
Compiling Regular Patterns to Sequential Machines

Burak Emir

École Polytechnique Fédérale de Lausanne
1015 Lausanne, Switzerland

Technical Report IC/2004/72

1 Introduction

Many programming languages have a pattern matching con-
struct that can be generalized to deal with regular ex-
pressions. This is especially useful for decomposing semi-
structured data, i.e. labeled, attributed trees where the chil-
dren of a node form a sequence of arbitrary length. Schema
languages make use of regular expressions to constrain such
sequences in instance documents. This has led to interest
on regular pattern matching for semistructured data like
in Xduce [13], Cduce [1]. For general-purpose program-
ming, regular pattern matching is used in Xtatic [10, 9],
Harp [4] (an extension of Haskell) and Scala [21]. A
related concept are Xen filters [17] and node-selection in
the XPath standard. Moreover, a recent criticism of cur-
rent schema languages admonishes the lack of “user-defined
simple datatypes”, where a data type is seen as a regular
expression with variables. Such a type constrains the text
content of elements and, at the same time, gives names to
parts of the content (imagine a datatype for date, with ac-
cess to month,year). Another example for regular patterns
are Posix regular expressions (used in Emacs-Lisp, Perl)
which yield the matches of parenthesized subexpressions. In
most compilers, a lexical analyzer matches parts of a source
file against regular expressions, applying the longest match
rule. To these long-known applications have been added new
ones, like finding segments in DNA sequences or content-
based routing and deep packet classification.

Regular patterns are a natural generalization of pattern
matching as known from ML and Haskell. For the sake of
an example, let us consider matching sequences of charac-
ters, with the convention that is a wildcard pattern and
a binding pattern v@p matches everything p matches, bind-
ing the result to the variable v. An email can be succinctly
queried for its sender:

(‘F‘, ‘r‘, ‘o‘, ‘m‘, ‘ : ‘, x@ �, ‘\n‘, �)

We are interested in everything between ”From : ” and
the first newline character ‘\n‘. But the binding pattern
x@ � might possibly stretch far beyond the first newline,
because the patterns � match arbitrarily many arbitrary
characters. The pattern is ambiguous; several values for x
are possible.

Ambuiguity can be removed by imposing a match policy.
The preference to stop binding at the first newline character
means that we are interested in the shortest match. Clearly,
variables can make regular expression patterns ambiguous

also in the absence of wildcards, as in the minimal example
(x@‘a‘�, y@‘a‘�).

In this paper, we will give a formal model of the short-
est match and derive our algorithms from it. This model
is based on the metaphor that binding to a variable can
be seen as tagging parts of the input with the variable
to which they are bound. Let us agree on writing xa for
appending input element a to variable x. Then matching
”From : jj@foo.net\n . . . ” against the email pattern above
to yield the substitution {x �→ ”jj@foo.net”} is conceptu-
ally the same as transforming the input string to

” F r o m : xjxjx@xfxoxox.xnxext\n . . . ”.

The desired substitution can be read off the output. This
view does not depend on any sequence representations, and
it generalizes well to trees. In particular, it can also serve
to reason about all-matches style pattern matching as ex-
pressed by Xpath. The shortest match and the semantics of
pattern matching can be concisely specified by reasoning on
such annotated strings. Since these bindings are annotated
copies of input words of a regular language, we obtain a nat-
ural formulation of pattern matching as length-preserving
transduction of words.

Contributions. The contributions of this paper are (1)
the (first) sequential machine formulation of regular pattern
matching, (2) giving effective algorithms based on this model
which can be used to compile patterns into code that finds
the shortest/longest matches in linear time (two traversals
of the input), (3) a characterization and decision procedure
for cases that need only a single traversal (unambiguous
patterns), (4) an intuitive account on match policies and
position automata, (5) a discussion on generalization and
application of the results to tree matching and Xpath eval-
uation.

The thoughts discussed in this paper should help imple-
ment regular pattern matching, relate different approaches
and proof techniques, and prevent implementors from rein-
venting the wheel.

All presented results are effective. The implementation
techniques are used in the reference Scala compiler.

Related work. While compilation of regular expres-
sions is standard, compilation of regular patterns is not.
Ambiguities seem to complicate the task of writing an intelli-
gible specification of regular pattern matching. The problem
is first mentioned by Hosoya, Vouillon and Pierce [13]. A re-
cent account on regular tree pattern matching by Levin [15]
omits the treatment of ambiguities and variables. Our work

aims to provide this missing piece in order to promote reg-
ular patterns in programming languages.

Disambiguation of patterns has been specified rigorously
by Tabuchi et al. in their work on λre [22], where the longest
match-policy is used in type inference of patterns. We give
an efficient implementation that seems compatible with their
specification, although we will focus on shortest match in-
stead of longest.

Frisch and Cardelli [8] consider matching with ambigu-
ities in depth, addressing efficient implementation as well.
They obtain results similar to ours, but depart from differ-
ent assumptions: (1) The match policy under consideration
is greedy matching, a local approximation of the longest
match policy. This yields different bindings, because the or-
der of branches in an alternative pattern p1|p2 affects the
outcome. Our longest/shortest match algorithms have the
same runtime complexity and thus complement theirs. We
thus refute the claim that greedy matching is easier to imple-
ment. (2) Their approach is “expression-centric” - regular
expressions denote sets of structured values, which prohibits
their rewriting and distinguishes expressions denoting the
same language. Our approach is more semantic: a regu-
lar expression denotes not more and not less than a regular
language. In our approach, rewriting the regular expression
turns out to be indispensable for longest/shortest match.
Apart from that, the semantic choice is arguably better for
compilation of pattern matching. It is an advantage to for-
get the structure of patterns in an early compilation phase,
because all interesting decision procedures on regular lan-
guages are based on automata.

Broberg, Farre and Svenningsson [4] add a form of reg-
ular patterns to Haskell, combining several approaches to
handle ambiguities: they use greedy and nongreedy opera-
tors, and return all-matches in all other cases. Their compi-
lation scheme is a proof of concept of their language design,
and not efficient. The choice of disambiguated operators is
also made in the mainstream languages Perl and Java. We
show how our approach can be extended to disambiguated
operators without sacrificing efficiency.

The two first approaches mention a two-pass construc-
tion similar to the one presented here. Also Neumann and
Seidl[20] use a two-pass construction to extract matches of
context patterns, which can be described as a context-aware
generalization of XPath.

By connecting the problem to long-standing theoretic ev-
idence, some explanation is given why this kind of construc-
tion seems inevitable. We formulate pattern matching as a
sequential rational function, and the two-pass construction
is a consequence of a long-standing decomposition theorem
Elgot and Mezei [6]. For details, we refer the interested
reader to the chapter on rational functions in the standard
work on transductions [3].

