
Week 9: Constraints

• Programs are generally organized as unidirectional computations that

consume inputs and produce outputs.

• (Pure) functional programming makes this explicit in the source code,

since we have:

input = function argument output = function result

• Mathematics, on the other hand, is not always unidirectional.

• For example, in the equation d ·A · E = F · L, we can calculate the

value of any variable by using the values of the other four.

• For example,

d = F · L/(A · E)

A = F · L/(d · E), etc

1



A Language for Constraints

We now develop a constraint language that allows the user to formulate

equations like this, and have the system solve them.

There are two levels:

• Constraints like networks: primitive constraints linked by connectors.

• Constraints as algebraic equations.

2



Temperature Conversions

Exemple : The relationship between temperatures in Celsius and

Fahrenheit is:

C ∗ 9 = (F − 32) ∗ 5

This can be expressed as a constraint network as follows:

*
C

9
* + F

325

w
u

v

x y

3



Using the Constraint System

Suppose we want to convert between Celsius and Fahrenheit.

We create a converter by de�ning

val C, F = new Quantity
CFconverter(C, F)

4



Using the Converter

Here, CFconverter is a method that constructs a constraint network.

def CFconverter(c : Quantity, f : Quantity) = {
val u, v, w, x, y = new Quantity
Constant(w, 9); Multiplier(c, w, u)
Constant(y, 32); Adder(v, y, f)
Constant(x, 5); Multiplier(v, x, u)

}

By comparing with the graphical representation of the network, we �nd

that:

• boxes are constraints, such as Multiplier, Adder, Constant,

• connectors are quantities, (i.e., instances of the class Quantity).

5



To see the network running, start up the interpreter:

scala> :load week09.scala
de�ned module constr
scala> import constr._
import constr._

and place probes on the quantities C and F:

scala> Probe("Celsius temp", C)
scala> Probe("Fahrenheit temp", F)

Then, give a value to one of the quantities:

scala> C setValue 25
Probe : Celsius temp = 25
Probe : Fahrenheit temp = 77

Now try to give a value to F :

scala> F setValue 212
Error! contradiction : 77 and 212

If we would like to reuse the system with new values, we must �rst �forget"

the old values.

6



scala> C forgetValue
Probe : Celsius temp = ?
Probe : Fahrenheit temp = ?
scala> F setValue 212
Probe : Celsius temp = 100
Probe : Fahrenheit temp = 212

Note that the same network can be used to compute C from F and F from

C.

This lack of direction is characteristic of systems based on constraints.

Such systems are common today; an entire industry is interested in them.

Examples: ILOG Solver (and JSolver), TK!solver.

Often, constraint systems optimize some quantities based on other

quantities; but we'll not cover that here.

7



Implementing Constraint Systems

The implementation of a constraint system is somewhat similar to the

implementation of a logical circuit simulator.

A constraint system is composed of primitive constraints (boxes) and of

quantities (connectors).

Primitive constraints simulate simple equations between the quantities x,

y, z, such that:

x = y + z,
x = y ∗ z,
x = c

where c is a constant.

A quantity is either de�ned or unde�ned.

A quantity can connect any number of constraints.

8



Here is the interface of a quantity:

class Quantity {
def getValue : Option[Double] = ...
def setValue(v : Double, setter : Constraint): Unit = ...
def setValue(v : Double): Unit = setValue(v, NoConstraint)
def forgetValue(retractor : Constraint): Unit = ...
def forgetValue : Unit = forgetValue(NoConstraint)
def connect(c : Constraint) = ...

}

Explanation:

getValue returns the current value of the quantity.

setValue sets the value, and forgetValue forgets it.

These two methods exist in two overloaded variants.

One of the variants (used internally by the constraint system) passes the

constraint that causes the modi�cation or the reset of the parameter value.

connect declares that the quantity is involved in a constraint.

9



The Option Type

The Option type is de�ned as:

trait Option[+A]
case class Some[+A](value : A) extends Option[A]
case object None extends Option[Nothing]

The idea is that the function getValue returns

• None if no value is speci�ed, or,

• Some(x) if the value of the quantity is x.

The clients of getValue then use pattern matching to decompose the value:

q.getValue match {
case Some(x) ⇒ /∗ do something with the value `x' ∗/
case None ⇒ /∗ handle the unde�ned value ∗/

}

10



Covariance

The de�nition of Option illustrates several aspects of Scala's type system.

• The + before the type parameter a indicates that Option is a

covariant type constructor:

If T is a subtype of S (note T <: S), then Option[T] is a

subtype of Option[S].

For example, Option[String] is a subtype of Option[Object].

• Without the + in the class de�nition of Option, Option[String] and

Option[Object] will be two incomparable types.

• Question: Why can't class constructors always be covariant?

11



• None is de�ned as a case object. In other words, it's the only value

that inherits from Option[Nothing].

• The type Nothing is a subtype of every other type. For example,

Nothing <: String <: Object.

• Since Option is covariant, this means that None is a value of any type

of the form Option[T]. For example,

Option[Nothing] <: Option[String] <: Option[Object].

12



Constraints

The interface of a constraint is simple.

abstract class Constraint {
def newValue : Unit
def dropValue : Unit

}

There are only two methods, newValue and dropValue.

newValue is called when one of the quantities connected to a constraint

receives a new value.

dropValue is called when one of the quantities connected to a constraint

loses its value.

When it is "woken up" by a call to newValue, a constraint tries to compute

the value(s) of the quantities that it is connected to.

