
Programming Principles
Midterm Exam

Friday, November 9th 2012

First Name:
Last Name:

Your points are precious, don’t let them go to waste!

Your Name Work that can’t be attributed to you is lost: write your name on each sheet of
the exam.

Your Time All points are not equal. Note that we do not think that all exercises have the
same difficulty, even if they have the same number of points.

Your Attention The exam problems are precisely and carefully formulated, some details
can be subtle. Pay attention, because if you do not understand a problem, you can not
obtain full points.

Exercise Points Points Achieved
1 10
2 10
3 10

Total 30



Exercise 1: Grades (10 points)

In this exercise we analyze the quiz grades of students on a course. Each student is represented by his/her
name - a unique String. Grades are represented as Ints from 1 to 6. On each quiz the student receives a
certain grade - this is the student’s Result on a particular quiz:

type Result = (String, Int)

where the first element of the pair is the student’s name, and the second is their grade.

A quiz is defined as a list of results for each student:

type Quiz = List[Result]

A quiz will always have grades for all the students enrolled in the course.

Finally, a course is simply a list of quizzes:

type Course = List[Quiz]

Here is an example of the course called Programming Principles, which consists of five students and three
quizzes:

val programmingPrinciples = List(
List(

("Johnny Depp", 1),
("Matt Damon", 3),
("Scott Bakula", 6),
("Lukas Rytz", 6),
("Mickey Mouse", 1)

),
List(

("Johnny Depp", 3),
("Matt Damon", 2),
("Scott Bakula", 6),
("Lukas Rytz", 5),
("Mickey Mouse", 1)

),
List(

("Johnny Depp", 4),
("Matt Damon", 4),
("Scott Bakula", 6),
("Lukas Rytz", 6),
("Mickey Mouse", 1)

)
)

We suggest that you consider using the following collection methods for solving this exercise:

2



def map[U](f: T = U): List[U] a new collection which contains the elements of this collection, trans-
formed by the function f

def map[P, Q]
(f: (K, V) => (P, Q)): Map[P, Q]

a new map which contains the key-value pairs of this map, transformed
by the function f

def filter(p: T => Boolean):
List[T]

a new collection which contains only those elements of this collection
which satisfy the predicate p

def filter(p: (K, V) => Boolean):
Map[K, V]

a new map which contains only those key-value pairs of this map which
satisfy the predicate p

def take(n: Int): List[T] a new collection which contains only the first n elements of this collection
(or all if size is less than n)

def takeWhile(p: T => Boolean):
List[T]

a new collection which contains the longest prefix of the elements of
this collection which satisfy the predicate p

def sortBy[U](f: T => U):
List[T]

a new sequence which contains the elements of this sequence in a sorted
order determined by the function f – useful when elements of the
collection are not ordered (e.g. Tuple2), but they can be mapped into
some other element type which is ordered (e.g. Double)

def groupBy[K](f: T => K):
Map[K, List[T]]

a map which contains all the elements of this collection grouped by the
mapping function f – the elements which mapped into the same key
are put into the same group

def flatten: List[T] given that this collection has collections as its elements, this returns
a flattened collections (e.g. List(List(1, 2), List(3)) becomes
List(1, 2, 3))

def toMap: Map[K, V] given that this collection contains pairs of type (K, V), this returns a
map with keys of type K and values of type V

def toList: List[T] converts this collection into a list – if this collection is a Map[K, V],
then the resulting list will contain pairs (K, V)

def foldLeft[U](z: U)
(f: (U, T) => U): U

folds the elements of this collection by applying f to all the elements

def foldLeft[U](z: U)
(f: (U, (K, V)) => U): U

folds the key-value pairs of this map by applying f to all the elements

def length: List[T] returns the length of this sequence
def size: List[T] returns the size of this collection (same as length, but works for any

collection type, not just sequences)

The methods listed above work for all collection types, not just lists – for example, you can replace the return
type List with a return type Map in the type signatures above. However, methods sortBy and length can
only be called on sequences, like List.

You are allowed use other methods as well, but the solution should be the most elegant if you use the suggested
methods. Each part of the exercise is independent of the other parts – you do not have to solve part 1 to
solve part 2. But in any part you can reuse the methods defined in the earlier parts.

Part 1: Quiz Grade Means
Write the method quizMeans which, given a course, computes the list of mean grades of all the quizzes in
that course:

3



def quizMeans(course: Course): List[Float] = ???

