

We can now link the mutually dependent modules together
yielding a single module SUBJECT OBSERVER that repre-
sents the complete Subject/Observer pattern. In addition to
the aggregated modules we also define a function attach. The
composed module SUBJECT OBSERVER is a natural place
for defining functions that belong logically to the whole pat-
tern, and not to a specific participant.

module SUBJECT OBSERVER requires EVENT {
module SUBJECT;
module OBSERVER;
void attach(SUBJECT.Subject s, OBSERVER.Observer o) {

s.add(o); }
}

We could create refined versions of that pattern with alter-
native properties, but here, we are mainly interested in spe-
cializing it for a specific application. Following the example
in [54], we derive a data structure for modeling a window
manager by consistently specializing the mutually referential
modules SUBJECT and OBSERVER. We start with the covari-
ant specialization of the SUBJECT module.

module MANAGER specializes SUBJECT
requires WINDOW as OBSERVER,

WINEVENT as EVENT {
interface IManager { ... }
class Subject implements ISubject, IManager = ...

}

Module MANAGER also has to specialize the requirements of
the original SUBJECT module with the as construct. This
“rewiring” has the effect that all former references to the
OBSERVER module now refer to module WINDOW. The
same holds for EVENT. Without this specialization we could

8In Figure 1 we use an anonymous class declaration to define the
implementation for class field Subject.

not link module MANAGER with the corresponding module
WINDOW since WINDOW is distinct from OBSERVER and
therefore cannot play its role.

module WINDOW specializes OBSERVER
requires MANAGER as SUBJECT,

WINEVENT as EVENT {
interface IWindow { ... }
class Subject implements ISubject, IWindow = ...

}
module WINEVENT specializes EVENT { ... }

Finally, we compose the modules to represent the window
manager pattern as a specialization of the Subject/Observer
pattern. Here we have to specialize the submodules accord-
ingly. We cannot simply override the original SUBJECT and
OBSERVER submodules, since our specialized modules do
not subsume them.

module WIN SYSTEM specializes SUBJECT OBSERVER
requires WINEVENT as EVENT {

module MANAGER as SUBJECT;
module WINDOW as OBSERVER;

}

5. Implementation
We implemented a compiler prototype for Keris. The compiler
reads Keris source code and produces standard Java classfiles
for classes as well as modules. Since Keris is designed to be
a conservative extension of Java that fully interoperates with
regular Java classes, the Keris compiler can also be used as a
drop-in replacement for javac.

The compiler is implemented as an extension of the exten-
sible Java compiler JaCo [58, 59]. JaCo itself is designed to
support unanticipated extensions without the need for source
code modifications. Since JaCo is written in a slightly ex-
tended Java dialect using an architectural design pattern that
allows refinements in a similar way like Keris, we hope to
be able to implement JaCo in future in the programming lan-
guage Keris itself. Furthermore, with this project we hope to
gain experience with the language and its capabilities to stat-
ically evolve software through module refinements and spe-
cializations.



6. Related Work
Classical module systems like the one of Modula-2 [56],
Modula-3 [14], Oberon-2 [40], and Ada 95 [53] can be
used to model modular aspects of software components well,
but they have severe restrictions concerning extensibility and
reuse. These systems allow type-safe separate compilation,
but they hard-wire module dependencies by refering to other
modules by name. This makes it impossible to plug in a
module with a different name but a compatible specification
without performing a consistent renaming on the source code
level.

The module systems of Oberon-2 and C# [25] allow to de-
fine local aliases for imported modules or classes. Here, one
can easily replace an imported module with a compatible ver-
sion just by modifying an alias definition. Such a modification
would be destructive but would not require extensive source
code renaming.

Initially, functional programming languages introduced
module systems that obey the principle of external connec-
tions [19], i.e. the separation of component definition and
component connections. These module systems maximize
reuse, but they yield modules that are not extensible, since
everything is hard-wired internally. Module systems with
external linking facilities include SML’s functors [35] and
MzScheme’s units [20]. Opposed to ML functors, units offer
separate compilation of independent modules with cyclic de-
pendencies. Units provide first-class module abstractions and
linking facilities to compose modules hierarchically. A gen-
eral problem of unit-style module systems is scalability due
to modules importing fine-grained entities like classes, func-
tions, etc. and due to explicit module wiring. For this reason,
MzScheme offers signed units that support bundles of variables,
called signatures, which get linked in one step [19].

Only recently, proposals have been put forward to bun-
dle class-based object-oriented languages with similar module
systems [18, 4]. So far, we only know about two attempts to
integrate a module system into Java. The proposal by Ancona
and Zucca is rather theoretical, leaving unclear if their work
is feasible in practice [4].