If this happens, it propagates these values by calling setValue for all the

connected participants.

13



When it is woken up by a call to dropValue, a constraint simply tells all

participants to forget their value.

We have therefore two sequences of mutually recursive calls.

q.setValue → c.newValue → q'.setValue
q.forgetValue → c.dropValue → q'.forgetValue

14



Implementation of primitive constraints

Now it's easy to implement primitive constraints.

case class Adder(a1 : Quantity, a2 : Quantity, sum : Quantity)
extends Constraint {

def newValue = (a1.getValue, a2.getValue, sum.getValue) match {
case (Some(x1), Some(x2), _) ⇒ sum.setValue(x1 + x2, this)
case (Some(x1), _, Some(r)) ⇒ a2.setValue(r − x1, this)
case (_, Some(x2), Some(r)) ⇒ a1.setValue(r − x2, this)
case _ ⇒

}
def dropValue {

a1.forgetValue(this); a2.forgetValue(this); sum.forgetValue(this)
}
a1 connect this
a2 connect this
sum connect this

}

15



Explanations:

• newValue does a pattern match on the three quantities connected by

the adder.

• If two of the values are de�ned, the third is computed and de�ned.

• dropValue is propagated to the connected quantities.

• The initialization code connects the adder to the three passed

quantities.

Exercise: Write a multiplication constraint. The constraint should

"know" that 0 ∗ x = 0, even if x is not de�ned.

16



Constants

A constant is a special case of a constraint.

We implement it as follows:

case class Constant(q : Quantity, v : Double) extends Constraint {
def newValue : Unit = error("Constant.newValue")
def dropValue : Unit = error("Constant.dropValue")
q connect this
q.setValue(v, this)

}

Remarks:

• Constants cannot be rede�ned or forgotten. That's why newValue and

dropValue produce an error.

• Constants immediately give a value to the attached quantity.

17



Quantities

We still have to implement the quantities.

The state of a quantity is given by three values:

• its current value (value),

• the constraints that are attached to it (constraints),

• the informant, i.e., the constraint that has caused the latest de�nition

of the value (informant).

The informant can prevent the in�nite propagation of values in the

presence of cycles.

class Quantity {
private var value : Option[Double] = None
private var constraints : List[Constraint] = List()
private var informant : Constraint = NoConstraint; ... }

object NoConstraint extends Constraint { ... }

18



This is how getValue and setValue are implemented:

def getValue : Option[Double] = value

def setValue(v : Double, setter : Constraint) = value match {
case Some(v1) ⇒

if (v != v1) error("Error! contradiction : " + v + " and " + v1)
case None ⇒

informant = setter; value = Some(v)
for (c ← constraints if c != informant) c.newValue

}
def setValue(v : Double): Unit = setValue(v, NoConstraint)

The method setValue signals an error when one tries to modify a value

that is already de�ned.

Otherwise, it propagates the change by calling newValue on all the

attached constraints, except the informant.

19



This is how forgetValue and connect are implemented:

def forgetValue(retractor : Constraint) {
if (retractor == informant) {

value = None
for (c ← constraints if c != informant) c.dropValue

}
}
def forgetValue : Unit = forgetValue(NoConstraint)

The method forgetValue forgets the value (by resetting it to None) only if

the call comes from the constraint that the value originated from.

It then propagates the modi�cation by calling dropValue on all the

attached constraints, except the informant.

A call to forgetValue coming from somewhere else than the informant is

ignored.

20



Here is the implementation of connect.

def connect(c : Constraint) {
constraints = c :: constraints
value match {

case Some(_) ⇒ c.newValue
case None ⇒

}
}

This method adds the constraint to the list constraints.

If the quantity has a value, it also calls newValue on the new constraint.

21



Probes

Probes are special constraints that simply output all the changes of the

attached quantity.

They are implemented as follows:

case class Probe(name : String, q : Quantity) extends Constraint {
def newValue : Unit = printProbe(q.getValue)
def dropValue : Unit = printProbe(None)
private def printProbe(v : Option[Double]) {

val vstr = v match {
case Some(x) ⇒ x.toString()
case None ⇒ "?"

}
println("Probe : " + name + " = " + vstr)

}
q connect this

}

22



Improvement

The presented system works, but the constraints remain tedious to de�ne.

Compare the equation:

C ∗ 9 = (F − 32) ∗ 5

to the code that de�nes CFconverter.

Wouldn't it be nice to be able to build a constraint system directly based

on an equation such as the one above?

We can almost do this in Scala. Here is a new way of expressing the

Celsius/Fahrenheit conversion:

val C, F = new Quantity
C ∗ c(9) === (F + c(−32)) ∗ c(5)

23



Here,

• ∗ and + are new methods of the class Quantity that take a quantity

and return a new quantity attached to the corresponding constraint.

• c is a function that returns a quantity attached to a constant

constraint.

• === is a method of Quantity that takes a quantity and builds an

equality constraint.

For example, here is an implementation of the + method in class Quantity:

def +(that : Quantity): Quantity = {
val sum = new Quantity
Adder(this, that, sum)
sum

}

24



Summary

We have learned a new paradigm of computation: computation by

resolution of relations or constraints.

The main feature of this paradigm is that the computation can take place

in more than one direction, depending on what is de�ned and what is not.

The implementation presented here is based on a network of constraints

(nodes) and quantities (edges).

Constraint resolution involves the propagation of changes of values along

the edges and across the nodes.

The network is modeled by a set of objects some of which contain a state.

25