A mean grade of a quiz is defined as the sum of the grades of all the students divided by the number of
students.

Part 2: Student Grade Means
Write the method studentMeans which, given a course, computes the mean grades of all the students in
that course:

def studentMeans(course: Course): Map[String, Float] = ???

The method should return a Map mapping each student to his mean grade. The mean grade of a student is
defined as the sum of his grades on all the quizzes divided by the number of quizzes.

Part 3: Top Students
Write the method topStudents which, given a course and the number of top students n, computes the n top
students on the course.

def topStudents(course: Course, n: Int): List[String] = ???

The top n students are those n students with the highest mean grades. You can assume that no two students
have the same mean grade.

Hint: in any part of the exercise you can use one of the methods defined earlier.

Part 4: Passing Students
Write the method passingStudents which, given a course, computes the list of the students which passed
the course:

def passingStudents(course: Course): List[String] = ???

The students that passed the course are those whose mean grade is greater than or equal to 3.5.

Part 5: Grade histogram
In the final part of this exercise, you will compute the number of students per each final grade. A final grade
is obtained by computing the mean grade of the student and then rounding it to the nearest integer.

The assignment from a grade to the number of students with that grade is called a grade histogram, and
we model it with a Histogram datatype:

type Histogram = Map[Int, Int]

For example, if there were 3 students John Rambo, Judge Dredd and Rocky Balboa, and they have the mean
grades 3.3, 3.2 and 6.0, respectively, then the histogram is:

Map(3 -> 2, 6 -> 1)

4



because there were 2 students with a mean grade which rounds to 3, and a single student with a result of 6.

Note that if zero students have a certain grade, then you do not have to include it in the histogram. Above,
none of the students have a grade 5, so the key 5 is not in the Map.

Write the method histogram which, given a course, computes the grade histogram of the course:

def histogram(course: Course): Histogram = ???

Hint: consider using the math.round(x: Float) method from the Scala standard library which rounds a
real number to an integer number.

5



Exercise 2: Hamming Numbers (10 points)

In this exercise we will work with Hamming numbers. On Wikipedia there are two definitions:

• Hamming numbers are numbers that entirely divide a power of 60

• Hamming numbers have the form 2i · 3j · 5k, where i, j and k are ≥ 0

As an example, we verify that 48 is a Hamming number. We list the powers of 60 (on the left) and see that
48 divides 602 without remainder (on the right):

600 = 1 1 mod 48 = 1
601 = 60 60 mod 48 = 12
602 = 3600 3600 mod 48 = 0

We can easily verify that 48 also matches the second definition of Hamming numbers: 48 = 24 · 3 = 24 · 31 · 50,
so we have i = 4, j = 1 and k = 0.

The goal of this exercise is to verify that the two definitions are indeed equivalent. We will implement the two
definitions and compare the results. Since we are dealing with large numbers we use BigInt instead of Int in
this exercise. You can work with BigInts just like with ordinary integers.

The following methods of the class Stream[T] might be useful for solving this exercise.

def #::[T](x: T): Stream[T] prepends the element x to this stream
def head: T the first element of this stream
def tail: Stream[T] this stream without its first element
def zip[U](that: Stream[U]): Stream[(T,U)] a stream whose elements are pairs of the elements of

the streams this and that
def take(n: Int): Stream[T] a finite stream consisting of the first n elements of this

stream
def forall(p: T => Boolean): Boolean true if p holds for every element in this stream
def exists(p: T => Boolean): Boolean true if p holds for some element in this stream
def map[U](f: T => U): Stream[U] a stream which contains the elements of this stream,

transformed by the function f
def filter(p: T => Boolean): Stream[T] the stream of elements from this stream that satisfy

predicate p

First definition

To implement the first definition, we begin with an infinte stream consisting of all powers of 60:

val powersOfSixty: Stream[BigInt] = ???
powersOfSixty.take(4).toList // should give List(1, 60, 3600, 216000)

We also need the infinite stream that counts from 1 upwards:

val fromOne: Stream[BigInt] = ???
fromOne.take(3).toList // should give List(1, 2, 3)

6



The Hamming numbers can now be obtained by filtering the stream fromOne and keeping only numbers which
divide a power of sixty. We write a predicate function dividesPowerOfSixty(i: BigInt): Boolean that
returns true if i is a divisor of 60n for some n ≥ 0.
However, we can obviously not look at all the powers of 60, there are infinitely many. Instead we use a
conservative approximation: to find out if i divides any power of 60, the largest power of 60 we have to check
is p = 60dlog2(i)e. If i doesn’t divide p, then it also does not divide any larger power of 60.

def log2(d: Double): Double = math.log(d) / math.log(2)
def maxExponent(i: BigInt): Int = math.ceil(log2(i.doubleValue)).toInt

def dividesPowerOfSixty(i: BigInt): Boolean = ???