Independently to our work, Ichisugi and Tanaka observed
that extensibility on the level of modules greatly enhances
the ability to extend applications [27]. Ichisugi and Tanaka
describe a practical module system for Java based on the
notion of difference-based modules. Their modules are solely
linked by a form of inheritance which also combines module
members. Since their modules are not expressive enough to
abstract over context dependencies (which are hard-wired),
this module system must be seen rather as a tool for aspect-
oriented programming [31] than for developing reusable,
context independent software components. In Ichisugi and
Tanaka’s language, modules get exclusively linked by inher-
itance. Based on a similar idea, we investigated in former
work a component calculus that explains component composi-
tion in terms of component refinements [57]. This component
calculus supports a mixin-based composition scheme.

Duggan and Sourelis propose mixin-modules to make ML
modules extensible [15]. An alternative proposal which
is targeted towards OCaml [33] got recently published by
Hirschowitz and Leroy [26]. Their work is based on CMS [3,
5], a simple but expressive module calculus which can be
instantiated over an arbitrary core calculus. The calculus
supports various module composition mechanisms including
mixin module composition with overriding. The work on

mixin-based composition goes back to Bracha who observed
that inheritance can be seen as a general mechanism for mod-
ular program composition [8, 7]. With his work on the pro-
gramming language Jigsaw [6], he lifts the notion of class-
based inheritance and overriding to the level of modules. A
consistent refinement of a family of classes is possible with
the notion of mixin layers, introduced by Smaragdakis and
Batory [48]. Related to mixins is the concept of delegation. In-
tegrated into a statically typed object-oriented language, del-
egation yields a powerful mechanism for object-based inheri-
tance [32, 13].

Rüping analyzed the modularity of object-oriented systems
during design and specification [44]. He substantiates the
need for modules in object-oriented languages as a means to
encapsulate cooperating classes. Our module refinement and
specialization mechanisms implement his notion of compati-
bility between modules which facilitates the type-safe exten-
sion of systems by the substitution of compatible modules.

Linguistic abstractions for component-oriented program-
ming often have similar properties like module systems.
Component-oriented programming languages that are built
on top of Java-like object-oriented languages are Compo-
nentJ [46, 45], ACOEL [49], and ArchJava [1]. [57] gives
a short overview over these languages. Jiazzi [38] is a system
for creating large-scale binary components in Java based on
MzScheme’s units. Jiazzi’s units are conceptually containers
of compiled Java classes with support for well-defined con-
nections, externally specified through a set of imported and
exported classes.

Component-oriented programming languages feature
concepts originating from architectural description lan-
guages [39] like ACME [23], Aesop [22], Darwin [37],
Rapide [34], Wright [2], SOFA/DCUP [43] etc. In general,
architectural description languages are used to specify a
software architecture formally. A software architecture
describes the organization of a software system in terms
of a collection of components, connections between these
components, and constraints on the interactions [42, 47, 51].
By using architectural description languages, the details of a
design get explicit and more precise, enabling formal analysis
techniques. Furthermore, they can help in understanding the
structure of a system, its implementation and reuse.

7. Conclusion
The paper presented Keris, an extension of the programming
language Java with linguistic support for the evolution of soft-
ware. The main contributions are

• a module system that combines the benefits of classi-
cal module systems for imperative languages with the
advantages of modern component-oriented formalisms.
In particular, modules are reusable components that can
be linked with different cooperating modules without
the need to resolve context dependencies by hand. In-
stead, Keris implicitly infers the module-wiring.

• a module composition scheme based on aggregation
that makes the static architecture of a system explicit,
and

• a type-safe mechanism for extending atomic modules as
well as fully linked systems statically. This mechanism
relies on two concepts: module refinements and module
specializations. Both of them are based on inheritance



on the module level. While refinements yield a new ver-
sion that subsumes the original module, specializations
are used to derive new (independent) modules from a
given “prototype”. Keris’ extensibility mechanism is non-
invasive; i.e. the extension of a module preserves the
original version and does not require access to source
code. Thus, extending modules does not invalidate ex-
isting code.

The overall design of the language was guided by the aim
to develop a pragmatic, implementable, and conservative ex-
tension of Java which supports software development accord-
ing to the open/closed principle: Systems written in Keris are
closed in the sense that they can be executed, but they are
open for extensions that add, refine or replace modules or
whole subsystems without planning extensibility ahead. An-
other constraint was that we did not want to change Java’s
compilation model or use a modified target platform.

The Keris compiler is based on an extensible Java compiler
developed in previous work [59]. In the long run we plan to
re-implement this compiler in Keris for two reasons: First, it
would enable us to bootstrap the system. Furthermore, we
would gain experience in using Keris for building large, exten-
sible software.
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