Organization of the paper After a brief preliminary
section, we introduce patterns and bindings, which are se-
quences over a special alphabet, in Section 2. We then in-
troduce the position automata construction in Section 3 and
show how the shortest/longest match corresponds to a max-
imal/minimal run of a position automaton. In Section 4, we
introduce sequential machines, and a first naive compila-
tion scheme for pattern matching. In Section 5, we turn
to efficient shortest-match pattern matching, using two de-
terministic sequential machines. We discuss generalizations
and applications in Section 6, followed by conclusion, ac-
knowledgement, references and an appendix with proofs.

Preliminary. The empty set is denoted ∅. For sets A, B

we write 2A for the powerset of A and A−B for set differ-
ence. The nonnegative integers N = {1, 2, . . .} are ordered
by <, whose reflexive closure is ≤. When describing sets
through their elements {x1, . . . , xk}, we always assume the
xi are pairwise distinct and if an order exists, the indices
respect it. Σ and Θ are nonempty, finite sets of symbols
called alphabets. The domain of a partial function f is de-
noted dom(f). Composition is written f ◦ g, where f is
applied first. S� is the set of all sequences of symbols from
S, ε is the empty sequence, and S+ = S� − {ε}. More pre-
cisely, a sequence w ∈ S� is a partial mapping w : N→ S
where dom(w) is closed under predecessor. Concatenation
of sequences u, v is expressed by juxtaposition, as in uv.
Sometimes concatenation is written explicitly using the in-
fix · operator. For sets of words, A·B = {uw|u ∈ A, w ∈ B}.
For a word w, its reverse is denoted wrev. For set A, we set
A0 = {ε}, Ai+1 = A · Ai. The prefix ordering on N

� is writ-
ten �, i.e. u � v iff uz = v for some z ∈ N

�. For N
�,

we can define the quasi-lexicographical ordering u <� v iff
u = wiz and v = wjz′ for some i, j ∈ N and w, z, z′ ∈ N

�.
We write u <�

right v if urev <� vrev. Regarding sequences of
numbers as positions (or paths), a tree is a partial mapping
t : N

� → Σ from positions to symbols where dom(t) is closed
under prefix and left sibling. <� is the usual pre-order on
tree nodes. These trees are unranked, and nodes are ele-
ments of N

�. ε denotes the root node and for a node u, ui
is the i-th child of u. The set of all trees is denoted TΣ. Po-
sitions that are maximal w.r.t. � are called leaves, and the
set of leaves of t is frontier(t). Thus for every w ∈ frontier(t)
we have w � w′ implies w = w′ for any w′ ∈ dom(t). When
we write frontier(t) = {w1, . . . , wn} we always respect the
depth-first, left-to-right ordering of leaves, i.e. wi <� wj for
i < j. A tree is written as t(w) if w is a leaf position or as
t(w)[. . .] where the children are written juxtaposed between
the brackets. We furthermore assume a countably infinite
set of variables V .

2 Regular Patterns

2.1 Pattern Syntax and Denotation

The set RegExp(Σ) of regular expressions over Σ, and the
set RegPat(Σ, V) for regular patterns over alphabet Σ and
variables V is given in Figure 1. To save some parentheses,
operator precedence is �, ·, |. We treat parts that are not
bound to any variable as if they were bound to a fresh one.
A pattern is a non-empty sequence x1@r1 · · ·xk@rk of bind-
ing patterns xi@ri, where x1, . . . , xk are distinct variables
from V , and r1, . . . , rk ∈ RegExp(Σ). The set {x1, . . . , xk}
is denoted var(p) and is ordered in the obvious way. If not
otherwise mentioned, we always talk about a fixed pattern
p = x1@r1 · · ·xk@rk.

The definitions are chosen to make patterns denote a
regular language on the alphabet V × Σ. In fact, for any
given pattern p, the alphabet is the finite subset var(p)×Σ.
We arrived at this choice following these two basic insights.

The first is that it is helpful to choose bindings to be
sequences s ∈ (V × Σ)�. We write xa for elements from
V ×Σ to lighten notation throughout the paper. The formal
definition of the projection proj : V × Σ → Σ is omitted,
and its extension to sequences and to regular expressions
will be used without fanfare. A binding can be viewed as
a usual substition via the mapping described in Figure 2.

2

r ::= ε [[ε]] = {ε}
a [[a]] = {a} (a ∈ Σ)
r1 · r2 [[r1 · r2]] = [[r1]] · [[r2]]
r1 | r2 [[r1 | r2]] = [[r1]] ∪ [[rn]]
r� [[r�]] =

S
{i≥0}[[r]]

i

p ::= v@r [[v@r]] = [[vp(v, r)]]
p · p [[p1 · p2]] = [[p1]] · [[p2]]

Figure 1: Regular expressions, regular patterns, and their denotation

bind(ε) = {x �→ ε | x ∈ V }
bind(b′ · xa) = bind(b′)⊕ {x �→ a}

{xi �→ wi}xi∈V⊕{xj �→ a} = {xj �→ wj ·a}∪{xi �→ wi}xi∈V,i�=j

Figure 2: Definition of bind

vp(v, ε) = ε
vp(v, a) = va (a ∈ Σ)
vp(v, r1 · r2) = vp(v, r1) · vp(v, r1)
vp(v, r1 | r2) = vp(v, r2) | vp(v, r2)
vp(v, r�) = vp(v, r)�

Figure 3: Definition of vp

Each element xa contributes to the value of x, in order of
appearance from left to right. For instance,

bind(xaxbycza) = {x �→ ab, y �→ c, z �→ a}
It is easy to see that s ∈ [[p]] implies that we can de-

compose s into s1 · · · sk with si ∈ ({xi} × Σ)�, and that
for each of these pieces it holds that proj(si) = bind(b)(xi).
Sometimes, the piece si is called “binding for variable xi”.

The second insight connects patterns and (regular) sets
of bindings. This happens syntactically by pushing down the
variables to the leaves, and changing the alphabet via the
mapping in Figure 3. Also this mapping is straightforwardly
extended to patterns. For instance,

vp(x@(ab|b�)y@(c|ε)z@a�) = (xaxb|xb�) · (yc|ε) · za

2.2 Semantics of Matching

Pattern matching with variable binding consists of recogniz-
ing whether a word w ∈ Σ� matches, and if it does, in pro-
viding a suitable binding s ∈ (V×Σ)� for the variables. For a
pattern p = x1@r1 · · ·xk@rk, it must hold that w ∈ r1 · · · rk,
and that a binding s be produced with bind(s)(xi) ∈ [[ri]]
for each i. Since bindings are annotated input words, the
problem consists of transforming words w ∈ Σ� into bind-
ings s ∈ (V × Σ)�. The transformation is very particular,
since it merely annotates input words. It is thus sufficient
to specify matching as generation of a suitable binding.