Now you can define the first stream of hamming numbers:

val hamming1: Stream[BigInt] = ???

Second definition

The second definition of Hamming numbers will lead to a more efficient solution than the first one: instead
of checking a property for each number the numbers are computed directly. An algorithmic description to
compute Hamming numbers is the following:

• The number 1 is a Hamming number

• If x is a Hamming number, the numbers 2 · x, 3 · x and 5 · x are also Hamming numbers

If we implement this using a recursive value, we need a way to merge two streams into one. This job is done
by mergeAscending: it merges two monotonically growing streams into one by taking the smaller of the two
head elements and merging the remaining elements recursively.
If both input streams have the same head element, then one of the two should be dropped (in other words,
the resulting stream should not have duplicates).
You can assume that both input streams are infinite.

def mergeAscending(s1: Stream[BigInt], s2: Stream[BigInt]): Stream[BigInt] = ???
mergeAscending(1 #:: 4 #:: ...,

2 #:: 4 #:: 5 #:: ...) // should give 1 #:: 2 #:: 4 #:: 5 #:: ...

Note that you can merge three streams into one by using mergeAscending twice:

mergeAscending(s1, mergeAscending(s2, s3))

Now we are ready to implement the stream of Hamming numbers:

val hamming2: Stream[BigInt] = ???

Comparing the two streams

To see if the two streams hamming1 and hamming2 contain the same elements, write an expression that
evaluates to true if the first 100 elements of the two streams are the same, and false otherwise:

val ok: Boolean = ???

7



Exercise 3: Abstract Syntax Trees (10 points)

The toy programming language Funny supports decimal numbers, e.g. 1 or 42, and function applications,
e.g. plus(2, -2) or div(1, plus(2, -2)). The language is as simple as that. Funny doesn’t support
conditional expressions, operators or even function definitions - it’s just numbers and calls to functions.

When designing a compiler for a programming language it is common to represent programs as abstract
syntax trees, recursive data structures which express code hierarchically.

In funnyc, the Funny compiler, abstract syntax trees are encoded using two case classes: Number and Apply,
which both inherit from a common superclass Tree.

abstract class Tree
case class Number(n: Int) extends Tree
case class Apply(fun: String, args: List[Tree]) extends Tree

These case classes can represent the aforementioned Funny programs as follows:

Program Abstract syntax tree
1 Number(1)

42 Number(42)

plus(2, -2) Apply("plus", List(Number(2), Number(-2)))

div(1, plus(2, -2)) Apply("div", List(Number(1), Apply("plus",

List(Number(2), Number(-2)))))

Part 1
Convert the following two Funny programs into their abstract syntax tree representation: a) plus(1, plus(2,
3)), b) plus(plus(1, 2), 3). Are the resulting trees the same?

Part 2
Back then, when Funny only supported numbers, the compiler was easy to grasp. However with the recent
addition of function calls, developers of funnyc started experiencing problems with debugging.

Help the developers by writing a prettyprinting function for Funny abstract syntax trees with the signature:
def prettyprint(tree: Tree): String. The prettyprinter should convert syntax trees into equivalent
Funny source code, like shown in the left column of the example table above.

Note. Use the toString method to convert numbers to strings. For example, 42.toString produces "42".

Part 3
Despite being perceived by some as overly complex, Funny has quickly gained traction on Twitter. New
feature requests are abundant. One of those is preventing division by zero errors, which happen when the
function named div is called with two arguments, the second of which is 0.

Write a function def divsByZero(tree: Tree): List[Tree], which given an abstract syntax tree of a
Funny program, returns all divisions by zero which occur in that program.

Note. You only need to detect the most blatant division by zero mistakes, i.e. just the function applications
having the form of div(..., 0). You don’t have to account for expressions like div(1, plus(-2, 2)).

8


