Week 3: Functions and Data

In this section, we’ll learn how functions create and encapsulate data structures.

Example: Rational Numbers

We want to design a package for doing rational arithmetic.

A rational number $\frac{x}{y}$ is represented by two integers:

- its numerator x, and
- its denominator y.

Suppose we want to implement the addition of two rational numbers.

One could define the two functions

```python
def addRationalNumerator(n1: Int, d1: Int, n2: Int, d2: Int): Int
def addRationalDenominator(n1: Int, d1: Int, n2: Int, d2: Int): Int
```

but it would be difficult to manage all these numerators and denominators.

A better choice is to combine the numerator and denominator of a rational number in a data structure.

In Scala, we do this by defining a class:

```scala
class Rational(x: Int, y: Int) {
  def numer = x
  def denom = y
}
```

The definition above introduces two entities:

- A new type, named `Rational`.
- A constructor `Rational` to create elements of this type.

Scala keeps the names of types and values in different namespaces. So there’s no conflict between the two definitions of `Rational`.

We call the elements of a class type objects.

We create an object by prefixing an application of the constructor of the class with the operator `new`, for example `new Rational(1, 2)`.
Members of an object

Objects of the class `Rational` have two members, `numer` and `denom`.

We select the members of an object with the infix operator `.` (like in Java).

Exemple :

```scala
scala> val x = new Rational(1, 2)
scala> x.numer
1
scala> x.denom
2
```

Working with objects

We can now define the arithmetic functions that implement the standard rules.

\[
\begin{align*}
\frac{n_1}{d_1} + \frac{n_2}{d_2} &= \frac{n_1 d_2 + n_2 d_1}{d_1 d_2} \\
\frac{n_1}{d_1} - \frac{n_2}{d_2} &= \frac{n_1 d_2 - n_2 d_1}{d_1 d_2} \\
\frac{n_1}{d_1} \cdot \frac{n_2}{d_2} &= \frac{n_1 n_2}{d_1 d_2} \\
\frac{n_1}{d_1} / \frac{n_2}{d_2} &= \frac{n_1 d_2}{d_1 n_2} \\
\frac{n_1}{d_1} &= \frac{n_2}{d_2} \quad \text{iff} \quad n_1 d_2 = d_1 n_2
\end{align*}
\]
Exemple :

```scala
scala> def addRational(r: Rational, s: Rational): Rational =
     | new Rational(
     |   r.numer * s.denom + s.numer * r.denom,
     |   r.denom * s.denom)
scala> def makeString(r: Rational) =
     | r.numer + "/" + r.denom
scala> makeString(addRational(new Rational(1, 2), new Rational(2, 3)))
7/6
```

Methods

One could go further and also package functions operating on a data abstraction in the data abstraction itself.

Such functions are called *methods*.

Exemple : Rational numbers now would have, in addition to the functions numer and denom, the functions add, sub, mul, div, equal, toString.

One might, for example, implement this as follows:

```scala
class Rational(x: Int, y: Int) {
  def numer = x
  def denom = y
  def add(r: Rational) =
      new Rational(
          numer * r.denom + r.numer * denom,
          denom * r.denom)
  def sub(r: Rational) =
```
...

```scala
override def toString() = numer + "/" + denom
}
```

Remark: the modifier `override` declares that `toString` redefines a method that already exists (in the class `java.lang.Object`).

Here is how one might use the new `Rational` abstraction:

```scala
scala> val x = new Rational(1, 3)
scala> val y = new Rational(5, 7)
scala> val z = new Rational(3, 2)
scala> x.add(y).mul(z)
66/42
```

Data Abstraction

The previous example has shown that rational numbers aren’t always represented in their simplest form. (Why?)

One would expect the rational numbers to be reduced to their smallest numerator and denominator by dividing them by their divisor.

We could implement this in each rational operation, but it would be easy to forget this division in an operation.

A better alternative consists of normalizing the representation in the class when the objects are constructed:
class Rational(x: Int, y: Int) {
 private def gcd(a: Int, b: Int): Int = if (b == 0) a else gcd(b, a % b)
 private val g = gcd(x, y)
 def numer = x / g
 def denom = y / g
 ...
}

gcd and g are private members; we can only access them from inside the Rational class.

With this definition, we obtain:

scala> val x = new Rational(1, 3)
scala> val y = new Rational(5, 7)
scala> val z = new Rational(3, 2)
scala> x.add(y).mul(z)
11/7

In this example, we calculate gcd immediately, because we expect that the functions numer and denom are often called.

It is also possible to call gcd in the code of numer and denom:

For example,

class Rational(x: Int, y: Int) {
 private def gcd(a: Int, b: Int): Int = if (b == 0) a else gcd(b, a % b)
 def numer = x / gcd(x, y)
 def denom = y / gcd(x, y)
}

This can be advantageous if it is expected that the functions numer and denom are called infrequently.