We will see later, that we can turn automata transitions
xa into sequential machine transition a : xa, i.e. one that
reads a and writes xa at runtime. We should mention here
that we use sequential machines as conceptual devices. Ac-
tual generated sequential machine code does not write bind-
ings; instead the environment is modified directly (e.g. by
modifying a pointer-structure on the heap).

A word w ∈ Σ�, a pattern p ∈ RegPat(Σ, V) and a
binding s ∈ (V × Σ)� are in the ternary matching relation
w � p⇒ s (pronounced “w matches p yielding s”) if

1. proj(s) = w and

2. s ∈ [[p]].

Proposition 1
If w � p ⇒ s1 · · · sk then w ∈ [[proj(p)]] and proj(si) ∈ ri for
all xi ∈ var(p).

We denote by Env(p) ⊆ Σ� × (V × Σ)� the relation on
words and bindings induced by p. We also write Env(p, w) =
{ s | w � p⇒ s } for the set of possible bindings for pattern
p and word w.

Let us consider some examples. The word abb matches
the regular pattern x@a�y@b�, yielding xaybyb. For am,
the pattern x@a�y@a� yields m + 1 possible bindings. For
the word w = aaabbb and p = x@a�y@a(ab)�z@b� we have
Env(p, w) = {s, s′} with bind(s) = {x ← a, y ← aab, z ←
bb} and bind(s′) = {x← aa, y ← a, z ← bbb}.

The latter two examples are ambiguous patterns, which
for a matching word yield more than one binding. In such a
case, a match policy determines which of the possibly several
bindings should be generated.

2.3 Specification of Shortest Match

The shortest (or right-longest) match policy means that,
starting from the right, we need to choose the longest
possible binding for each variable of a pattern. In the
example x@a�y@a�, this would mean to always choose
{y ← w}. The longest (or left-longest) match policy is
defined symmetrically. The use of the word “possible” here
underlines that the rest of the word has to match the rest
of the pattern. This can require backtracking. Consider for
instance w � p⇒ s′ as in the last example:

a · a · a · b · b · b

a� a(ab)�
b�

The indicated match is at the same time left-longest and
right-longest. Consuming all a’s to match x@a� does not
yield any match, let along the longest; binding the first a to
y will fail to construct the shortest. We will focus on the
shortest (or right-longest) match from now on. There is a
total order on Env(p, w), which tells whether a binding is
right-longer. Let s = s1 · · · sk and s′ = s′1 · · · s′k. Then we
define s >right s′ if either

• k = 1 and |s| > |s′|, or

3

• |sk| > |s′k|, or

• |sk| = |s′k| and s1 · · · sk−1 >right s′1 · · · s′k−1

In other words, >right is the lexicographical order on the
lengths of the si, with k being the most significant position.
The definition of >left is the other way round, making 1 the
most significant position.

The right-longest match is the maximal element w.r.t.
>right. It is easy to see that it exists and is unique, because
the order is total.

2.4 Minimal length

We would like to have a correspondence between (leaf) po-
sitions in expressions and states in automata, in order to
argue about the shortest match. But this is hindered by
the fact that in branches of an alternation, it is not their
order of appearance in the expression that counts, but their
minimal length. It is a technical property defined as

minlen(ε) = 0
minlen(a) = 1
minlen(r1 · r2) = minlen(r1) + minlen(r2)
minlen(r1|r2) = min{minlen(r1), minlen(r2)}
minlen(r�) = 0

Alternation is commutative, so our semantics allows us
to rewrite regular expressions in a way that establishes our
desired correspondence between minimal length and posi-
tions. For right-longest match, we can rewrite a regular ex-
pression such that for every alternation r1| . . . |rm we have
minlen(ri) ≤ minlen(ri+1). Alternatives more to the right
must be “longer” i.e. have greater or equal minimal length.
Thus, if we have the choice between several branches, choos-
ing the rightmost branch means that we can match most
of the input with this alternation. We will call regular
expressions “branch-sorted”, if they have their alternation
branches sorted in this way. For longest match, the order of
the branches must be reversed, and leftmost branches will
be preferred, for reasons explained below.

3 Position Automata

3.1 Basic Definitions

In order to be self-contained, we briefly recall basic defini-
tions of automata (recognizers). A nondeterministic finite
automaton (nfa) on Σ is a tuple A = 〈Q, Σ, I, δ, F 〉, where
Q is a finite set of states, I ⊆ Q a set of initial states,
δ : Q × Σ → 2Q a transition mapping, F ⊆ Q a set of final
states.

The language L(A) is defined in the usual way by extend-
ing δ to δ� : 2Q × Σ� → 2Q. Deterministic finite automata
have a transition mapping δ : Q × Σ → Q and only one
initial state q0. Their language is defined by the extended
mapping δ� : Q×Σ� → Q.

Deterministic automata are obtained from nondetermin-
istic ones by the standard subset construction. Nondeter-
ministic automata are obtained from regular expressions by
synthesis (also called automata constructions, or transla-
tions). Automata can be turned into regular expressions by
analysis.

The traces of an automaton on input w = a1 · · · an is the
set N (w) of sequences q0 · · · qn ∈ Q� of length n + 1, with
q0 ∈ I and qi ∈ δ�({q0}, a1 · · · ai) for all i ∈ {1, . . . , n}.

3.2 Synthesis Algorithm

We have specified pattern matching with a rather semantic,
mathematical flavour. Then we motivated the syntactical
branch-sortedness of regular expressions with a correspon-
dence between the position in the regular expression and
the shortest/longest match. This section ties the knot by
providing a link between branch-sorted regular expressions,
shortest match, and a particular trace of an automaton.

There is a popular synthesis algorithm that maintains
a correspondence between positions of leaves and automa-
ton states, and moreover has the big advantage of avoiding
ε-transitions altogether. All results in this paper depend
on properties of this particular automata construction. It
is open whether they can be adapted to further improved
constructions like e.g. [14, 12].

We recall the position automata construction, commonly
attributed to Berry and Sethi [2](see [16] for a detailed ac-
count on a high-performance implementation).

Let us identify a regular expression r with its syntax
tree r : N� → (Σ ∪ {seq,star,or,eps}). In the non-trivial
case, it has some leaves w1, . . . , wn that are not labelled
eps. In Figure 4, those would be 111, 112, 12, 2, 31. Every
leaf wi with t(wi) = a expresses that a must be read, so
we can imagine a corresponding automaton state i having
all incoming transitions labeled with a. Following this idea,
we use the uniquely determined alphabet Γ = {1, . . . , n}
and mapping γ : Γ → Σ, γ(i) = r(wi) to obtain a regular
expression r0 ∈ RegExp(Γ), which we define by its syntax
tree:

r0(w) =

(
i if w = wi and γ(i) = σ

r(w) otherwise

Thus, (ab|b)ca� becomes (12|3)45�. The resulting expression
is called linear. We can define the first, last and follow sets
of a linear regular expression r0.

fst(r0) = { i ∈ Γ | ∃w ∈ Γ� . iw ∈ [[r0]] }
lst(r0) = { i ∈ Γ | ∃w ∈ Γ� . wi ∈ [[r0]] }
fol(r0, i) = { j ∈ Γ | ∃u, w ∈ Γ� . uijw ∈ [[r0]] }

These sets can be straightfowardly computed simultaneously
for all subexpressions of r in time quadratic in n. We are
now ready to define Nr, the position automaton of r. It has
exactly n + 1 states, one for each position plus one initial
state 0. It can have up to O(n2) transitions[14].

Definition 1
For r ∈ RegExp(Σ), the position automaton Nr is defined as

a b

seq

or

b

c star

a

seq

1 2

seq

or

3

4 star

5

seq

Figure 4: Syntax tree of (ab|b)ca� and linearized form

4

〈Q, Σ, {0}, δ, lst(r0)〉 where Q = {0} ∪ Γ and

δ(0, a) � j iff a = γ(j) ∧ j ∈ fst(r0)
δ(i, a) � j iff a = γ(j) ∧ j ∈ fol(r0, j) for all i ∈ Γ

Note that by definition the position automaton has the use-
ful property that all transitions that enter a particular state
have the same label. We will also need the reversed po-
sition automaton N rev, which is obtained by swapping fst
and lst in the above construction and furthermore redefin-
ing fol(r0, i) = { j ∈ Γ | ∃w, u ∈ Γ� . wjiu ∈ [[rex]] }. It
recognizes wrev iff N recognizes w.

Note that a letter occuring more to the right corresponds
to state with greater indices. For branch-sorted regular ex-
pressions, this correspondence can be used to get the short-
est match.

3.3 An Automaton for Shortest Match

This section states one of the main results, on which disam-
biguation of regular patterns w.r.t. shortest match is based.
We can associate bindings with runs, and the maximal one
with the binding for shortest match.

Definition 2
For w = a1 · · · an ∈ [[r]], and N = Nr its position au-
tomaton, a maximal run maxN (w) is the sequence q0 · · · qn

where q0 = 0, qn ∈ F and qi−1 = max δrev(qi, ai) for all
i ∈ {1, . . . , n} which is maximal w.r.t. ≥right.

Proposition 2
Let w be a word, p be a branch-sorted pattern, and
N = Nvp(p). For all s, s′ ∈ Env(p, w), if maxN (s) >right

maxN (s′) then s >right s′.

This does suggests an naive implementation to find s,
which at every ambiguous position searches the maximal
state with which it is possible to continue, trying possible
choices of xi and backtracking on failure. In the worst case,
this approach traverses the input O(a ∗ d) times, where a
is the number of ambiguities and d the maximal number
of choices occurring at an ambiguity. In the next section,
we show how to find the shortest match of ambiguous pat-
terns in exactly two traversals without backtracking. We
use sequential machines to obtain an operational model of
pattern matching, and construct the run with the maximal
state indices.

4 Sequential Machines

4.1 Basic definitions

Sequential machines represent length-preserving subsequen-
tial rational relations. For reasons that will become clear
immediately, we reuse N to denote nsm’s in addition to
nfa’s.

A nonderministic sequential machine (nsm) on Σ and Θ
is a tuple N = 〈Q,Σ, Θ, I, δ, F 〉 similar to an nfa, but with
a transition mapping δ : Q × Σ → 2Θ×Q. The transition
relation is extended to δ� as before, ignoring the output,

and an extended output mapping λ� : 2Q × Σ� → 2Θ�

can
be formulated. The output is discarded if the nsm does not
reach a final state.

The traces of an nsm on input a1 · · · an is a set N (w)
of sequences q0b1 · · · qn−1bnqn, with q0 ∈ I , qn ∈ F . Sym-
bol bi being written after leaving state qi−1 as a result of
consuming input symbol ai. Formally, δ(ai, qi−1) � 〈bi, qi〉
for each i ∈ {1, . . . , n}, which implies δ�({q0}, a1 · · · ai) � qi

and λ�({q0}, a1 · · · ai) � b1 · · · bi.
An nsm can be seen as an nfa on the alphabet Σ×Θ, if

one identifies translation of a word a1 · · · ak into b1 · · · bk and
recognition of the word (a1 : b1) · · · (ak : bk). This means
we can use the synthesis from above to build sequential ma-
chines from any regular expression over an alphabet of pairs.
To keep notation light, we will also use a : b to denote a pair
of elements a ∈ Σ and b ∈ Θ, and write δ(q, a : b) � q′

instead of δ(q, a) � 〈b, q′〉.
From an nsm one can retrieve all possible out-

puts(bindings) that a regular expression(pattern) yields
given a fixed, accepted input. Instead, a deterministic
sequential machine (dsm) has a transition mapping δ :
Q × Σ → Θ × Q. These correspond to the well known
Mealy, Moore machine models. A dsm computes exactly
one output for any given, accepted word.

4.2 Translating Patterns

A pattern induces the relation Env(p) between input words
and bindings, but a practical definition of pattern match-
ing should be disambiguated (e.g. respect a match policy).
Otherwise put, a pattern should define a function from input
words to output bindings, not a relation.

The function h : V × Σ → Σ × (V × Σ) maps xa to
a : xa. By extending h to regular expressions, we turn a
pattern p ∈ RegPat(Σ, V) into a regular expression vp ◦
h(p) ∈ RegExp(Σ× (V ×Σ)) on an alphabet of pairs a : xa.
By the considerations in the previous section, applying the
position automata construction yields an nsm.

For instance, translating p = x@a�y@aa� yields the se-
quential machine Nvp◦h(p) shown in Figure 5. As before,
this automaton has a state for every letter occuring in p,
plus an initial state. This pattern will be used from now on
as a running example.

Proposition 3
Let p ∈ RegPat(Σ, V) and Nvp◦h(p) its translation. Then
a1 · · · an � p ⇒ b1 · · · bn iff N (a1 · · · an) � q0b1 · · · qn−1bnqn

with qn ∈ F .