Clients observe exactly the same behavior in each case.

This ability to choose different implementations of the data without affecting clients is called data abstraction.

It is a cornerstone of software engineering.
Self Reference

On the inside of a class, the name \texttt{this} represents the object on which the current method is executed.

\textbf{Exemple :} Add the functions \texttt{less} and \texttt{max} to the class \texttt{Rational}.

\begin{verbatim}
class Rational(x: Int, y: Int) {
 //...
 def less(that: Rational) =
 numer * that.denom < that.numer * denom
 def max(that: Rational) = if (this.less(that)) that else this
}
\end{verbatim}

Note that a simple name \texttt{x}, which refers to another member of the class, is an abbreviation of \texttt{this.x}. Thus, an equivalent way to formulate \texttt{less} is as follows.

\begin{verbatim}
 def less(that: Rational) =
 this.numer * that.denom < that.numer * this.denom
\end{verbatim}

Constructors

The constructor introduced with the new type \texttt{Rational} is called the primary constructor of the class.

Scala also allows the declaration of auxiliary constructors named \texttt{this}.

\textbf{Exemple :} Add an auxiliary constructor to the class \texttt{Rational}.

\begin{verbatim}
class Rational(x: Int, y: Int) {
 def this(x: Int) = this(x, 1)
 //...
}
\end{verbatim}

With this definition, we obtain:

\begin{verbatim}
scala> val x = new Rational(2)
scala> val y = new Rational(1, 2)
scala> x.mul(y)
1/1
\end{verbatim}
Classes and Substitutions

We previously defined the meaning of a function application using a computation model based on substitution. Now we extend this model to classes and objects.

Question: How is an instantiation of the class \texttt{new C}(e_1, ..., e_m) evaluated?

Answer: The expression arguments \(e_1, ..., e_m\) are evaluated like the arguments of a normal function. That’s it. The resulting expression, say, \texttt{new C}(v_1, ..., v_m), is already a value.

Now suppose that we have a class definition,

\[\texttt{class C}(x_1, ..., x_m) \{ \ldots \texttt{def f}(y_1, ..., y_n) = b \ldots \}\]

where

- The formal parameters of the class are \(x_1, ..., x_m\).
- The class defines a method \(f\) with formal parameters \(y_1, ..., y_n\).

(The list of function parameters can be absent. For simplicity, we have omitted the parameter types.)

Question: How is the expression \texttt{new C}(v_1, ..., v_m).f(w_1, ..., w_n) evaluated?

Answer: The expression can be rewritten as:

\[\begin{align*}
&[w_1/y_1, ..., w_n/y_n] \\
&[v_1/x_1, ..., v_m/x_m] \\
&[\texttt{new C}(v_1, ..., v_m)/\texttt{this}] b
\end{align*}\]

There are three substitutions at work here:

1. the substitution of the formal parameters \(y_1, ..., y_n\) of the function \(f\) by the arguments \(w_1, ..., w_n\),
2. the substitution of the formal parameters \(x_1, ..., x_m\) of the class \(C\) by the class arguments \(v_1, ..., v_m\),
3. the substitution of the self reference \texttt{this} by the value of the object \texttt{new C}(v_1, ..., v_n).
Examples of Rewriting

\[
\text{new Rational}(1, 2).\text{numerator} \rightarrow 1 \\
\text{new Rational}(1, 2).\text{denominator} \rightarrow 2 \\
\text{new Rational}(1, 2).\text{less} (\text{new Rational}(2, 3)) \\
\rightarrow \text{new Rational}(1, 2).\text{numerator} \times \text{new Rational}(2, 3).\text{denominator} < \\
\text{new Rational}(2, 3).\text{numerator} \times \text{new Rational}(1, 2).\text{denominator} \\
\rightarrow \ldots \rightarrow 1 \times 3 < 2 \times 2 \\
\rightarrow \ldots \rightarrow \text{true}
\]

Operators

In principle, the rational numbers defined by \textit{Rational} are as natural as integers.

But for the user of these abstractions, there is a noticeable difference:

- We write \(x + y \), if \(x \) and \(y \) are integers, but
- We write \(r.add(s) \) if \(r \) and \(s \) are rational numbers.

In Scala, we can eliminate this difference. We proceed in two steps.

\textbf{Step 1} Any method with a parameter can be used like an infix operator.

It is therefore possible to write

\[
\begin{align*}
\text{r add s} & \quad \text{r.add(s)} \\
\text{r less s} & \quad \text{r.less(s)} \\
\text{r max s} & \quad \text{r.max(s)}
\end{align*}
\]

\textbf{Step 2} Operators can be used as identifiers.
Thus, an identifier can be:

- A letter, followed by a sequence of letters or numbers
- An operator symbol, followed by other operator symbols.