Unlike recognizers, it does not make sense for nondeterminis-
tic sequential machines to be “made deterministic” because
they can produce several outputs for an input word. As
we shall see later, we can recover the set of possible runs
(the behavior) of the nsm by applying a subset construction,
yielding a sequence of sets of states as output. Then, a sec-
ond run on this intermediary result is performed in order to
choose one among the possible outputs. This scheme follows
a long-standing result that states that every sequential ratio-
nal function can be computed using two sequential machine
runs. One can safely postulate that any disambiguated form
of regular pattern matching can be implemented in this way,
because it corresponds to a sequential rational function.

4.3 Ambiguities and decision procedures

After having established a connection between implementa-
tions of pattern matching and nsms, we are now in a position
to derive definitions of ambiguities and decision procedures.

5

0

1 2

a : xa
a : ya

a : ya

a : xa a : ya

Figure 5: The nsm N obtained from x@a�y@aa�

Definition 3 (Properties of Patterns)
Let p be a pattern, and Nvp◦h(p) its translation. An ambi-
guity of p is a state q of Np which has at least two outgoing
transitions a : xia, . . . , a : xj a with xi �= xj . Thus, p is called

• ambiguous if it has at least one ambiguity,

• unambiguous if it has none.

• deterministic if N is deterministic, i.e. the range of δ
consists only of singleton or empty sets. This implies
that p is unambiguous.

For instance, state 0 and 1 the nsm shown in Figure 5 con-
stitute ambiguities. Any well-defined implementation simu-
lates runs of N at runtime and chooses (e.g. according to
a match policy) which transition to take and consequently
which xi to bind to.

Proposition 4 (Decision procedures)
The results lead to decision procedures with time complex-
ity quadratic in |Γ|, because they can be decided while con-
structing Np.

• is p ambiguous?
For all i ∈ Γ, check if fol(i, p) contains j, l with γ(j) =
a : xa and γ(l) = a : ya with x �= y. Check the same
for fst(p). p is ambiguous iff such a pair j, l is found.

• is p deterministic?
For all i ∈ Γ, check that |fol(i, p)| < 1, and check that
|fst(p)| < 1 The time complexity is quadratic in |Γ|.

• is [[p]] = Check that Np has final states.

Checking inclusion requires more effort. Given p, p′ with
var(p) = var(p′). If both are deterministic, checking
[[vp(p)]] ⊆ [[vp(p)]] is done in at most |Γ|2∗|Γ′|2, on the prod-
uct automaton of the two dfa’s (we again refer to [16] for a
high-performance implementation). In the general case, the

worst case complexity is 2|Γ|2+|Γ′|2 , because the nfa’s have
to be made deterministic before constructing the product
automaton.

The position automaton synthesis turns a deterministic pat-
tern directly into a dsm which for every matching w con-
structs the unique binding s of p in a single traversal. For
unambiguous patterns, a subset construction yields a dsm
that achieves the same; in these patterns nondeterminism
does not lead to ambiguities, hence can be removed.

0

1 2

a : 0
a : 0

a : 1

a : 1 a : 2

0

1 2

0 : xa

0 : ya

1 : xa

1 : xa 2 : ya

Figure 6: An nsm L and an nsm R for x@a�y@aa�

5 Efficient Shortest Match

5.1 Left-Right construction

In the general case, patterns have to be disambiguated us-
ing the right-longest match policy. To this end, the nsm
described earlier is translated to two deterministic sequen-
tial machines.

We separate an nsm N into two equivalent consecu-
tive nsms L and R. The first of these reads the input
w = a1 · · · an from left to right and writes the state it is in
before making a transition, yielding a word z = q0 . . . qn−1

and a state qn. If qn ∈ F , it is used to choose an initial state
of its counterpartR that reads z from right to left and writes
the (reversed) intended output word s = c1 . . . cn ∈ (V ×Σ)�

(also from right to left). It is easy to see that from an out-
put of L and the transition table δ of N , we can read off
the states occurring in traces N (w), and thus every trace of
N corresponds to two consecutive traces of L and R that
produce the same output. The two machines for the running
example is shown in Figure 6. Now it is time to remove non-
determinism in L by a slightly modified subset construction
given in Figure 7. The algorithm constructs a sequential ma-
chine det(L). Its states are sets of states of L, which are now
printed as output. It considers only reachable states, and
ignores the output of N , instead writing the set of states
before making a transition. Note that an implementation
will assign atomic symbols (e.g. integers) to the reachable
subsets of states of L and use these as output alphabet.

5.2 Determinization of R
States of det(L) do not correspondend to positions anymore.
This correspondence has to be reestablished using L and R.
The task of binding is reduced to taking a trace of det(L)

6

input: nsm L = 〈Q, q0, δ, F 〉
output:dsm det(L) = 〈Q, q0, δ, F 〉

def next(A, σ) =
S

q∈A δ(q, σ :)

initialize Q, F , δ, stack
q0 := {q0}
push q0 on stack
while(stack not empty)

pop A from stack

add A to Q

if(A ∩ F not empty) then add A to F
for each a ∈ Σ do

B = next(A, a)

δ(A, a : A) := B
if(B not in Q) then push B on stack

Figure 7: Constructing det(L)

input: dsm det(L) = 〈Qdet(L), q
det(L)
0 , δdet(L), F det(L)〉

nsm R = 〈QR, IR, δR, FR〉
output:nearly-dsm det(R) = (Q, I, δ, F)

initialize Q, I, stack

for each A ∈ F det(L)

choose maximal q from A with q ∈ IR

if 〈q, A〉 /∈ Q then

add 〈q, A〉 to Q

add 〈q, A〉 to I
push 〈q, A〉 on stack

while(stack not empty)
pop 〈q, A〉 from stack

for each B ∈ Qdet(L) with δdet(L)(B, a : B) = A
choose maximal q′ from B such

that δR(q′, q′ : xa) � q for some x

δ(q, B : xa) := 〈q′, B〉
if 〈q′, B〉 /∈ Q then

add 〈q′, B〉 to Q
push 〈q′, B〉 on stack

F := {qdet(L)
0 }

Figure 8: Constructing det(R)

and using it to simulate a run of N “backwards”. When
confronted with a choice between several accepting runs of
N we apply the shortest match policy.

The algorithm in Figure 8 which transforms the dsm R
into a dsm det(R). It reads the trace from det(L) and writes
the output of the one with the maximal state indices of N .
The states of det(R) are pointed sets of states, i.e. pairs
〈q, A〉 where q ∈ A. We use the state 〈q, A〉 to simulate that
det(L) was in the state A, which we interpret as being in
the state q of N . The initial state is chosen at run-time,
depending on the maximal final state of N that appears in
the accepting state of det(L).

The uniqueness of the maximal run is crucial to obtain
the shortest match, as mentioned before. The algorithm
constructs a transition mapping of det(R) which invari-
ably and deterministically builds maximal runs from runs
of det(L):

δ(〈q,A〉, B : xa) = 〈q′, B〉 if

δdet(L)(B,a : B) = A and (1)

q′ maximal from B such that δR(q, xa) � q′ (2)

where δdet(L) by is the transition mapping of det(L) and δR

the one of R. For input w, this definition picks the out-
put of maxL(w) and thus maxN (w). The first for loop
of the algorithm computes the several possible initial states
as all final states of det(L), with the greatest possible initial
state of R being the distinguished one. The while loop then
computes reachable pointed sets of states from the transi-
tion mapping of det(L) and the possible transitions in R.
The result of this construction for the running example is
displayed in Fig. 9.

Estimate of the Compile-Time Complexity. Com-
plexity of the quite standard subset construction (used for
L) is known [16]. As for nfa, the automaton L is not nec-
essarily minimal. For the worst-case complexity of deter-
minization of the second transducer. Sets of states and also
sets of sets of states are assumed sorted (e.g. using balanced
trees). Let m ∈ O(2n) be the number of states of det(L).
Since the state set of R is taken from pointed sets of states,
it cannot be more than m · n. The body of the while loop
takes O(m ∗n) steps because choose maximal tries up to m
states q′, checking δR can fail n times, checking membership
in Q takes less than (log m + n) ∈ O(n). The total number
of steps cannot exceed O(mn(m ∗ (n + n))) = O(m2n2), or
O(22n). The resulting automata are not necessarily mini-
mal, there can be redundant states.

Patterns leading to exponential blowup actually occur
in practice, for instance when using adding wildcard-star
patterns �(see discussion below). But since overall size of
patterns is usually small, these algorithms work well in the
Scala compiler, which translates the constructed sequential
machines to JVM bytecode. The assumption here is that
runtime performance is more important than code size and
compilation time, which is a common one when compiling
pattern matching.

5.3 A larger example

The steps are for compiling regular patterns are sketched
in Fig. 10. We conclude the discussion by applying the
presented algorithms to a larger example. Consider the pat-
tern p = x@a�y@a(ab)�z@b� given earlier. The position

7

The nsm N corresponding to x@a�y@a(ab)�z@b�

0

1 2 3 4 5

a : xa
a : ya

a : ya

a : xa

a : ya

b : zb

b : yb

a : ya

b : zb

b : zb
The dsm det(L) obtained by determinizing L

{0}

{1,2} {1,2,3} {3} {4}

{4,5}

{5}

a : {0}

a : {1, 2}

a : {1, 2, 3}

b : {1, 2, 3}
b : {4, 5}

a : {4, 5}

b : {3}

a : {4}

b : {4}

b : {5}

The dsm det(R) obtained by transforming det(L) and R

{0} { 1 ,2}

1, 2 }

{1,2, 3 }

{1, 2 ,3}

{ 1 ,2,3}

{ 3 } { 4 }{ 4 ,5}

{4, 5 }

{ 5 }{0}: xa

{0}: xa

{1, 2}: ya

{1, 2, 3}: ya

{1, 2, 3}:xa

{1, 2}: xa

{1, 2, 3}: ya
{1, 2}: ya

{1, 2, 3}: zb

{1, 2, 3}: zb

{1, 2}: zb

{4, 5}: ya

{4, 5}: zb

{3}: yb

{4}: ya

{4}: zb
{5}: zb

{1, 2}: zb

Figure 11: Examples of sequential machines N , det(L), det(R)

8

{0} {1,2}a : {0}

a : {1, 2}

{0} {1, 2 }
{0} : ya

{1, 2} : ya

Figure 9: Dsm pair for shortest matches of x@a�y@aa�

pattern

left nsm L right dsm R

left dsm det(L) right dsm det(R)

code

left-to-right
pos. automaton

right-to-left
pos. automaton

determinize determ. right

generate

Figure 10: Compiling patterns to sequential machines

automata construction is applied after turning the following
expression vp ◦ h(p), or

(a : xa)�(a : ya)
`
(a : ya)(b : yb)

´�
(b : zb)�

into 1�2(34)�5�. The nsm N , the dsm det(L) and the dsm
det(R) are shown in Fig. 11. The input word w = aaabbb
leads to the following output of L

{0}{1, 2}{1, 2, 3}{1, 2, 3}{4, 5}
and ends in the accepting state {5}. The subsequent run
of det(R) starts by picking the initial state 〈5, {5}〉, which

is abbreviated as { 5 } in the diagram. It takes the output
of det(L) as input and produces from it (from right-to-left)
the binding actions xaxayazbzbzb. From this sequence, we
obtain the desired right-longest binding:

{x← aa, y ← a, z ← bbb}

6 Discussion

6.1 Greedy Matching, Greedy Operators

If one does not sort the branches of a pattern according
to their minimal length minlen, we get a form of ungreedy
matching, because rightmost branches have priority in max-
imal runs. When looking for minimal runs (which stay “on
the left” of the regular expression as long as possible),this
yields greedy matching.

Java and Perl offer ad hoc operators like “greedy star”
and “ungreedy star”. Our formal framework can be ex-
tended to these. Basically, for states (positions) under a
greedy star, we look for minimal states like for longest
match, and for states under a nongreedy star, we look for
maximal states. Only the construction of det(R) must be
modified, in order to find the unique run N (s) specified by
disambiguated operators.

6.2 Generalizations

To use regular patterns effectively, a couple of generaliza-
tions can be made. All fit well with the nondeterministic
sequential machine view of pattern matching.

Multiple cases. To use pattern matching in a case
distinction, it seems easiest to first recognize which case the
input matches, using plain regular expressions, and then use
sequential machines for variable binding. It is also possible
to construct a product automaton L of all cases, and adapt
R accordingly. But if no case matches, then the output is
discarded, which is inefficient for large inputs.

Operators. Regular expressions can be extended with
a wildcard expression with [[]] = Σ, and range patterns
a..b with [[a..b]] = {c ∈ Σ | a ≤ c ≤ b} for totally ordered
The definitions of fst, lst, fol and the subset constructions are
then adapted in a straightforward manner. The dsm det(L)
must then copy the input, in addition to writing its state
set.

However, the position automata construction cannot deal
with intersection and complement operators [2].