The priority of an operator is determined by its first character.

The following table lists the characters in ascending order of priority:

<table>
<thead>
<tr>
<th>(all letters)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>&</td>
</tr>
<tr>
<td>= !</td>
</tr>
<tr>
<td>+ −</td>
</tr>
<tr>
<td>(all other special characters)</td>
</tr>
</tbody>
</table>

Therefore, we can define `Rational` more naturally:

```scala
class Rational(x: Int, y: Int) {
  private def gcd(a: Int, b: Int): Int = if (b == 0) a else gcd(b, a % b)
  private val g = gcd(x, y)
  def numer = x / g
  def denom = y / g
  def +(r: Rational) =
    new Rational(
      numer * r.denom + r.numer * denom,
      denom * r.denom)
  def -(r: Rational) =
    new Rational(
      numer * r.denom - r.numer * denom,
      denom * r.denom)
  def *(r: Rational) =
    new Rational(
      numer * r.numer,
      denom * r.denom)
  override def toString() = numer + "/" + denom
}
```
... and rational numbers can be used like \texttt{Int} or \texttt{Double}:

\begin{verbatim}
scala> val x = new Rational(1, 2)
scala> val y = new Rational(1, 3)
scala> x * x + y * y
13/36
\end{verbatim}

\section*{Abstract Classes}

Consider the task of writing a class for sets of integers with the following operations.

\begin{verbatim}
abstract class IntSet {
 def incl(x: Int): IntSet
 def contains(x: Int): Boolean
}\end{verbatim}

\texttt{IntSet} is an abstract class.

Abstract classes can contain members which are missing an implementation (in our case, \texttt{incl} and \texttt{contains}).

Consequently, no object of an abstract class can be instantiated with the operator \texttt{new}.

Class Extensions

Let’s consider implementing sets as binary trees.

There are two types of possible trees: a tree for the empty set, and a tree consisting of an integer and two sub trees.

Here are their implementations:

```scala
class Empty extends IntSet {
  def contains(x: Int): Boolean = false
  def incl(x: Int): IntSet = new NonEmpty(x, new Empty, new Empty)
}
```

```scala
class NonEmpty(elem: Int, left: IntSet, right: IntSet) extends IntSet {
  def contains(x: Int): Boolean = {
    if (x < elem) left contains x
    else if (x > elem) right contains x
    else true
  }
  def incl(x: Int): IntSet = {
    if (x < elem) new NonEmpty(elem, left incl x, right)
    else if (x > elem) new NonEmpty(elem, left, right incl x)
    else this
  }
}
```

Remarks:

- *Empty* and *NonEmpty* both extend the class *IntSet*.
- This means that the types *Empty* and *NonEmpty* conform to the type *IntSet*: an object of type *Empty* or *NonEmpty* can be used wherever an object of type *IntSet* is required.
Base Classes and Subclasses

- *IntSet* is called a base class of *Empty* and *NonEmpty*.
- *Empty* and *NonEmpty* are subclasses of *IntSet*.
- In Scala, any user-defined class extends another class.
- In the absence of *extends*, the class *scala.ScalaObject* is implicit.
- Subclasses inherit all the members of their base class.
- The definitions of *contains* and *incl* in the classes *Empty* and *NonEmpty* implement the abstract functions in the base class *IntSet*.
- It is also possible to redefine an existing, non-abstract definition in a subclass by using *override*.

Exemple:

```scala
abstract class Base {
  def foo = 1
  def bar: Int
}

class Sub extends Base {
  override def foo = 2
  def bar = 3
}
```

Exercice:
Write the methods *union* and *intersection* for forming the union and the intersection of two sets.

Exercice:
Add a method

```scala
def excl(x: Int): IntSet
```

which returns the given set without the element *x*. To achieve this, it is also useful to implement a test method

```scala
def isEmpty: Boolean
```
Dynamic Binding

- Object-oriented languages (including Scala) implement dynamic dispatch of methods.
- This means that the code invoked by a method call depends on the runtime type of the object that contains the method.

Exemple:

```
(new Empty).contains(7)  
→ false
```

```
(new NonEmpty(7, new Empty, new Empty)).contains(1)  
→ if (1 < 7) new Empty contains 1  
   else if (1 > 7) new Empty contains 1  
   else true  
→ new Empty contains 1  
→ false
```

Dynamic dispatch of methods is analogous to calls to higher-order functions.

Question:
Can we implement one concept in terms of the other?
Standard Classes

In fact, types such as `Int` or `Boolean` do not receive special treatment in Scala. They are like the other classes, defined in the package `scala`.