Named expressions can be defined in order to reuse
regular expressions like in this example (which looks almost
like a lexer specification):

9

let pattern d2 =‘0‘..‘2‘ in
let pattern d1 =‘1‘..‘9‘ in
let pattern d0 =‘0‘ | {d1} in
let pattern dayT ={d1} | (‘1‘|‘2‘){d0} | ‘3‘{d2} in
let pattern monT ={d1} | 1{d2} in
let pattern yearT =2{d0}{d0}{d0} in
day@{dayT}, ‘.‘, mon@{monT}, ‘.‘, year@{yearT}

Nested binding patterns can be dealt with by let-
ting bindings be sequences over 2V ×Σ, more precisely over
the finite subset 2var(p) × Σ. This allows patterns like the
following one:

date@(day@{dayT}, ‘.‘, mon@{monT}, ‘.‘, year@{yearT})

Variables unter alternation nodes can be allowed, as
long as each branch defines the same variables, and the lan-
guages of the branches are disjoint and unambiguous, like
in

day@{dayT}, ‘.‘, mon@{monT}, ‘.‘, year@{yearT}
| mon@{monT}, ‘/‘, day@{dayT}, ‘/‘, year@{yearT}

These conditions ensure that such a pattern still defines a
function from Σ� to (V ×Σ)�, when ambiguities in the rest
of the pattern are resolved with shortest match.

Tree and Hedge Matching. The theory can be gen-
eralized to hedges and unranked trees, which are singleton
hedges [5, 18]. Labeled hedges h ∈ HΣ are sequences of
labeled trees a[. . .]. Position automata can be defined and
turned into deterministic pushdown hedge automata [19].
Patterns are generalized to simple regular hedge expressions:

r ::= ε [[ε]] = {ε}
a[r] [[a[r]]] = {a[h] | h ∈ [[r]]} a ∈ Σ
r1 · r2 [[r1 · r2]] = [[r1]] · [[r2]]
r1 | r2 [[r1 | r2]] = [[r1]] ∪ [[r2]]
r� [[r�]] = [[r]]�

Note that these do not recognize the full set of regular hedge
languages, because depth-iteration is missing [11].

Sequential hedge machines relabel the hedge, transform-
ing HΣ into HV ×Σ, the set of hedge bindings. Substitutions
are obtained using the mapping

bind(ε) = {x �→ ε | x ∈ V }
bind(h1 · xa[h2]) = bind(h1)

⊕ {x �→ f [h2]} ⊕ bind(h2)

In more conventional terms, patterns for algebraic datatypes
are extended to have sequence patterns. These are nodes
standing for sequences like arrays or lists that can be conve-
niently matched with regular patterns. A proof of concept
is the current Scala compiler, where these ideas have been
implemented [21, 7]. Here is a pattern match that finds the
first entry matching "M" in a database:

xa

xa

ob

oc ob

xa

xa

{ x �→ a[a[a, b], c, b[a]], a[a, b], a, a }

Figure 12: Xpath binding for //a

inp.match {
case Numbers(_*, Entry("M", num@_), _*) => num
case _ =>

}

All-matches, Xpath, and Xen filters. Leaving aside am-
biguities, simple Xpath expressions can be turned into reg-
ular hedge patterns with wildcards, one depth-iteration op-
erator for the descendant-axis, and the variable set {x, o}.
Tagging a node with x means the node (and its whole sub-
tree) matches and o means it does not. In this way, a se-
quential pushdown hedge machine can retrieve all matches
from a given input hedge (cf. Figure 12). Xen “filters” are
similar to Xpath evaluation without depth-iteration.

6.3 Space and Time Optimization

Results of the subset construction are not always minimal.
Standard state reduction can be applied to R by treating
the dsm as a dfa. Reducing L seems impossible, because
then states would no longer be subsets of states of N .

A special case are final sink states generated by a right-
most wildcard pattern x@ �. The dsm can stop when en-
tering a sink state, and bind the remaining sequence to x.

Finding shortest matches with two dsms is time-optimal
for ambiguous patterns. Shortest match is equivalent to
maximal run, and to find a maximal run in the general case,
we need to know, for every position in the input, the run
of a dfa that goes from left to right (to show which states
are reachable), and the run of the reversed dfa from right to
left (to see from which states we get to final states). This
amounts to two traversals needed for every ambiguous posi-
tion. Using two dsms merely stores and reuses the result of
the first traversal.

Some patterns would be unambiguous if pattern match-
ing would start from the right (such as the one in Sec-
tion 2.3). This can be decided at compile-time to optimize
matching for data structures like arrays. However, for iter-
ators and cons-lists matching from right to left requires a
traversal and possibly copying, and this leads to complete
loss of the gained performance.

7 Conclusion

Based on the position automaton construction, we have de-
fined a language of regular patterns with variable bindings,
and gave a compilation scheme which removes ambiguities.
The presented results connect long-standing results in for-
mal language theory with recent research in programming
languages.

The results are a small step to base new, general forms
of pattern matching, that suffer from inherent ambiguity,
on sound theoretical foundations. We discussed straight-
forward generalizations, and sketched the changes necessary
for longest (left-longest) match, which is derived from the
minimal run of N .

We improved a result from Frisch and Cardelli, showing
that rewriting regular expressions can be crucial to obtain
the longest/shortest match. This suggests systems with reg-
ular types be based on semantics, not on syntax of regular
expressions. Further research has to be done on the implica-
tions of the relation between pattern matching and sequen-
tial machines for potential global optimizations in compilers.
Consider nested pattern matching statements, where the re-
sult xia of an earlier match can serve as input to another.

10

Another open issue concerns the suitability of improved nfa
constructions [14, 12] for the proposed compilation of pat-
tern matching.

Acknowledgements. I thank Vladimir Gapeyev and
Alain Frisch for discussions on their matching implementa-
tions. I am also grateful to Sebastian Maneth for discussing
tree and hedge matching and helping with the implementa-
tion. Finally, I am indebted to Martin Odersky for having
provided the opportunity to test these ideas in the Scala
compiler, and to the Hasler foundation for supporting this
research with a grant.

References

[1] Véronique Benzaken, Giuseppe Castagna, and Alain
Frisch. Cduce: An XML-centric general-purpose lan-
guage. In Proceedings of the 8th ACM SIGPLAN Inter-
national Conference on Functional Programming, pages
51–63, August 2003.

[2] Gerard Berry and Ravi Sethi. From regular expression
to deterministic automata. Theoretical Computer Sci-
ence, 48(1):117–126, 1986.

[3] Jean Berstel. Transductions and Context-Free Lan-
guages. Teubner Verlag, Stuttgart, 1979.

[4] Niklas Broberg, Andreas Farre, and Josef Svennings-
son. Regular expression patterns. In Proceedings of
the 10th ACM SIGPLAN International Conference on
Functional Programming, 2001.