For reasons of efficiency, the compiler usually represents the values of type `scala.Int` by 32-bit integers, and the values of type `scala.Boolean` by Java’s `Booleans`, etc.

But this is just an optimization, this doesn’t have any effect on the meaning of a program.

Here is a possible implementation of the class `Boolean`.

```scala
package scala
trait Boolean {
  def ifThenElse[a](t: ⇒ a)(e: ⇒ a): a
  def && (x: ⇒ Boolean): Boolean = ifThenElse[Boolean](x)(false)
  def || (x: ⇒ Boolean): Boolean = ifThenElse[Boolean](true)(x)
  def ! : Boolean = ifThenElse[Boolean](false)(true)
  def == (x: Boolean): Boolean = ifThenElse[Boolean](x)(x.!)  // equality
  def != (x: Boolean): Boolean = ifThenElse[Boolean](x.!(x))(true)  // inequality
  def < (x: Boolean): Boolean = ifThenElse[Boolean](false)(x)  // less than
  def > (x: Boolean): Boolean = ifThenElse[Boolean](false)(x)  // greater than
  def ≤ (x: Boolean): Boolean = ifThenElse[Boolean](true)(x)  // less than or equal
  def ≥ (x: Boolean): Boolean = ifThenElse[Boolean](true)(x)  // greater than or equal
}

val true = new Boolean { def ifThenElse[a](t: ⇒ a)(e: ⇒ a) = t }
val false = new Boolean { def ifThenElse[a](t: ⇒ a)(e: ⇒ a) = e }
```
The class Int

Here is a partial specification of the class Int.

class Int extends Long {
 def + (that: Double): Double
 def + (that: Float): Float
 def + (that: Long): Long
 def + (that: Int): Int /* idemp pour −, *, /, %, */
 def << (cnt: Int): Int /* idem pour >>, >>> */
 def & (that: Long): Long
 def & (that: Int): Int /* idem pour |, ^ */
 def == (that: Double): Boolean
 def == (that: Float): Boolean
 def == (that: Long): Boolean
 /* idem pour !=, <, >, ≤, ≥ */
}

Exercice : Provide an implementation of the abstract class below that represents non-negative integers.

abstract class Nat {
 def isZero: Boolean
 def predecessor: Nat
 def successor: Nat
 def + (that: Nat): Nat
 def − (that: Nat): Nat
}

Do not use standard numerical classes in this implementation.

Rather, implement two subclasses.

class Zero extends Nat
class Succ(n: Nat) extends Nat

One for the number zero, the other for strictly positive numbers.
Pure Object Orientation

A pure object-oriented language is one in which each value is an object.
If the language is based on classes, this means that the type of each value
is a class.

Is Scala a pure object-oriented language?
We have seen that Scala’s numeric types and the Boolean type can be
implemented like normal classes.
We’ll see next week that functions can also be seen as objects.
The function type $A \Rightarrow B$ is treated like an abbreviation for objects that
have a method for application:

$$\texttt{def apply}(x : A) : B$$

Recap

- We have seen how to implement data structures with classes.
- A class defines a type and a function to create objects of that type.
- Objects have functions as their members which can be selected using
 the ‘.’ infix operator.
- Classes and members can be abstract, i.e., provided without a
 concrete implementation.
- A class can extend another class.
- If the class A extends B then the type A conforms to type B.
 This means that objects of type A can be used wherever objects of
type B are required.
Language Elements Introduced This Week

Types:

\[\text{Type} = \ldots \mid \text{id} \]

A type can now be an identifier, i.e., a class name.

Expressions:

\[\text{Expr} = \ldots \mid \text{new Expr} \mid \text{Expr}.\text{id} \]

An expression can now be an object creation or a selection \(E.m \) of a member \(m \) of an expression \(E \) whose value is an object.

Definitions:

\[\text{Def} = \text{FunDef} \mid \text{ValDef} \mid \text{ClassDef} \]

\[\text{ClassDef} = [\text{abstract}] \ \text{class} \ \text{id} \ [\text{\{} \text{Parameters} \text{\}}] \]

\[\text{extends} \ \text{Expr} \ \text{\{} \text{\{} \text{TemplateDef} \text{\}} \text{\}} \]

\[\text{TemplateDef} = \text{\{Modifier\} \text{Def}} \]

\[\text{Modifier} = \text{AccessModifier} \mid \text{override} \]

\[\text{AccessModifier} = \text{private} \mid \text{protected} \]

A definition can now be a class definition such as

\[\text{class} \ \text{C(params)} \ \text{extends} \ \text{B} \ \text{\{} \text{defs} \text{\}} \]

Definitions \text{defs} in a class can be preceded by modifiers \text{private}, \text{protected} or \text{override}.