[5] Anne Brüggemann-Klein, Makoto Murata, and Derick
Wood. Regular tree and regular hedge languages over
unranked alphabets: Version 1, april 3, 2001. Technical
report, Hongkong University of Science and Technol-
ogy, 2001.

[6] C.C. Elgot and G. Mezei. On relations defined by gen-
eralized finite automata. IBM Journal of Research and
Development, 9:47–65, 1965.

[7] Burak Emir. Extending pattern matching with regular
tree expressions for XML processing in Scala. Master’s
thesis, RWTH Aachen, 2003.

[8] Alain Frisch and Luca Cardelli. Greedy regular expres-
sion matching. In Proceedings of the 31stInternational
Colloquium on Automata, Languages and Programming
ICALP Turku, Finland, 2004.

[9] Vladimir Gapeyev, Michael Levin, Benjamin C. Pierce,
and Alan Schmitt. XML goes native: Run-time repre-
sentations for Xtatic. Manuscript.

[10] Vladimir Gapeyev and Benjamin C. Pierce. Regular
object types. In ECOOP’03 - European Conference on
Object-Oriented Programming, volume 2743 of LNCS.
Springer-Verlag, 2003.

[11] Ferenc Gecseg and Magnus Steinby. Tree Languages.
In: Grzegorz Rozenberg and Arto Salomaa, editors,
Handbook of Formal Languages III, chapter 1, pages
1–68. Springer-Verlag, Heidelberg, 1997.

[12] Christian Hagenah and Anca Muscholl. Computing
ε-Free NFA from Regular Expressions in O(n log2(n))
Time. R.A.I.R.O. Theoretical Informatics and Appli-
cations, 34:257–277, 2000.

[13] Haruo Hosoya and Benjamin Pierce. Regular expression
pattern matching for XML. ACM SIGPLAN Notices,
36(3):67–80, March 2001.

[14] Juraj Hromkovič, Sebastian Seibert, and Thomas
Wilke. Translating regular expression into small ε-free
nondeterministic finite automata. In STACS’97 Sym-
posium on Theoretical Aspects of Computer Science,
volume 1200 of LNCS, pages 55–66. Springer-Verlag,
Heidelberg, 1997.

[15] Michael Y. Levin. Compiling regular patterns. In Pro-
ceedings of the 9th ACM SIGPLAN International Con-
ference on Functional Programming, 2004. to appear.

[16] O. Matz, A.Miller, A. Potthoff, W. Thomas, and
E. Valkema. Report on the program AMoRE. Tech-
nical report, Universität Kiel, 1995. also available on
http://amore.sourceforge.net.

[17] Eric Meijer, Wolfram Schulte, and Gavin Bierman.
Programming with circles, triangles and rectangles.
Manuscript, 2003.

[18] Makoto Murata. Hedge automata: a formal model for
XML schemata. Manuscript, October 1999.

[19] Andreas Neumann. Parsing and Querying XML Docu-
ments in SML. PhD thesis, Universität Trier, 1999.

[20] Andreas Neumann and Helmut Seidl. Locating matches
of tree patterns in forests. In 18th FST&TCS Founda-
tions of Software Technology and Theoretical Computer
Science, volume 1530 of LNCS, pages 134–145. Springer
Verlag, Heidelberg, 1998.

[21] Martin Odersky, Philippe Altherr, Vincent Cremet,
Burak Emir, Sebastian Maneth, Stéphane Micheloud,
Nikolay Mihaylov, Michel Schinz, Erik Stenman, and
Matthias Zenger. An overview of the scala program-
ming language. Technical report, EPF Lausanne, 2004.

[22] Naoshi Tabuchi, Eijiro Sumii, and Akinori Yonezawa.
Regular expression types for strings in a text processing
language (extended abstract). In Proceedings of TIP’02
Workshop on Types in Programming, pages 1–18, July
2002.

11

A Appendix

Proof of Proposition 2: maxN (s) >right maxN (s′) yields
qm, q′m with qm > q′m and a common (possibly empty) suffix
z = qm+1 · · · qn, i.e.

maxN (s) = · · · qmz
maxN (s′) = · · · q′mz

This implies a (possibly empty) common suffix

γ(z) = γ(qm+1) · · · γ(qn)

of the bindings s, s′. Let b = γ(qm) = xia for some xia ∈
V × Σ. Without loss of generality, we can assume that the
bindings have the form

s = ubblenγ(z)
s′ = wb′blenγ(z)

for some length len (which can also be 0). This means the
common suffix γ(z) is preceded by at least len other letters
b in both words, yielding a longer common suffix

If we can now show that b′ = xj a with i > j for any

length, then s >right s′ follows. That the letter a is the same
follows from proj(s) = proj(s′). We will prove the fact about
the variable using the easily shown fact that for any pattern
p = p1 · · · pk a maximal trace that binds to xi must include
a unique state qlast which is either qlast = max lst(pj) for j > i
for nonempty u, w, or qlast = q0 if u = w = ε.

So assume the maximal traces of s arrives at qm after
reading the subsequence bblen of s.

δ�({0}, u) � qlast

δ�({0}, ubblen) � qm

δ�({0}, wb′blen) � q′m

Since r is branch-sorted and qm > q′m, the number of
b′s in bblen is greater or equal to the number of b’s in b′blen .
Suppose the number would be the same, and b′ = b. Then
uniqueness of max δ(qlast, b), through which both must then
pass at the same time and maximality of the runs implies
qm = q′m, a contradiction. So b′ must be different, and the
order on variables in the pattern yields the desired result
b′ = xj a for some xj with i > j.�

Lemma 1
Let s ∈ [[p]] and Nvp(p) be the position automaton of p. If

s = wxia · · · for some i ∈ {1, . . . , k}, w ∈ (X × Σ)+, X =
{x1, . . . , xi−1} ⊆ V then the trace maxNvp(p)(s) contains a
state qlast = max lst(p1 · · · pj) for some j < i.

Proof Induction on i.
case 1: Then the assumption on word w cannot be satisfied.
case i −→ i + 1: w ends with xj b for some j < i and some
b ∈ Σ. Since s ∈ [[p]], there are states q ∈ lst(p1 · · · pj) with
γ(q) = xj b. Every trace in Nvp(p)(s) goes through such a q.
Pick the greatest one of those. If the maximal run would
not contain it, it would not be maximal.�

Proof of Proposition 3. For w = a1 · · · an ∈ Σ� and
s = b1 · · · bn ∈ (V × Σ)�,

w � p⇒ s
iff proj(s) = w and s ∈ [[p)]]
iff (a1 : b1) · · · (an : bn) ∈ [[vp ◦ h(p)]]
iff q0b1 · · · qn−1bnqn ∈ Nvp◦h(p)(w) by correctness of the po-
sition automata construction.�

12

